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Abstract

Previous work on assigning tasks to robots has proposed extensive categoriza-
tions of allocation of tasks with and without constraints. The main contribution
of this paper is a more specific categorization of problems that have both tem-
poral and ordering constraints. We propose a novel taxonomy that emphasizes
the differences between temporal and precedence constraints, and organizes the
current literature according to the nature of ordering and temporal constraints
of addressed problems. We summarize widely used models and methods from
the task allocation literature and related areas, such as vehicle routing and
scheduling problems, showing similarities and differences.
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1. Introduction

What is multi-robot task allocation? Think of a shipping company that sells
an item every hour; a robot at the warehouse could receive that order, fetch the
item, pack it, and prepare it for pick-up by a postal service. What happens when
the company sells 20 items every hour? What about 20 items every minute?
What about 20 items a second? Amazon, a popular shopping website, sold 36.8
million items on an especially popular shopping day in 2013. With 426 items
ordered per second that day, a single robot would be hard-pressed to keep up
with the orders. If the warehouse used a large team of robots, each robot would
have to plan an efficient route through the warehouse to fetch items for shipping
without colliding with other robots, without taking items that another robot is
handling, all while planning its route around fetching items that are out-of-stock
but will be restocked soon.

Allocation of tasks with constraints on when, where, and in what order they
need to be done by groups of robots is an important class of problems with
many real-life applications, such as warehouse automation, pickup and delivery,
surveillance at regular intervals, space exploration, and search and rescue.

The nature of the temporal constraints in this class of problems is very
broad; for example, in search and rescue domains the tasks are discovered over
time and have to be done as quickly as possible. In dynamic environments,
robots might end up arriving late to some tasks and might miss some. On the
other hand, success in surveillance tasks requires not to arrive late to tasks.
Additionally, tasks may need to be executed in a specific order, such as in
urban disaster scenarios in which police must clear blockades from roads before
ambulances can travel to carry injured people. Some tasks may need to be done
synchronously, as in surveillance where robots have to track multiple people at
the same time. We explore the following research questions to study the nuances
of task allocation problems with temporal and ordering constraints :

• What are the main types of temporal and ordering constraints in multi-
robot task allocation?

• What are the most commonly used optimization objectives? Are they
predominantly temporal-based, distance-based, or multi-objective?

• What models and methods from related areas can be applied to this class
of problems?

• Which questions or variants have been answered well, and which remain
largely open in this class of problems?

Our main contribution is a novel taxonomy that divides the literature ac-
cording to the nature of the temporal and ordering constraints considered. We
provide a granular division of the literature based on time windows and prece-
dence/synchronization constraints, while maintaining the subcategories pro-
posed by Gerkey and Matarić [2004]. Gerkey’s taxonomy is based on three
main characteristics of robots, tasks, and time, as follows:
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• Single-task robots (ST) vs. multi-task robots (MT): ST robots can do at
most one task at a time, while MT robots can work on multiple tasks
simultaneously.

• Single-robot tasks (SR) vs. multi-robot tasks (MR): SR tasks require ex-
actly one robot in order to be completed, while multiple robots are needed
to complete an MR task.

• Instantaneous (IA) vs. time-extended (TA) assignments: In IA, tasks are
allocated as they arrive, while in TA, tasks are scheduled over a planning
horizon (defined in Section 2.1).

The iTax taxonomy [Korsah et al., 2013] focuses on interrelated utilities and
constraints among tasks, both for individual robots and across robots, and for
complex tasks which can be decomposed in many different ways, adding a level
above Gerkey’s taxonomy, but does not address specifically how to deal with
temporal and precedence constraints. Our work attempts to fill this gap.

We extend Gerkey and Matarić [2004]’s taxonomy adding to its time-extended
(TA) part temporal constraints either in the form of time windows (TA:TW) or
in the form of synchronization and precedence constraints (TA:SP).

1.1. Organization

We begin by defining the class of multi-robot task allocation problems with
temporal and ordering constraints (MRTA/TOC) in Section 2. In Section 3 we
relate this class of problems to problems in other areas, setting the ground for
our exploration of models and methods in those areas. In Section 4 we present
commonly used temporal and ordering models. In Section 5 we review the most
common optimization objectives considered in the literature. Our taxonomy is
introduced in Section 6. Task execution and the dynamics therein are discussed
in Section 7. Solutions are introduced in Section 8. We discuss open issues,
future directions, and final thoughts in Section 9.

Next, we formally define the task allocation problem with temporal and
ordering constraints (MRTA/TOC), and summarize the terminology we use.

2. MRTA/TOC: Multi-robot Task Allocation with Temporal and Or-
dering Constraints

2.1. Terminology and Abbreviations

We define the terminology we use informally as follows:

• A robot is an autonomous agent responsible for performing some actions.
Alternative names for robots are physical agents, unmanned vehicles, and
rovers. Robots in MRTA/TOC are typically modeled as holonomic or
point robots, since the focus is not on low level control of robot motion.

• A team is a set of robots that work together. A team is often called a
coalition when it is dynamic, i.e. formed to do some tasks and disbanded
after that [Parker and Tang, 2006].
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• A task is an action to be performed, also referred to as a work unit,
activity, waypoint, or customer request. In some scheduling literature
tasks are divided into jobs [Davis and Burns, 2011], but in other cases
jobs are made of tasks [Balas et al., 2008].

• A time window is a time interval starting with the earliest time a task can
start, and ending with the latest time the task can end. If the earliest
time is not given, the latest time is referred to as a deadline constraint.

• Synchronization constraints specify constraints among tasks that, for in-
stance, have to start or finish at the same time.

• Precedence constraints specify partial ordering relationships between pairs
of tasks, i.e., a task has to be completed before another task can start.

• A schedule is a timetable in which each task has a specific time to start,
end, or both. In some cases each robot has its own individual schedule
Nunes and Gini [2015], while in others all robots share a single schedule.

• The scheduling horizon is the time period for which schedules are created.
Alternatively, it is the end time, after which robots are not allowed to
start or end tasks.

• The planning horizon is the time period over which plans are created.

• The makespan is the time difference between the end of the last task and
the start of the first task.

• A route is a sequence of locations to visit. Routes and schedules are often
used interchangeably, but schedules always concern time, while routes
concern physical locations.

• A task release refers to a task becoming available for execution. Task
release can be deterministic if the release time is known upfront, dynamic
if the release time is stochastic, or sporadic if it is governed by unknown
probabilities; task release is also called periodic when the same task is
released at regular intervals.

We use the following acronyms:

• MRTA/TOC for Multi-Robot Task Allocation with Temporal and Order-
ing Constraints.

• MIP for Mixed Integer Programming, and MILP if the objective function
and constraints are linear.

• TOPTW for Team Orienteering Problem (TOP) with Time Windows.

• VRPTW for Vehicle Routing Problem (VRP) with Time Windows.

• JSP for job-shop scheduling problems.
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2.2. Problem Formulation

We assume there is a finite set of robots and a set of tasks. A robot may have
a location, speed, route, and/or schedule. A task has a subset of the following
parameters: location, expected duration, cost, demand, reward, earliest start,
and latest finish time.

Ordering constraints express a dependency between tasks, and are usually
encoded as directed acyclic graphs. Each node in the graph represents a task,
and each edge indicates precedence or synchronization in the execution of the
tasks.

The objective is to optimize some function of the cost (or reward) for doing
the tasks for all the robots. Cost can be a temporal measure (e.g. makespan),
or a spatial measure (e.g. distance traveled). Commonly used optimization
functions are more thoroughly described later in Section 5.

3. Connections with Other Problems

Multi-robot task allocation (MRTA) started in earnest in the 90’s, when re-
searchers started pulling together teams of robots to accomplish multiple tasks.
MRTA draws from a variety of areas in mathematics and operations research
as well as computer science and robotics, including assignment problems, dis-
tributed computing, distributed AI, and scheduling.

The search for robust approaches to MRTA focused on how the robots per-
form in complex environments, leading researchers to add features like un-
certainty with probabilistic and stochastic models, time windows for tasks,
and spatial constraints. Solutions take different approaches, such as auctions,
market-based planning, Markov Decision Processes, decentralized scheduling
algorithms, and distributed constraint optimization.

In this paper we cover a subset of MRTA problems, which we call MRTA/TOC,
to highlight the importance of temporal and ordering constraints among tasks
and to shed light on how the inclusion of temporal and ordering constraints
increases the complexity of task allocation.

Similar types of problems include the vehicle routing problem [Dantzig and
Ramser, 1959], the job shop scheduling problem [Manne, 1960], and the team
orienteering problem [Chao et al., 1996]. Overall, multi-robot task allocation
diverges from each of these problems on key points, including assumptions on the
number of robots, robot and task homogeneity, environment dynamics caused
by failures or interference with other robots, and communication restrictions.

We are now prepared to discuss the relationship between MRTA/TOC prob-
lems and the vehicle routing problem with time windows (VRPTW), the team
orienteering problem with time windows (TOPTW), and the job-shop schedul-
ing problem (JSP).

3.1. MRTA/TOC vs. VRPTW

The vehicle routing problem with time windows (VRPTW) [Kolen et al.,
1987, Solomon and Desrosiers, 1988, Desrochers et al., 1988, Toth and Vigo,
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2002] studies problems which require solving allocation, routing, and scheduling
subproblems simultaneously. Vehicles and robots are often treated as points in
space, ignoring kinematic constraints, but kinematic [e.g. Cheng et al., 2008, for
unmanned aerial vehicles] and sometimes dynamic [Pecora and Cirillo, 2012, for
ground vehicles] constraints can be considered.

The solutions to several variants of VRPTW – such as multi-depot [Kang
et al., 2005, Polacek et al., 2004], dynamic and stochastic [Taş et al., 2013,
Pavone et al., 2011, Laporte et al., 1992], and precedence and synchronization
constrained [Korsah et al., 2012, Bredström and Rönnqvist, 2008] – have been
extended to MRTA/TOC settings. An example of VRP similarities is the online
pickup and delivery problem with transfers, where a team of vehicles has to
pick up a set of items at a location and deliver them to another location [Coltin
and Veloso, 2014a]. This problem is a generalization of the pickup and delivery
problem [Savelsbergh and Sol, 1995] which is well studied in operations research.
However, the proposed solution is a typical MRTA approach. The authors
combine a centralized temporal planner, which creates initial schedules, with
auctions, which are used to repair the plans when delays or failures occur. In
the same vein, Korsah et al. [2012] studied a MRTA problem that can be framed
as a vehicle routing problem with temporal, precedence and synchronization
constraints. The authors offer a MILP-based model and an optimal Branch-
and-Price solution.

Despite their similarities, these problems differ in some ways. First, VRPTW
assumes an infinite number of vehicles is always available, with a few exceptions
[e.g. Lau et al., 2003]). This assumption is not practical in robotic systems
where the number of robots is usually fixed and can even decrease due to fail-
ures. VRPTW problems usually assume that all vehicles start from the same
depot and return to the depot after work. In MRTA/TOC problems, robots may
start at different locations and do not need to return to their initial locations.
VRPTW problems mostly assume homogeneous vehicles with respect to their
capabilities and capacities [for exceptions, see Bettinelli et al., 2011, Dondo and
Cerdá, 2007], while in MRTA/TOC robots are not necessarily homogeneous and
their capacities and types can differ [Ponda et al., 2010, Schneider et al., 2005,
Xu et al., 2005]. Lastly, unlike VRPTW problems, in MRTA/TOC problems
communication is important and often constrained. In [Mercker et al., 2010]
the communication graph is unknown (hence the algorithm does not always
converge), while in [Ponda et al., 2012a] the communication graph is main-
tained by using specialized robots or robots not working on a task to act as
communication relays. While in the previous two works convergence is guaran-
teed only for complete communication graphs, Jackson et al. [2013] and Smith
and Bullo [2007] proposed distributed algorithms that converge using only local
communication.

3.2. MRTA/TOC vs. TOPTW

In the team orienteering problem with time windows (TOPTW), an origin
and destination pair is given, and the goal is to search for control points to
visit between the origin and destination such that the profit (or score function)
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is maximized while respecting all constraints. Each control point is associated
with a profit (or score), and each edge connecting control points is weighted by
the cost of moving between the control points [Labadie et al., 2012]. Control
points are equivalent to tasks for robots in MRTA/TOC.

When TOPTW considers origin and destination to be the same point, then
we have sub-tours similar to those for VRPTW problems, which can be described
as vehicle routing problems with profit [Archetti et al., 2014]. One application
of TOPTW problems, dial-a-ride, has gained some popularity in MRTA/TOC
[e.g. Coltin and Veloso, 2014a, Rubinstein et al., 2012, Bouros et al., 2011], In
dial-a-ride, the problems are over-constrained [Carrabs F., 2007, Cordeau and
Laporte, 2007], which means that not all the tasks can be performed, and thus
the goal is to find the subset of tasks that maximizes the total profit [Rubinstein
et al., 2012].

3.3. MRTA/TOC vs. JSP

The job-shop scheduling problem (JSP) is concerned with allocating groups
of activities, called jobs, to a set of machines with the goal of minimizing the
cost of completing the jobs, alone or in combination with other objectives [Al-
lahverdi et al., 2008, Graham et al., 1979]. The problem can be decomposed into
sequencing the activities and assigning start and end times to them (schedul-
ing), which are solved simultaneously. Certain MRTA/TOC problems can be
modeled as job-shop scheduling with setup times, deadlines and precedence con-
straints [Cesta et al., 2000, Balas et al., 2008, Oddi et al., 2011]; these problems
include [Dahl et al., 2009, Gombolay et al., 2013, Nunes and Gini, 2015, McIn-
tire et al., 2016], although [Nunes and Gini, 2015] does not consider precedence
constraints. In order to model MRTA/TOC problems as job-shop scheduling
problems, tasks are treated as jobs and robots as machines. Simple tasks can
be mapped to a job with only one activity, and complex tasks with subtasks of
a job with multiple activities.

The mathematical models for JSP do not apply directly to MRTA/TOC
problems, because JSP does not account for travel time. When setup times
are used in JSP, the setup time typically depends on the machine and not on
the time needed for the job to reach the machine. The equivalent of travel time
would be to use setup times that depend on the specific job [Korsah et al., 2013].

Modeling MRTA/TOC problems as JSP problems is most useful when mod-
els and methods developed for scheduling [Cesta and Oddi, 1996, Cesta et al.,
1999, Lee et al., 2009, Shah et al., 2009] are combined with MRTA solution tech-
niques. In [Gombolay et al., 2013] a centralized approach is proposed in which
a central temporal network is used and integrated with a MILP-based planner
yielding near optimal schedules. In the decentralized approach of Barbulescu
et al. [2010] each robot forms its own simple temporal network [Dechter et al.,
1991], encoding both temporal and precedence constraints in the network. To
enforce precedence constraints a robot has to know which other robots depend
on its schedule, so a high communication overhead is required to keep all robots
up-to-date. The distributed approach in [Nunes and Gini, 2015] cuts down
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on communication costs by having each robot keep its own independent local
temporal network and uses sequential single-item auction for allocation.

Having outlined the differences and similarities between MRTA/TOC and re-
lated problems, we now turn our attention to temporal and ordering constraints
on MRTA problems.

4. Temporal Models

Temporal models are outlined in Subsection 4.1 and Subsection 4.2, the
nature of ordering constraints is presented in Subsection 4.4, while in Subsec-
tion 4.5 we discuss the nature of temporal constraints.

4.1. Relationships between time intervals

In general terms, time can be modeled using points or intervals [Allen, 1983].
An example time point is 10 am, while an interval is a continuous set of values
bounded below and above by some time point, for example [10 am-12 pm]. When
representing temporal constraints we may use either representation; however,
the interval representation is much more common and is referred to as a time
window.

The seminal paper by Allen [1983] proposed a set of relationships that hold
between any two time intervals, as depicted in Fig. 1.

Figure 1: All possible relationships between pairs of time intervals [Allen, 1983]

While the relationships originally were described between qualitative time
intervals, they are also useful to describe the ordering between quantitative time
intervals. The relationships can be used to model partial or complete ordering
constraints between tasks, – for example, task X should be done before, after,
or at the same time as task Y . The X before Y operator can be used to describe
precedence constraints between tasks, while the X equal Y operator describes
a synchronization constraint between the intervals or time points of two tasks.

4.2. Simple Temporal Networks (STN)

Equally influential is Dechter’s approach [Dechter et al., 1991], which pro-
posed to represent a class of temporal constraints with a graph, called a simple
temporal network (STN). An example is in Fig. 2.
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Figure 2: A simple temporal network with three tasks 1, 2 and 3, each with a time window.
The self-loops on tasks indicate the absolute start and end times for the task. Task 1 is done
first, and then there is a choice of doing 2 and 3 or just 3. st and ft are the actual start and
finish times for each task, es and ls are the earliest and latest times tasks can start, similarly
ef and lf are the earliest and latest times tasks can finish, and du represent tasks’ durations.
tck,k′ is a time cost defined as the sum of the travel and wait times, which constrains when
the next task k′ can be started.

Nodes represent time point variables or time events, and weighted edges
represent inequality constraints between time points. To reduce computational
complexity, this model requires exactly one constraint between every pair of
time point variables. A solution to the scheduling problem can be computed
in polynomial time using the Floyd-Warshall algorithm. In an STN the rela-
tionship between time windows can be represented by establishing constraints
between start and finish times of tasks. While there are more complex mod-
els, for instance [Stergiou and Koubarakis, 2000, Block et al., 2006], in general
these are NP-hard and can be approximated by solving several simple temporal
problems [Boerkoel and Durfee, 2013].

STNs are commonly used in MRTA problems [Nunes and Gini, 2015, Gom-
bolay et al., 2013, Barbulescu et al., 2010] because constraint consistency can be
efficiently verified in polynomial time [Planken et al., 2008, Xu and Choueiry,
2003, Dechter et al., 1991]. An important feature of STNs is that new time
points and constraints can be dynamically added in polynomial time [Coles
et al., 2009, Cesta and Oddi, 1996], which is beneficial in dynamic domains
where new tasks can appear and disappear.

STNs have been successfully extended to multi-agent settings [Boerkoel and
Durfee, 2012, Boerkoel and Planken, 2012, Hunsberger, 2002] and to scenarios
with uncertainties. Vidal [1999] uses set bounded uncertainty to model dura-
tion uncertainty of temporal events in an STN, and introduces the STN with
uncertainty (STNU). Tsamardinos [2002] and Fang et al. [2014] extend STNUs
by modeling uncertainty as probabilities. The former attempts to minimize the
risk of temporal inconsistencies occurring, and the latter attempts to bound the
probability of not meeting a schedule, respectively.
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4.3. Time Window Constraints

A time window constraint is a temporal interval constraint on the start, or
finish time of a task, or both. A time window has a lower bound value, usually
the task’s earliest start time, and an upper bound value, usually the task’s latest
finish time. A task can also have a latest start time and an earliest finish time,
resulting in a time window of the form [earliest start time, latest start time,
earliest finish time, latest finish time]. This representation implicitly provides
an upper bound to the task duration. When the earliest and latest start times
are the same, the time window specifies only a start time. Same for finish time.

Having earliest and latest start or finish times increases the flexibility of
task allocation, but increases the search space because there are multiple ways
of scheduling a task within its time window. The use of time windows for
auction-based task allocation to agents was pionered in the MAGNET system,
which proposed various allocation algorithms [Collins et al., 2000, Collins and
Gini, 2006].

Time window constraints can be used to model many types of temporal
relationships among tasks. For instance, deadline constraints [Luo et al., 2015,
Amador et al., 2014, Ramchurn et al., 2010b] only impose constraints on the
latest time robots can arrive to tasks before the task expires. The flexibility
in temporal constraint representation, together with the temporal relationships
between time windows (see Section 4) make time windows a powerful temporal
constraint modeling tool.

While in many problems time windows are taken as input data, in others
(e.g Robocup Search and Rescue – RCSR), the time window is hidden from the
algorithm designer. The designer simply has access to a time-varying utility
function (e.g left plot in Fig. 3) that returns zero if the robot performs the task
past some hard deadline. However, the actual hard deadline is not revealed
a priori (see papers [Parker et al., 2015, Scerri et al., 2005] for example). In
RCSR problems, the time windows of tasks do not remain constant either. For
example, fires growing in nearby buildings might amplify each other, which
would cause the deadline for extinguishing a fire to change.

Task allocation problems with time windows are generally (except for a few
special cases e.g. [Melvin et al., 2007]) NP-hard [Solomon and Desrosiers, 1988],
and even the problem of verifying if feasible solutions exist is NP-complete.
The inclusion of time windows makes it hard to design efficient approximation
algorithms. Constraint-free task allocation problems accept greedy constant
factor approximation for submodular utility functions [Segui-Gasco et al., 2015].

4.4. Precedence and Synchronization Constraints

Precedence constraints specify a partial or total order for the tasks, without
providing a time window for each task. Time windows for tasks can be used
to specify implicitly precedence or synchronization constraints, but in general
they are not sufficient. Two time windows with the same start time do not
necessarily indicate a synchronization constraint. Time windows that overlap
are not sufficient to specify precedence constraints.
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Figure 3: Utility of soft deadlines vs. hard deadlines. The maximum utility is earned before
the deadline. An exponentially decaying utility can be gained if the task finishes between the
soft and hard deadlines (case (a)). No utility is gained after the (hard) deadline (case (b)).

Allocation of tasks with time windows is in general harder than allocation of
tasks with only precedence constraints, because the tasks have to be scheduled
within their time windows in such a way that there is sufficient time for their
execution. If time windows are pairwise disjoint, except possibly for the end-
points [Melvin et al., 2007], and robots move in 2D then the tasks are totally
ordered and in special cases there is a polynomial solution.

The introduction of temporal and ordering constraints in general increases
the complexity of task allocation. Solutions also might contain assignments to
different robots of tasks that depend on each other, creating cross-schedule de-
pendencies among robots Jones et al. [2011], Korsah [2011]. This is undesirable
because exogenous events during execution affecting one robot will also affect
the robots that depend on the affected robot.

4.5. Hard vs. Soft Temporal Constraints

Temporal constraints can be characterized as hard or soft constraints. Hard
temporal constraints cannot be violated [Borning et al., 1992]. They are used
in MRTA/TOC and related areas for tasks like surveillance, routing for blood
supply, and order fulfillment by warehouse robots. Soft temporal constraints
allow some temporal constraints to be violated or some tasks to be skipped
entirely, but the robot incurs a penalty for doing so [Bistarelli et al., 2007,
Domshlak et al., 2006, Gerevini and Long, 2006]. The penalty incurred may
differ depending on which constraint was violated; for example, finishing tasks
late may be penalized more severely than doing tasks early.

Fig. 3 illustrates the difference between a soft deadline utility function (left)
and a hard deadline utility function (right).

Common types of soft temporal constraints include:

1. tasks can be started early and/or finish late with some penalty (called soft
constraints in real time system terminology);

2. deadlines need to be satisfied only with some probability [Zheng and
Woodside, 2003];
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3. a number of consecutive tasks or some percentage of the tasks can be
skipped [Bernat et al., 2001] without penalty (called weakly hard con-
straints in the real time systems terminology);

4. some tasks can be done late without reward, or skipped without penalty
(called firm tasks in [Bernat et al., 2001]);

5. positive and negative preferences can be used as soft constraints [Bistarelli
et al., 2007, Hoogendoorn and Gini, 2008].

Penalizing infeasible solutions obtained by relaxing some of the temporal
constraints has been shown empirically to be useful to speed up and improve
the quality of heuristic search for VRP Vidal et al. [2014], producing some new
best known solutions for benchmark problems.

The weakly hard constraints from real time systems are not widely used
in MRTA, even though they transfer quite sensibly into MRTA problems. In
a weakly hard system with periodic task release, the distribution of met and
missed deadlines in a time period is precisely bounded [Bernat et al., 2001].
Other approaches to skipping some deadlines for periodic tasks include degra-
dation policies in overloaded systems [Beccari et al., 1999] or exploiting skips to
improve response time for aperiodic tasks [Caccamo and Buttazzo, 1997].

There are four types of weakly hard constraints to consider: making any n
in m deadlines, making n in a row in m deadlines, missing any n in m deadlines,
and missing n in a row in m deadlines. In this way, any regularly scheduled
sequence of tasks can allow some missed deadlines without penalty, while still
allowing the agent responsible for those tasks to schedule and make most of
its deadlines. Agricultural drones, for example, may have regularly scheduled
sampling, such as fertilization, weed picking, or soil testing responsibilities that
allow to skip a few deadlines.

Real world robot-task assignment problems might demand periodic tasks. A
Mars rover, for example, has a regularly scheduled self-maintenance period, as
well as periodic deadlines to finish uploading data or downloading instructions.
These deadlines are usually hard deadlines, so the robot can shut down overnight
and clear memory caches; other regularly scheduled robotic activities are not so
sensitive to the time of execution.

Having discussed temporal models and constraints, and the nature of order-
ing constraints, we switch focus to optimization objectives. Determining these
objectives is another important aspect to consider when building models for
MRTA/TOC problems.

5. Optimization Objectives

Applications of MRTA/TOC problems require the robots to achieve a given
optimization objective. In the rest of this paper we will refer to f(·) as a generic
function representing one of these objectives. There can be a single or multiple
objectives [Jozefowiez et al., 2008]. Depending on the deterministic or stochastic
nature of the problem, objectives will either be over actual or expected values.
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Optimization objectives might require a quantity to be minimized, usually a cost
[Nunes and Gini, 2015, Gombolay et al., 2013, Chopra and Egerstedt, 2012] or
regret [Heap and Pagnucco, 2014, Wu and Jennings, 2014], or to be maximized,
usually a score [Mercker et al., 2010, Ponda et al., 2010] or a reward [Korsah
et al., 2012, Melvin et al., 2007, Koes et al., 2005]. Single optimization objectives
may be of spatial nature (e.g. minimize total distance traveled) or of temporal
nature (e.g. minimize makespan).

Common optimization objectives for MRTA/TOC problems include:

• MiniSUM, i.e. minimize the sum of the robot path costs over all the robots
[Lagoudakis et al., 2005]. Minimizing the distance traveled is common [e.g.
Coltin and Veloso, 2014b, Chopra and Egerstedt, 2012, MacKenzie, 2003])
but some instead minimize a time measure over robot paths [e.g. Heap and
Pagnucco, 2014, Barbulescu et al., 2010]).

• MiniMAX, i.e. minimize the maximum path cost of a robot over all the
robots [Lagoudakis et al., 2005]. Instead of minimizing the maximum
path cost, a similar objective function is to minimize the makespan, i.e.
the time difference between the start of the first and the end of the last
task [Graham et al., 1979]. In [Nunes and Gini, 2015] the makespan is
minimized in a decentralized manner while in [Gombolay et al., 2013] the
makespan, along with other objectives, is minimized using a near-optimal
centralized MILP-based planner.

• MiniAVE: i.e. minimize the average per task cost of the path over all the
tasks. The per task cost is the cost of the path from the robot initial
location to the task location [Lagoudakis et al., 2005]. This is known as
the Traveling Repairman Problem [Fakcharoenphol et al., 2007], where
the objective is to minimize the wait time of the customers (or tasks) for
a repairman (or robot).

• Minimize lateness or tardiness, which is the difference between the earliest
start time of a task and the actual arrival time of the robot [Ponda et al.,
2010, Rubinstein et al., 2012, Beck and Refalo, 2003]. A similar objective
is to minimize the idle time of the robots [Hasgül et al., 2009].

• Maximize the number of tasks completed [Lau et al., 2003, Colorni and
Righini, 2001] or minimize the number of tasks missed [Hasgül et al., 2009].

• Minimize the number of robots used. This is common in vehicle routing
problems, where the number of vehicles available is unlimited [Luo and
Schonfeld, 2007, Bräysy and Gendreau, 2005a, Desrochers et al., 1988].

• Maximize profit, measured as the difference between the reward of tasks
and their respective costs [Korsah et al., 2012, Melvin et al., 2007], or
as the team utility [Amador et al., 2014, Ponda et al., 2010, Koes et al.,
2005].
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While not extensively covered here, multi-objective problems are common
[Jozefowiez et al., 2008], especially when objectives are combined through lin-
ear aggregation. For example, makespan and distance are minimized in [Ponda
et al., 2010, Nunes and Gini, 2015], while [Gombolay et al., 2013] also minimizes
workspace overlap. In [Alighanbari et al., 2003] a multi-objective function min-
imizes the maximum and average task completion times, as well as total idle
times.

The problems in the subcategories of our taxonomy can be formalized using
MIP formulations. In cases where tasks’ locations or durations, or travel times
are probabilistic, stochastic models (e.g. Markov Decision Processes) are more
commonly used. We give specific examples of different objectives within the
subcategories, using f(·) as a generic objective function. The constraints include
coverage constraints that dictate the number of robots required to complete a
task as well as the number of tasks a robot is allowed to complete at a time;
ordering constraints, for example precedence and synchronization constraints;
and side constraints, such as resource constraints.

6. Taxonomy

We are now ready to introduce our extensions to the taxonomy of Gerkey and
Matarić [2004] and focus on time-extended assignments, in which robots build
schedules for the tasks. We categorize the literature according to time window
and precedence constraints. We add the following new axes in our taxonomy:

• Time Window (TW) vs. Synchronization and Precedence (SP) constraints.
Within each subcategory, when appropriate, we further distinguish works
that consider

(a) hard temporal constraints vs. soft temporal constraints. Hard tem-
poral constraints require that no temporal constraint is violated,
while soft temporal constraints allow some violations with a penalty.

(b) deterministic vs. stochastic models. In deterministic models the
output of the model is completely determined by the initial condi-
tions, while stochastic models assume a model of the uncertainty is
available. Despite the importance of uncertainty in robotics, most
MRTA models are deterministic and limit dealing with uncertainty
at execution time.

We now illustrate our taxonomy in terms of single- vs. multi-task robots
(SR vs. MR), single- vs. multi-robot tasks (ST vs. MT), and time windows
vs. synchronization and precedence constraints (TW vs. SP). We begin with
the least complex problem settings, in which single-task robots get allocated
single-robot tasks.
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6.1. ST-SR-TA:TW – Single-Task robots, Single-Robot tasks, Time-extended
Assignments: Time Windows

6.1.1. Hard Temporal Constraints

Deterministic allocations. Deterministic ST-SR-TA:TW problems typically
assume that there are more tasks than robots, and that all tasks are known
in advance; they require time-extended assignments, and that tasks have to be
performed within their time windows. These problems are comprised of three
intertwined subproblems: (1) an assignment subproblem, to find the assignment
of tasks to robots that optimizes the given objective function f(·); (2) a task
sequencing subproblem, to find feasible orderings of tasks that result in optimal
assignments, and (3) a scheduling subproblem, to assign times to tasks in a way
that optimizes f(·).

We summarize the notation we use in Table 1.

Robots

A set of robots
a robot in set A
qa capacity, or maximum workload, of robot a

Tasks

K set of tasks
k task in set K
esk earliest start time of task k
lsk latest start time of task k
efk earliest finish time of task k
lfk latest finish time of task k
stk actual start time of task k
ftk actual finish time of task k
duk duration of task k
ttkk′ travel time between tasks k and k′

wa
k workload for task k when performed by robot a

Optimization

f(·) generic optimization function
xa
k indicator of assignment of task k to robot a

oakk′ indicator that robot a performs task k′ directly after k
vak indicator that robot a performs task k first
zak indicator that robot a performs task k last
Ua

k reward robot a collects for performing task k

Table 1: Notation used in the paper for tasks with time window constraints

Tasks have to be scheduled so that no constraint is violated. Temporal
constraints are violated when robots do tasks at times that are not consistent
with the temporal constraints on the tasks. Assignment violations occur when
two or more robots are assigned to the same task, or two or more tasks are
scheduled to be done at the same time by the same robot.
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In the mixed integer linear programming formulation in Fig. 4, qa is the
capacity of robot a, stk and ftk are respectively the actual start and finish
times for task k, ttkk′ is the travel time between tasks k and k′, wak is the
amount of work robot a has to perform when assigned task k. xak is an indicator
variable that takes the value 1 if robot a is assigned task k and 0 otherwise,
oakk′ is an indicator variable that takes the value 1 if robot a performs task k
followed directly by task k′, and 0 otherwise, vak is an indicator variable that is
1 if task k is the first task in robot a’s schedule and 0 otherwise, and zak is an
indicator variable that is 1 if task k is the last task in robot a’s schedule and 0
otherwise. We assume all times are strictly positive.

minimize or maximize f(·)
subject to
(a)

∑
a∈A x

a
k = 1 ∀k ∈ K+

a

(b)
∑
k∈K+

a
vak = 1 ∀a ∈ A

(c)
∑
k∈K+

a
zak = 1 ∀a ∈ A

(d)
∑
k∈K+

a
wakx

a
k ≤ qa ∀a ∈ A

(e)
∑
k∈K+

a
oakk′ + vak′ = xak′ ∀a ∈ A, k′ ∈ K+

a

(f)
∑
k′∈K+

a
oakk′ + zak = xak ∀a ∈ A, k ∈ K+

a

(g) esk ≤ stk ≤ lsk ∀k ∈ K+
a

(h) efk ≤ ftk ≤ lfk ∀k ∈ K+
a

(i) ftk − stk ≥ duk ∀k ∈ K+
a

(j) ftk + ttkk′ −M ∗ (1− oakk′) ≤ stk′ ∀a ∈ A, k ∈ K+
a , k

′ ∈ K+
a

(k) xak ∈ {0, 1} ∀a ∈ A, k ∈ K+
a

(l) oakk′ ∈ {0, 1} ∀a ∈ A, k ∈ K+
a , k

′ ∈ K+
a

(m) vak ∈ {0, 1} ∀a ∈ A, k ∈ K+
a

(n) zak ∈ {0, 1} ∀a ∈ A, k ∈ K+
a

Figure 4: Mixed integer linear programming formulation of assignment of tasks with time
windows

Since each robot starts at its initial location, we create an empty task for
each robot a at its initial location. The empty task starts at time 0, and has a
duration of ε. We indicate the set of all the tasks plus the empty task at the
start location of robot a as K+

a = K ∪{start location of a}. ε should be smaller
than the early start time of any task.

The objective function f(·) in the optimization formulation can be a cost
function to be minimized [e.g. Gombolay et al., 2013]), or a value function to
be maximized [e.g. Koes et al., 2005]). It can also be single or multi-objective.

For instance, to minimize the makespan the optimization function would be

minimizexa
k,o

a
kk′ ,z

a
k ,stk,ftk

max
a∈A

max
k∈K+

a

ftk (1)

where ftk is the actual finish time of task k.
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For ST-SR-TA:TW problems the coverage constraints in Fig. 4 enforce that
(a) each task gets at most one robot, each robot has a first (b) and last (c) task
and that (d) each robot has no more tasks than its capacity allows.

The sequencing constraints require that (e) every task k assigned to robot
a except the first has a predecessor, and that (f) every task except the last
has a successor. Temporal constraints (g)–(j) are constraints on the service
times of tasks. Constraint (j) ensures that the interval between two consecutive
tasks is large enough for the robot to travel to it. The constraint includes a
sufficiently large constant M to make the formulation a mixed-integer linear
program. Constraints (k)–(n) bound the values for the indicator variables.

Advances in MILP formulations for VRPTW [Barnhart et al., 1998, Feillet,
2010] and more recently for MRTA problems [Korsah et al., 2012] have proposed
formulations based on set covering and set partitioning. These formulations as-
sign routes, instead of tasks, to robots. The allocation problem is decomposed
into what is known as the master problem, and a pricing subproblem. One of
the advantages of such formulations is that the master problem can be restricted
to evaluating subsets of tasks at a time, instead of the entire set of tasks. Pric-
ing subproblems solve temporally constrained shortest path problems rooted at
robot locations, in which routes can be computed via heuristic methods, such
as D* lite as in [Korsah et al., 2012]. Such formulations benefit from the insight
that for very large problems many routes are not part of any optimal solution.
Thus, selectively incrementing candidate routes decreases computational and
memory costs. Feillet [2010] provides a technically rigorous overview of such
formulations and their advantages for VRPTW problems.

Ya set of possible routes y for agent a
say indicator that route y is assigned to agent a
bayk binary constant that task k is in route y of agent a
Ca

y cost to robot a of route y

Table 2: Notation used for formulation based on set partitioning

As defined in Table 2, let Ya be a set of routes for robot a computed using
the shortest path algorithm with resource constraints; say is an indicator variable
that assumes a value of 1 if robot a is assigned route y ∈ Ya and 0 otherwise;
Cay is the expected cost robot a incurs for performing route y; finally, bayk is
a binary constant that is 1 if task k is performed in route y ∈ Ya of robot
a and 0 otherwise. An example of a simple set partitioning formulation of
ST-SR problems is shown in Fig. 5. A more complex formulation with cross-
scheduling temporal and location dependencies, time windows, precedence and
synchronization constraints can be found in Korsah [2011].

Stochastic allocations. In stochastic problems, it is assumed that a model of un-
certainty is available. Stochastic ST-SR-TA:TW problems, like other stochastic
problems in our taxonomy, are usually modeled as pure or mixed stochastic
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minimize
∑
a∈A

∑
y∈Ya

Cay s
a
y

subject to
(a)

∑
y∈Ya

say ≤ 1 ∀a ∈ A Every robot gets at most 1 route

(b)
∑
a∈A

∑
y∈Ya

sayb
a
yk = 1 ∀k ∈ K Each task is on 1 route

(c) say ∈ {0, 1} ∀a ∈ A, y ∈ Ya Indicator of route to robot

Figure 5: Set partitioning formulation for MRTA/TOC problems with no time windows and
no capacity limits.

integer programs, or as Markov Decision Processes (MDPs) [Gendreau et al.,
1996]. When modeled as stochastic integer programs [Ponda et al., 2012b] they
assume the form in Eq. 2 with the constraints shown in Fig. 4 or stochastic
constraints [Shen et al., 2009]. In Eq. 2 the objective function is the expected
reward, θ ∈ Θ is the uncertainty model that is available to the robots, and Uak
is the reward that agent a gets for doing task k.

maximize Eθ(
∑
a∈A

∑
k∈K

Uakx
a
k) (2)

Examples of uncertainty models include probability distributions for task
arrival, robot travel time, task availability, and more [Miao et al., 1991].

Other stochastic formulations are used in the dynamic and stochastic VRPTW
literature. For instance, [Bopardikar et al., 2014] studied a dynamic VRP prob-
lem in which demands (or tasks) with deterministic time constraints arrive ran-
domly, and the goal is to maximize the fraction of demand met. In [Pavone et al.,
2009] demand is stochastic and time window constraints are considered. Both
[Bopardikar et al., 2014] and [Pavone et al., 2009] analyze a different number
of requirements, such as bounds on the number of vehicles used and maximum
number of tasks that can be missed. In both, temporal constraints cannot be vi-
olated. However, in order to prove properties about their solutions, some strong
assumptions are made, such as all time windows have the same length [Pavone
et al., 2009].

An alternative way of modeling uncertainty uses MDPs. In [Dean et al.,
1993, Beynier and Mouaddib, 2007] MDP states are locations in a map with
obstacles, tasks and robots. In [Beynier and Mouaddib, 2007] a state is a triplet
representing the previously visited state, the amount of resources left, and the
time window. The goal is to search for policies that maximize a value function for
the augmented states. Dolgov et al. [2007] poses the problem as a combinatorial
resource scheduling problem with uncertainty, which can be easily extended to
include locations, forming a MRTA problem.

Uncertainty models for ST-SR-TA:TW problems are, to the best of our
knowledge, rarely explored in the MRTA literature, although stochastic planning
could lead to practical gains in terms of producing sound and robust allocation
policies for robots. Instead, it is more common to address stochasticity by
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model-free methods, such as reinforcement learning, or to deal with uncertainty
by replanning during task execution.

6.1.2. Soft Temporal Constraints

Deterministic allocations. Deterministic ST-SR-TA:TW with hard and soft
constraints differ only in the hardness of the time constraints. Classic problems
include vehicle routing problems with soft scheduling constraints. We will also
look at problems and solutions in the real time systems and artificial intelligence
literature to assist in modeling temporal and ordering constraints in MRTA.

In soft time window constraints for vehicle routing, the goal is to find the
best agent-task assignments that minimize the cost function f(·) of servicing
some number of clients. The total cost of assigning a set of agents/vehicles and
departure times is equal to the fixed cost of operating the agents, plus the cost
of operating the agents on the specific routes, plus the penalty cost for arriving
early or late to the clients on the routes [Taillard et al., 1997]. Penalty costs
for arriving early may be different than for arriving late, (e.g. early arrival is a
small penalty, late arrival is a larger penalty) and these may vary by domain.

Stochastic allocations. Stochastic versions of ST-SR-TA:TW problems with
soft constraints have an uncertainty model available like in the hard constraint
case. However, they use soft windows and allow agents to gain value even when
doing tasks outside their original time window. The objective is still to minimize
a cost function (e.g distance or energy) or maximize a utility function, with the
inclusion of some probability model; often these are probabilities of travel delay
between tasks and therefore travel times, but could be specific to the task and
affect other costs. For instance, Hsu et al. [2007] models the process of delivering
perishable food, which affects inventory costs. The cost function now includes
the cost of using vehicles and the cost of arriving to a task outside the proper
time window. Work in [Taş et al., 2013] models travel time delays with several
distribution types, which change the service cost of operating a vehicle. The
travel time probability directly impacts whether the agent arrives early or late,
which is why we frequently see stochastic formulations in soft time windows but
no other kinds of preferred constraints.

6.2. ST-SR-TA:SP – Single-Task robots, Single-Robot tasks, Time-Extended As-
signments: Synchronization and Precedence

Synchronization and precedence constraints can be formulated as in [Bred-
ström and Rönnqvist, 2008] ( Eq. 3 and Eq. 4). Let k, k′ ∈ P where P is a
set of task pairs with precedence constraints, and P sync ⊆ P is the subset of
tasks that have to start at the same time. Eq. 3 states that regardless of which
robot(s) is assigned to tasks k and k′, task k′ should start ε time units after the
finishing time of task k. If ε > 0 k, k′ ∈ P (Eq. 3), and if ε = 0 then k, k′ ∈ P sync
(Eq. 4).
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∑
a∈A

stk′x
a
k′ −

∑
a∈A

ftkx
a
k > ε+M(1− oakk′) ∀a ∈ A, k, k′ ∈ P, ε > 0 (3)∑

a∈A
stk′x

a
k′ −

∑
a∈A

stkx
a
k = 0 k, k′ ∈ P sync (4)

ST-SR-TA:SP problems have received some attention in the MRTA liter-
ature [McIntire et al., 2016, Luo, 2014, Chopra and Egerstedt, 2012, Korsah
et al., 2012, Barbulescu et al., 2010]. Luo [2014] present a model for tasks with
set precedence constraints that divides tasks into disjoint sets with strict order-
ing between the sets, assuming that each robot can do at most one task per
set. The model heavily constrains the type of allowable precedence graphs, but
the algorithm proposed is proved to be sound and complete. A general model
for allocation of tasks with any type of precedence constraint is presented in
[McIntire et al., 2016].

Sometimes executing a task precludes the execution of another. This type
of problem is typically addressed at the planning stage, enforcing precedence
constraints between the tasks [e.g. Olawsky and Gini, 1990].

These different works highlight that synchronization and precedence con-
straints can be used to model different types of temporal relationships between
tasks. The applications range from a music wall [Chopra and Egerstedt, 2012] to
structure assembly by a team of robots [Heger et al., 2005]. The common thread
among the referenced works is that precedence constraints are in the form that
the start time of a task cannot occur earlier than the end time of any of its
predecessors. Other, lesser used, precedence models include start to start, start
to end and end to end constraints [Lombardi and Milano, 2012]. Start to start
constraints require that a task does not start until its precedents have started,
the remaining types of precedence constraints follow a similar interpretation.

6.3. ST-MR-TA:TW – Single-Task robots, Multi-Robot tasks, Time-Extended
Assignments: Time Windows

6.3.1. Hard Temporal Constraints

In ST-MR-TA:TW allocation problems agents are scheduled to work simul-
taneously on tasks as coalitions while respecting the time window constraints.
Coalition-based task allocation occurs when tasks cannot be executed by a single
agent, or when task execution is more efficient when done by more agents [Vig
and Adams, 2006, Shehory and Kraus, 1998]. In disaster rescue, for instance,
fire fighters working in coalitions may extinguish the same number of fires earlier
than if these rescuers had to work individually on each fire [Parker et al., 2015].
Moreover, in scenarios where the number of agents is limited, coalition-based
allocations may enable a higher task completion rate [Ramchurn et al., 2010b,
Su et al., 2016].

Coalition formation, in general, requires dealing with two subproblems: coali-
tion value computation and coalition structure generation [Sandholm et al.,
1999]. The former is concerned with computing the expected utilities (or costs)
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of forming all possible coalitions, whereas the latter is concerned with partition-
ing the set of agents into exhaustive and disjoint groups that maximize the total
utility. In MRTA, the coalition value is typically a combination of the utility
gained and the coordination cost necessary to perform a task. Coalition size
may be restricted by the physical constraints which limit the number of agents
that can work simultaneously on the same task.

Let 2A be the set of agent coalitions that may be formed with the agents in
A (i.e., all subsets of A) and xck be an indicator variable that takes the value of
1 if coalition c ∈ 2A is assigned to task k and 0 otherwise. For simplicity, we
assume that all agents start their tours from an initial node 0 and finish at node
m+ 1. Let oakk′ = 1 when agent a visits task k′ directly after k and 0 otherwise.
oa0k = 1 denotes the fact that a visits k at the very beginning of the route. |c|
indicates the coalition size. Similarly, oak(m+1) = 1 when agent a visits task k at
the end of its route, and 0 otherwise. ST-MR-TA:TW allocation problems can
generally be formalized by the MILP in Fig. 6.

minimize or maximize f(.)
subject to
(a)

∑
c∈2A x

c
k ≤ 1 ∀k ∈ K

(b)
∑
a∈c x

a
k = |c|xck ∀c ∈ 2A, k ∈ K

(c)
∑
k∈K o

a
0k = 1 ∀a ∈ A

(d)
∑
k∈K o

a
k(m+1) = 1 ∀a ∈ A

(e)
∑
k∈K,k 6=k′ o

a
kk′ −

∑
k′′∈K,k′ 6=k′′ o

a
k′k′′ = 0 ∀a ∈ A, k′ ∈ K

(f) stk + duk + ttkk′ −M ∗ (1− oakk′) ≤ stk′ ∀a ∈ A, k, k′ ∈ K
(g) esk ≤ stk ≤ lsk ∀k ∈ K
(h) efk ≤ ftk ≤ lfk ∀k ∈ K
(i) ftk − stk ≥ duk ∀k ∈ K
(j) xak ∈ {0, 1} ∀a ∈ A, k ∈ K
(k) xck ∈ {0, 1} ∀c ∈ 2A, k ∈ K
(l) oakk′ ∈ {0, 1} ∀a ∈ A, k ∈ K, k′ ∈ K

Figure 6: Standard mixed integer linear formulation of the task allocation problem with
single-task robots, multiple-robot tasks, and hard temporal constraints

Constraint (a) guarantees allocations of no more than one coalition per task.
As the problem maybe over-constrained, not all tasks may be allocated. Con-
straint (b) guarantees if a coalition is assigned to a task then all the agents in
the coalition are assigned to that task too. Constraint (c) guarantees that all
the agents start from the initial location, and constraint (d) ensures that they
finish their routes at the final location. Constraint (e) guarantees the connec-
tivity of the routes, so that a robot reaches all its assigned tasks in sequence.
Constraints (f)–(i) ensure that the visit time-line is feasible and the time win-
dows are respected (as in MILP for ST-SR-TA:TW in Fig. 4). An extra waiting
time may be imposed after the task’s earliest start time to form the coalition.
When coalition work affects the task execution efficiency, the task duration (dui)
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should be computed accordingly, [Ramchurn et al., 2010b]. Constraints (j)–(l)
bound the values for the indicator variables.

An alternative model for ST-MR-TA:TW problems is the set partitioning
model shown earlier in Fig. 5. When cast as a set partitioning problem, a set
of coalitions C = {c1, . . . , c|C|} corresponds to a set partition of A if and only
if the coalitions are exhaustive, i.e.

⋃
ci∈C ci = A, and the elements of C are

pairwise disjoint, i.e., ∀ci, cj ∈ C s.t. i 6= j : ci ∩ cj = ∅. The solution to the
set partition problem is a partition of A that maximizes the utility u : S → R+.
The NP-hard nature of problems in this class require approximate solutions for
practical coalition-based MRTA problems.

Certain side constraints, such as capability and resource constraints, are
very important in this class of MRTA/TOC problems. Agents may have limited
resources, especially in the case of small robots. For instance, in disaster rescue
scenarios, fire trucks may need a certain amount of fuel to travel to a fire and
a certain amount of water to extinguish it. Tasks might require coalitions of
agents with certain capabilities. For instance, a fire might require a coalition of
fire fighters, while police and ambulances can collaborate to dig out and carry
survivors to refuge centers [Kitano and Satoshi, 2001, Parker et al., 2015].

MRTA researchers have proposed coalition-based frameworks for heteroge-
neous robotics. Examples include the ASyMTRe [Parker and Tang, 2006] ar-
chitecture. ASyMTRe is a reasoning system for heterogeneous robots to form
coalitions to do tasks that require tight robot coordination. The architecture
uses a collection of schemas for perception and motor control, which are con-
nected at run time, enabling the robots to share information as needed to com-
plete the tasks. The architecture has been extended [Zhang and Parker, 2013a]
to ensure that only feasible coalitions are formed. Efficient scheduling heuristics
for coalitions are proposed in [Zhang and Parker, 2013b].

Stochastic allocations. To the best of our knowledge, no literature addresses
stochastic ST-MR problems with either hard or soft constraints. We will now
examine tasks with soft constraints.

6.3.2. Soft Temporal Constraints

ST-MR-TA:TW with soft constraints assumes that multiple agents can work
simultaneously on the same task and are allowed to violate some temporal con-
straints, with a penalty for the violation. ST-MR-TA:TW problems with soft
and hard constraints are similar, except that the objective function for the soft
constraint case includes a temporal violation penalty (Eq. 5).

argmax
S∈2A

∑
c∈S

∑
k∈K

xckU
c
kπ

stk
k (5)

In Eq. 5 S is a coalition structure, U ck is coalition c’s utility for performing
task k and πstkk ∈ [0, 1] is the utility decay coefficient function for task k. This
coefficient is set as πstkk = 1 when task k is started and/or finished within the
time window (i.e., esk ≤ t ≤ lsk and stk + duk ≤ lfk). Early and/or late
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task executions are penalized by setting πstkk to values in the range [0, 1]. In
particular, πstkk = 0, ∀k ∈ K when stk + duk > lsk [Koes et al., 2005, Amador
et al., 2014].

Most research on ST-MR-TA:TW problems with soft constraints is moti-
vated by application areas such as urban search and rescue [Koes et al., 2005,
Scerri et al., 2005], or law enforcement where police officers are assigned to
crime events in a city [Amador et al., 2014]. In [Scerri et al., 2005] an expected
utility model is used to allocate interdependent tasks. Late task executions
are penalized by subtracting the delay cost from the total utility. The work
subdivides large tasks into smaller subtasks that are linked with simultaneous
execution interdependency, and coalitions of agents execute the smaller sub-
tasks. The coalition formation problem is simplified by fixing the coalition size
and reducing the number of allowed coalitions.

In [Koes et al., 2005] the task utility decays over time from the beginning
of the mission and becomes zero by the mission deadline. Likewise, in [Amador
et al., 2014] the utility of tasks delayed beyond the soft deadline decays expo-
nentially over time. The coalition value depends on the number of agents and
is a function of the agents’ fitness in performing a task.

6.4. ST-MR-TA:SP – Single-Task robots, Multiple-Robot tasks, Time-Extended
Assignments: Synchronization and Precedence

ST-MR-TA:SP is comprised of the same subproblems as ST-MR-TA:TW,
the only exception comes from the inclusion of precedence constraints. ST-
MR-TA:SP problems have received more limited attention than the ST-SR-
TA:SP counterpart. Part of the reason might be the fact that current robotics
applications do not use coalitions as a way to achieve tasks more efficiently.

In [Shehory and Kraus, 1998] tasks that require a set of capabilities are allo-
cated to a set of robots with different types of capabilities. Robots form coali-
tions to perform tasks with precedence constraints. The work proposes greedy
distributed set partitioning and set covering algorithms to give an approximate
answer to the problem. Propose a framework in which coalition formation and
task allocation are solved in turn. The coalition formation uses ASyMTRe and
auctions are used for allocation of tasks with precedence constraints to coali-
tions. Coalitions bid through a coalition leader. In [Tang and Parker, 2007] the
coalition formation problem is solved using ASyMTRe, and auctions are used
for allocation of tasks with precedence constraints to coalitions. Coalitions bid
through a coalition leader. The common theme among these works is that they
do not handle synchronization constraints.

In [Sariel and Balch, 2006] precedence and synchronization constraints are
considered. The work handles dynamic allocation of tasks with precedence and
synchronization constraints. In addition to precedence tasks also require that a
certain number of robots work in them. The goal is to minimize the makespan.
It combines auctions with coalition maintenance, and employs recovery routines
to deal with exogenous events. In addition, [Jones et al., 2011, Parker et al.,
2015] handle both temporal and precedence constraints. The precedence con-
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straints are in the form of deadline constraints. The latter two model search
and rescue domains.

Works that address the Robocup Search and Rescue (e.g [Parker et al.,
2015, Scerri et al., 2005]) problem often span both ST-MR-TA:TW and ST-MR-
TW:SP, because robots can only collect utilities on tasks before tasks expire,
and some tasks can only be performed after others are completed (e.g blockades
need to be removed before fires are extinguished).

6.5. MT-SR-TA:TW – Multi-task robots, Single-robot tasks, Time-extended As-
signments: Window Windows

Deterministic allocations. The MT-SR problem with hard temporal constraints
is no more common now than it was in [Gerkey and Matarić, 2004], but we
can provide some additional context for multi-task robots regardless of hard
or soft time constraints. Gerkey’s work likens the MT-SR problem to the ST-
MR problem, using the same mathematical formulation for both problems but
switching the role of tasks and agents in the formula. Multi-task robots do
exist in real life, however, such as the mission-driven Mars rover Curiosity, so
the multi-task robot problem merits deeper discussion before we consider it in
terms of hard or soft time windows.

A multi-tasking robot can perform located tasks, such as grasping and ma-
nipulating objects, and non-located tasks, such as taking pictures of nearby
objects. Furthermore, located tasks can be near to or far away from the robot;
for example, an object two feet in front of the robot is close, but an object ten
feet away is probably considered far from the robot. Nearby objects should be
relatively easy to grasp, but farther-away objects will require larger or longer
actuators and thus more complex kinematic calculations to properly manipulate
them. Consider unmanned aerial vehicles; reconnaissance drones may track ob-
jects and take pictures (a relatively easy task) or may need to track objects on
the ground and drop packages (a more difficult task that includes more intense
object manipulation).

Lastly, a multi-tasking robot can either preempt tasks or not; preemptable
tasks require priority knowledge and may require task rescheduling, whereas a
simpler system with non-preemptive tasks may miss important tasks that arrive
during execution. In preemptive cases where the robot was physically manip-
ulating the environment, additional overhead time is required to restore the
robot’s pose and to continue grasping or other movement [Groth and Henrich,
2014]. In Amador et al. [2014] tasks can be interrupted by higher priority tasks
and resumed later with a penalty that decreases over time. Additionally, the
robot must deal with failures; not only must the robot prioritize tasks, but it
must decide (or have a plan for) what to do when the preempting task fails.
Does the robot retry the failed task, move directly back to the preempted task,
or drop into some kind of re-calibration or maintenance mode? Consider the
Mars rover – if it runs into a rock or becomes stuck while navigating to a site
where it has to perform chemical analysis, it should stop and get unstuck (or
consult Earth-based humans for assistance), then return to navigation towards
its earlier goal. If instead a piece of the rover’s chemical analysis fails due to
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hardware problems, it should probably stop all analyses until it can relay its
problems and receive solutions from Earth.

Very limited literature exists on multi-tasking robots; much of the work
focuses instead on robots that have many tasks to do very close together tem-
porally, for example a UAV that searches for objects, targets an object, and
releases a bomb. Groth and Henrich [2014] discusses a multi-tasking robot with
nearby tasks (taking pictures of people and finding objects, or taking pictures
of walls and greeting humans) with preemption; the robot stops taking pictures
of walls if a human is in the way, for example.

In general, the MT-SR problem, regardless of the type of time window, can
be approached heuristically as a bin packing problem, where each robot is a bin
and each task is assigned to a robot that has available capacity and resources
to perform that task. Other approaches to scheduling tasks are inspired by
operating systems, such as shortest job first and priority scheduling; however,
because context switching is more time-demanding for robots than it is for
processors, these methods may be highly suboptimal.

Stochastic allocations. As far as we know, no literature has explored the
addition of stochastic formulations with temporal constraints on the multi-task
robot problem. Probabilistic events, such as a delivery robot’s travel times
due to traffic, would affect the agent’s ability to perform single tasks, just as
stochastic formulations do in the ST-SR problem.

6.6. MT-SR-TA:SP: Multiple-Task robots, Single-Robot tasks, Time-Extended
Assignments: Synchronization and Precedence

Like its MT-SR-TA:TW counterpart, these types of problems have not re-
ceived much attention in the MRTA literature. An exception is the work by
Landén et al. [2012], which provides a distributed solution to a problem with
precedence constraints. Complex tasks are modeled by a task specification tree,
which specifies precedence and dependencies between tasks. A distributed con-
straint satisfaction solver is used to check constraint consistency. Task allocation
is performed by a recursive search over feasible allocations.

6.7. MT-MR-TA:TW – Multi-Task robots, Multi-Robot tasks, Time-Extended
Assignments: Time Windows

Multi-task robots and multi-robot task problems remain sparsely explored
[Korsah et al., 2013, Gerkey and Matarić, 2004], even when additional temporal
constraints are not considered. This class of problems can be modeled as an
overlapping coalition formation problem [Chalkiadakis et al., 2010] combined
with a routing and scheduling problem. Standard coalition formation methods
produce either a super-coalition (with all the robots) or a set of non-overlapping
subsets of robots.

MT-MR-TA:TW problems are comprised of the following subproblems: (1)
assigning coalitions to tasks, (2) assigning different coalitions to the same robot
as long as no resource constraints are violated, and (3) assigning values to the
start and finishing times of tasks. Each of these subproblems is NP-hard.
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Multi-task robots and multi-robot task problems can also be modeled as
cooperative games with overlapping coalitions. In cooperative games with over-
lapping coalitions, agents can do more than one task at a time. This may lead
robots to commit to a task assigned to more than one coalition. Overlapping
coalitions have been used to model collaborative smartphone sensing in [Di et al.,
2013]. In that work, smartphone users form overlapping networks, and an in-
centive function rewards users’ contributions to different tasks. Unfortunately,
finding the optimal overlapping coalition is NP-complete.

MT-MR-TA:TW problems with soft constraints also lack coverage in the
MRTA literature. The models used for MT-MR-TA:TW with hard constraints
can be extended to this class of problems, the only difference being that temporal
constraints are allowed to be violated. This requires that one of the optimization
objectives minimizes penalties from violating the constraints.

6.8. MT-MR-TA:SP – Multi-Task robots, Multi-Robot tasks, Time-Extended
Assignments: Syncronization and Precedence

We could not find works in this group.

6.9. Summarizing the Taxonomy

We summarize the literature (see Table 3) by classifying papers from the
MRTA and related literatures from 2003-2016. In Table 3 Det and Sto stand
for deterministic and stochastic.

7. Dynamic Task Release and Execution

Execution of tasks in MRTA/TOC problems vary according to the dynamics
considered. Dynamics may be due to faulty robots, changes in estimated cost
of tasks due to uncertainties, changes in task definitions, online arrival of tasks,
addition of robots to the team, and other changes made by external agents
[Sariel-Talay et al., 2009]. While the execution aspect is outside of the task
allocation scope, the planning-execution-replanning of tasks forms a planning
loop that is usually addressed at once in dynamic domains. Here we consider
dynamics caused by task arrival and during task execution separately.

Some dynamics are caused by the arrival of tasks over time without further
knowledge of future tasks. Usually when a new task arrives there is already
an existing allocation for previously scheduled tasks that have not yet been
performed. Thus, replanning occurs at task arrivals, while robots are executing
previously assigned tasks [Cordeau and Laporte, 2007]. In [Nunes and Gini,
2015] both deterministic and dynamic task arrivals are considered, assuming
the robots have perfect knowledge of the map where tasks appear. In contrast,
problems usually defined as online pickup and delivery problems or dial-a-ride
include not only online arrival of tasks but other uncertain events, such as vehicle
breakdowns and delays [Cordeau and Laporte, 2007]. Recent examples of online
pickup and delivery consider transfers, in addition to the arrival of tasks with
hard temporal constraints [Coltin and Veloso, 2014b,a, Bouros et al., 2011].
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Reference ST MT SR MR TW SP HC SC Det Sto
[McIntire et al., 2016] X X X X X
[Luo et al., 2015] X X X X X
[Nunes and Gini, 2015] X X X X X
[Coltin and Veloso, 2014c] X X X X X X
[Luo, 2014] X X X X X
[Gombolay et al., 2013] X X X X X X
[Taş et al., 2013]* X X X X X
[Chopra and Egerstedt, 2012] X X X X X
[Korsah et al., 2012] X X X X X X
[Barbulescu et al., 2010] X X X X X X
[Ponda et al., 2010] X X X X X
[Pavone et al., 2009]* X X X X X
[Shah et al., 2009] X X X X X X
[Bredström and Rönnqvist, 2008]* X X X X X X
[Beynier and Mouaddib, 2007] X X X X X
[Melvin et al., 2007] X X X X X
[Ando and Taniguchi, 2006]* X X X X X
[Heger et al., 2005] X X X X X
[Alighanbari et al., 2003] X X X X X

[Su et al., 2016] X X X X X
[Pujol-Gonzalez et al., 2015] X X X X X X
[Parker et al., 2015] X X X X X X
[Amador et al., 2014] X X X X X
[Jones et al., 2011] X X X X X
[Ramchurn et al., 2010b] X X X X X
[Tang and Parker, 2007] X X X X X
[Sariel and Balch, 2006] X X X X X
[Scerri et al., 2005] X X X X X X
[Koes et al., 2005] X X X X X X

[Landén et al., 2012] X X X X X

Table 3: Select papers from each category. Papers with a * symbol are not MRTA papers,
but are included for completeness.

The dynamics that occur during plan execution [Block et al., 2006, Sariel-
Talay et al., 2009, Shah et al., 2009, Barbulescu et al., 2010, Ponda et al.,
2010] are very important for the practical use of robots, because execution can
fail due to many reasons and replanning is essential to maintain some level of
efficiency. In [Barbulescu et al., 2010] dynamics during execution are created
by unexpected events and changes in costs and constraints; in [Ponda et al.,
2010] dynamics are caused by breaks in communication links, which may cause
conflicting assignments, as more than one robot could be assigned the same
task. In [Usug and Sariel-Talay, 2011] temporary failures are considered, such
as obstacles, which can be overcome by replanning.
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8. Typical Solution Approaches

So far, we have proposed a taxonomy for MRTA/TOC problems; now we
discuss the most popular solutions and how to map these to our taxonomy.
Here we simply divide the methods into centralized vs. decentralized. Cen-
tralized methods are further separated into exact and approximate methods,
while decentralized methods are grouped into distributed constraint-based and
market-based according to nature of the proposed solutions.

8.1. Centralized Solutions

Centralized methods rely on a central controller that allocates tasks to
robots. The autonomy of the robots in pure centralized methods is limited
or non-existent, as they solely execute the dispatched orders and do not make
decisions on what tasks to do.

MRTA/TOC is intractable for a non-trivial number of robots and tasks.
Optimal centralized solutions are intractable because they need to evaluate a
large number of candidate solutions in order to guarantee optimality. Thus, the
focus of MRTA/TOC solutions is largely on approximation and heuristic solu-
tion methods. We discuss some of the common centralized exact and heuristic
methods next.

8.1.1. Exact Solutions

Exact solutions are optimal, but their computation time is impractical for
realistic robotics applications. The most naive way to search for such solutions
is to exhaustively search for all possible allocations that do not violate the tem-
poral constraints. This is, however, intractable, because an exhaustive search
leads to worst-case O(|K|!)|A| complexity for |K| tasks and |A| robots. We have
to search through all the possible sequences of tasks and all possible allocations
of tasks to robots, and in addition to all feasible assignments of times to tasks.

Optimal solutions can be more efficiently computed using Branch-and-Bound
(B&B) [Clausen, 1997] and its variants: Branch-and-Cut [Ropke et al., 2007,
Bard et al., 2002], Branch-and-Price [Korsah et al., 2012, Feillet, 2010, Dohn
et al., 2009, Barnhart et al., 1998], and Branch-Price-and-Cut [Barnhart et al.,
2000]. B&B searches the state space of candidate solutions represented as a tree
and uses upper and lower bounds of the optimal solution to prune the branches of
the search tree that have costs higher than the computed lower bounds. Among
the variants, Branch-Price-and-Cut is becoming popular in VRPTW [Bettinelli
et al., 2011, Archetti et al., 2011, Desaulniers, 2010, Ropke and Cordeau, 2009].
However, as far as we know it has not been used in MRTA/TOC problems.

Exact methods often use tools such as CPLEX [ILOG, 2006], Gurobi [Gurobi Op-
timization, 2014], ABACUS [Jünger and Thienel, 2000], lp solve [Berkelaar
et al., 2004] or other tools to build and solve the underlying MILP formula-
tions. MILP-based formulations and solutions have been predominantly used in
ST-SR-TA:TW problems (e.g., [Korsah et al., 2012, Alighanbari et al., 2003],
but these models have also been used in other parts of the taxonomy (e.g. ST-
MR-TA:TW [Ramchurn et al., 2010b, Koes et al., 2005]).
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8.1.2. Approximate and Heuristic Solutions

To reduce computation time, MILP-based heuristics are used to find approx-
imate partial allocations while searching the state-space tree. Such approaches
have been used to address problems in our taxonomy (e.g. ST-SR-TA:TW
[Gombolay et al., 2013, Korsah et al., 2012]). As far as we know, these methods
do not provide any theoretical guarantees, but in some cases (e.g. [Gombolay
et al., 2013]) they experimentally achieve results that are only 10% away from
the optimal value (makespan).

Another way to gain computational efficiency is to use metaheuristic ap-
proaches. Metaheuristics are algorithmic templates that approximately solve
hard combinatorial optimization problems. Unlike other combinatorial opti-
mization algorithms, metaheuristics may allow lower quality solutions in the
search process to escape local optima, and often embed off-the-shelf heuristics
to solve the problem [Bräysy and Gendreau, 2005b, Vidal et al., 2013].

Metaheuristic approaches to VRPTW, TOPTW and related routing and
scheduling problems have been shown to outperform many other methods (e.g.
construction heuristics and local search) for standard benchmarks [Bräysy and
Gendreau, 2005b, Hu and Lim, 2014]. Recent trends in the metaheuristic lit-
erature seek to reduce the computation time and improve the solution quality
by using parallelization and hybridization of different heuristics and exact tech-
niques. However, metaheuristic parameters remain hard to tune [Birattari, 2009,
Bräysy and Gendreau, 2005b].

8.2. Decentralized Solutions

Decentralized approaches vary widely; a detailed categorization is outside
the scope of this paper and we refer the reader to [Mosteo and Montano, 2010,
Koenig et al., 2010]for more thorough taxonomies on MRTA methods. Here we
focus on distributed constraint optimization and market- and negotiation-based
algorithms since these have received a great deal of attention in the MRTA
community.

8.2.1. Distributed Constraint (DCOP)-Based Methods

MRTA/TOC problems can be modeled as a Distributed Constraint Opti-
mization Problem (DCOP) [Maheswaran et al., 2004] and solved using DCOP
methods. Solving DCOP exactly is NP-hard and impractical even for uncon-
strained MRTA problems [Junges and Bazzan, 2008]. Thus, approximate meth-
ods such as Max-Sum have been used for task allocation in sensor networks
[Farinelli et al., 2014] and in RoboCup Rescue [Ramchurn et al., 2010a, Pujol-
Gonzalez et al., 2015].

Ramchurn et al. [2010a] proposed the Fast Max-Sum algorithm, which was
shown to be robust in situations where the number of tasks is dynamic; the ap-
proach reduced the computation time, number and size of messages sent com-
pared to Max-Sum, but it is still exponential. The computation overhead in
dynamic environments is reduced in [Macarthur et al., 2011] by using online
domain pruning and branch-and-bound. When the constraints are Tractable
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Higher Order Potentials the computation time can be reduced to polynomial
[Pujol-Gonzalez et al., 2015].

Another approximation method is LA-DCOP [Scerri et al., 2005, Farinelli
et al., 2006], which uses token passing [Xu et al., 2005] as follows: when an agent
perceives a task, it creates a token for it. It can decide to do the task or pass
the token to a randomly chosen agent. This tends to guide the search quickly
towards a greedy solution, which is reasonable for ST-SR-TA:TW problems with
hard constraints.

In [Ferreira et al., 2008] LA-DCOP and Swarm-GAP are compared in RoboCup
settings. In Swarm-GAP an agent chooses a task according to a probability that
depends on the stimulus generated by the task and the agent’s threshold. Re-
sults show that both DCOP approaches behave similarly, and both perform
better than a greedy task allocation. Their approach works for ST-MR-SC
problems, where agents are allowed to arrive late to tasks. Recently, to facili-
tate comparing the performance of DCOP algorithms, RMASBench, a system
that provides a library of state-of-the-art solvers for DCOP and for comparing
them, has been created in [Kleiner et al., 2013].

8.2.2. Market and Negotiation-Based Methods

Among the decentralized algorithms, sequential auction- and negotiation-
based algorithms [e.g. Sariel-Talay et al., 2009, Nanjanath and Gini, 2010, Ponda
et al., 2010, Nunes and Gini, 2015] are more prevalent than other methods.
Sequential auction algorithms produce solutions that are two away from optimal
in the worst-case in both single-item [Lagoudakis et al., 2004] and multi-item
auctions [Choi et al., 2009]. This, together with the ease of implementation
and extension to dynamic scenarios and robust execution [Nanjanath and Gini,
2010] makes sequential auctions an attractive solution. However, the greedy
nature of sequential auctions and the complex structure of most MRTA/TOC
problems cause the addition of temporal constraints to auction algorithms to
produce suboptimal solutions [Nunes et al., 2012]. Temporal modeling and
balancing between temporal- and distance-based objectives can help auctions
perform better [Nunes and Gini, 2015, Ponda et al., 2010]. In [Amador et al.,
2014] Fisher markets are used for dynamic ST-MR-SC problems, where tasks
can be interrupted for a penalty.

Auctions distribute the computation to individual agents but require com-
munication to share bids and results. To reduce the need for communication,
several approaches use consensus algorithms [Zavlanos et al., 2008, Choi et al.,
2009, Ponda et al., 2010], where each agent determines independently which
tasks it should do. An equilibrium is reached by iteratively sharing information
with neighbors and re-allocating tasks if needed. [Godoy and Gini, 2012] ex-
tended the Consensus Based Bundle Algorithm (CBBA) [Choi et al., 2009] to
optimize the number of completed tasks for tasks with temporal constraints in
ST-SR-TA:TW problem with hard constraints. Another method, called emer-
gent task allocation [Atay and Bayazit, 2003], distributes the computation of
task allocation for a surveillance task to individual robots, by sharing intentions
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and directives with 1-hop away neighbors. The method has been shown to con-
verge to the optimal solution as the number of iterations of information sharing
increases.

Despite the development of many decentralized methods for MRTA/TOC
problems, very limited work offers theoretical analysis of the quality of these so-
lutions. There is a need for theoretical performance bounds for both centralized
and decentralized heuristics for the MRTA/TOC problem.

There are other decentralized approaches to task allocation that are not
market- or DCOP-based. For instance, [Chapman et al., 2010] formulated ST-
MR MRTA as a stochastic game and used overlapping potential games to ap-
proximate an optimal solution. Their approach is robust to restricted agent
communication and observation range.

Swarm-based approaches have been proposed for various tasks, such as for-
aging, where robots need to find food and bring it to the nest [Lerman et al.,
2006, Brutschy et al., 2014] or where swarms of robots are allocated different
monitoring tasks without any communication among the robots [Berman et al.,
2009]. Swarm methods often work well but do not have theoretical guarantees.

9. Summary, Open Issues, and Directions for Future Research

Problems that consider temporal and ordering constraints relate to many
well studied problems, such as vehicle routing, job-shop scheduling, and multi-
robot task allocation. A large portion of the literature in MRTA/TOC focuses
on ST-SR-TA:TW problems with hard constraints, some address the soft con-
straint version of this class of problem; however, the literature is sparser for
other classes of problems that consider multi-task robots and multi-robot tasks.

9.1. Summary

We surveyed the multi-robot task allocation literature related to problems
where tasks have constraints on where, when, and possibly the order in which
they have to be performed. We built on a previous taxonomy and added a
classification axis that separates the literature according to the hard versus soft
nature of the constraints. Where appropriate, we gave a generic mathemat-
ical formulation of problems both in deterministic and stochastic cases, and
offered an account of some common execution dynamics. We briefly discussed
the methods applied to the problems in our taxonomy, and split solutions into
centralized and decentralized approaches. In addition, our work drew paral-
lels between multi-robot task allocation with temporal and ordering constraints
with other areas of research, and throughout the paper we discussed models
and solutions coming from these areas. Lastly, our work discussed areas that
are still sparsely covered.

9.2. Open Issues and Future Research

There are several open issues that need to be addressed, which we did not ex-
haustively address here. Progress in the following topics would greatly advance
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research in MRTA/TOC: (1) study of theoretical guarantees of approximate
solutions, (2) richer and more complex temporal models with provably good
and efficient algorithms, (3) models and algorithms for stochastic MRTA/TOC
problems, (4) models and algorithms for task allocation to multi-task robots,
(5) studies on the effects of time scales and time sensitivity in MRTA/TOC
problems and (6) the development of a research platform to make software and
data available to researchers.

Research in stochastic MRTA/TOC problems is still very sparse. The de-
velopment of MRTA methods that take advantage of simulation and stochastic
models to better plan under uncertainty is an endeavor worth pursuing because
robots often operate in uncertain environments. Important research questions
can be asked here; for example, in an uncertain environment is it more benefi-
cial to build a complex model that incorporates uncertainty, or is it enough to
build less well-informed plans and replan as often as needed to quickly react to
unexpected events?

There is also a need for work on theoretical guarantees for many heuristic
schedulers developed for MRTA/TOC problems. The NP-complete nature of the
problem and the need for relatively fast planners has generated many heuristics.
However, such heuristics typically lack performance guarantees, which can be
crucial for safety critical systems, to ensure that robots work effectively even in
the worst possible scenarios.

More work needs to be done to address more complex temporal constraint
types, such as disjunctive temporal models. The literature could also benefit
from work that combines soft and hard time windows, and precedence with
synchronization constraints. A mix of these constraints might produce more
expressive models for a larger set of real-world problems.

The challenge of allocating tasks to multi-task robots, which are robots that
can perform more than one task at a time, remains open. As we can imagine this
is difficult for many existing robots because they lack the necessary actuators.
The lack of literature might also be due to the lack of practical applications
of multi-task robots. We are not aware of any practical problems that strictly
requires robots to perform multiple tasks concurrently; one example of such
problems could be in military domains where a drone robot could be required
to strike a target while at the same tracking other targets in nearby areas.

Another interesting, yet not so explored topic, regards time scales and sensi-
tivity. Robots that move and navigate in an environment can be on a short time
scale, as in exploring a building in hours, or a large time scale of exploring a
planet for years. Even for a single robot, tasks can have varied time sensitivities;
some tasks may have short hard time constraints, whereas others may have long
time horizons with soft time windows. For instance, the Mars rover Curiosity
has periodic tasks that occur every day for years (data upload), constantly run-
ning tasks (temperature regulation), and sporadic tasks (chemical analysis of
collected material and drilling). Each of these tasks have different time sensi-
tivities; for example, data upload needs to occur when the receiving orbiters are
within view of the rover. Temperature regulation requires constant vigilance,
and drilling can be postponed, but needs to occur when the rover is within reach
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of the material. Chemical analysis in the rover’s internal chambers can occur
regardless of location. This single robot has tasks with hard time windows, soft
time windows, varied scheduling horizons, and varied sensitivities. Considering
tasks in terms of time scales and task sensitivities in the same robotic system
thus holds value for any researcher interested in real world problems.

Lastly, we are concerned with the public availability of research data and
methods. We advocate for a computational infrastructure for MRTA problems
(in general, or in particular problems with temporal and ordering constraints).
A tool identical to the Computational Infrastructure for Operations Research
COIN-OR [2015]) could greatly benefit MRTA researchers. COIN-OR is an
open source software project in which many operations research algorithms are
implemented and maintained by scholars in the area. That in combination with
datasets would help researchers verify their results on publicly available data
and methods, allowing for richer comparisons among methods.
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