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Airline ticket purchase timing is a strategic problem that requires both historical observations and do-
main knowledge to solve consistently. Even with some historical information (often a feature of modern
travel reservation web sites), it is difficult for consumers to make true cost-minimizing decisions. To address
this problem, we introduce an algorithm which is able to optimize purchase timing on behalf of customers.
Also it can provide performance estimates of its computed action policy based on past performance. We ap-
ply machine learning to recent ticket price quotes from many competing airlines for the target flight route.
Our novelty lies in extending this using a systematic feature selection technique incorporating elementary
user-provided domain knowledge that greatly enhances the performance of machine learning algorithms.
Using this technique, our algorithm achieves much closer to the optimal purchase policy than other pro-
posed decision theoretic approaches for this domain. This approach meets or exceeds the performance of
existing feature selection methods from the literature. Applications to other domains for this feature selec-
tion process are also discussed.

Categories and Subject Descriptors: 1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent Agents

General Terms: Algorithms, Economics, Experimentation

1. INTRODUCTION

The conventional wisdom of airline ticket purchasing states that it is generally best
to buy a ticket as early as possible to avoid the risk that the price may increase. As
prices do generally increase dramatically before a flight’s departure, it seems generally
correct. However, the earliest purchase strategy only occasionally achieves the optimal
lowest cost ticket. This paper proposes a model for estimating the optimal policy for
future departures. The ultimate application of this model is to autonomously make
daily purchase decisions on behalf of airline ticket buyers to lower their costs.

This kind of optimal airline ticket purchasing from the consumer’s perspective is
challenging principally because buyers have insufficient information for reasoning
about future price movements. Prices can vary significantly on a daily basis, and con-
sumers have no information about pricing behaviors of particular routes and airlines.
Prices do vary in this domain for a reason for several reasons. Sellers (airlines) make
significant long term investments in fixed infrastructure (airports, repair facilities),
hardware (planes), and route contracts. The specific details of these long term deci-
sions are intended to roughly match expected demand but often do not match exactly.
Dynamic setting of prices is the mechanism that airlines use to synchronize their in-
dividual supply and demand in order to attain the greatest revenue.
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39:2 Groves and Gini

The airline ticket domain is characterized by adversarial risk in two contexts: the
adversarial relationship between buyers and sellers, and the competitive relationships
between the airlines providing an equivalent service. We assume buyers are seeking
the lowest price on their travel, while sellers are seeking to keep overall revenue as
high as possible to maximize profit. Simultaneously, each seller must consider the price
movements of its competitors to ensure that its prices remain competitive to achieve
sufficient (but not too high) demand. It is impossible to effectively optimize decision
making from the buyer’s point of view without also considering both types of adversar-
ial relationships.

A central challenge in airline ticket purchasing is in overcoming the information
asymmetry that exists between buyers and sellers. Airlines can mine significant
databases of historical sales data to develop models for expected future demand for
each flight. Demand for a specific flight is likely to vary over time and will also vary
based on the pricing strategy adopted by the airline. For buyers without access to
historical price information, it is generally best to buy far in advance of a flight’s de-
parture, per the conventional wisdom. However, this is not always best since airlines
will adjust prices downward if they want to increase sales.

Given a corpus of historical data and the proposed learning approach, it is possible to
compute policies that do much better than the earliest purchase strategy. The success
of the proposed method depends on several novel contributions:

(1) We leverage a user-provided hierarchical structure applied to the features in the
domain and use automated methods to decide which features to include or prune.
This enables us to compute efficiently a more optimal feature set than using ex-
isting feature selection methods which use only information from the data set.
Feature sets violating basic knowledge of the domain are avoided.

(2) We capture temporal trends in the model by allowing time-delayed observations to
supplement or replace the most recently observed value for each included feature.
The time-delayed observations are called lagged features in the text.

These novel aspects are applicable to many real-world multivariate domains, but
this paper demonstrates the power of this technique on the domain of ticket price pre-
diction. When comparing to a deployed commercial system, the proposed model is more
informative than the output of the Bing Travel “Fare Predictor”, the best commercial
system currently available for airline fare prediction. This paper extends upon our pre-
vious work ([Groves and Gini 2013]) by considering situations in which a customer has
specific preferences: for example, a customer may only want to consider purchasing
non-stop flights from a specific airline, and would thus need a decision model targeted
at a specific subset of available flights. The model here is extended to accommodate
these preferences. This prediction task is more difficult than predicting only the low-
est cost ticket but it is more useful for actual airline passengers. An additional benefit
is that the model can provide insights into the domain: the importance of individual
variables can be assessed by their presence or absence in the computed optimal model.

2. BACKGROUND AND RELATED WORK

Airlines determine the prices to offer for each flight through a process called yield
management which is designed to maximize revenue given constraints such as ca-
pacity and future demand estimates (for an overview, see [Belobaba 1987; Smith et al.
1992; Elmaghraby and Keskinocak 2003]). Mismatches between airplane size and pas-
senger demand are equalized through pricing, which can adjust demand. Choosing op-
timal pricing on an entire airline network is complex because there are instances (in
hub-and-spoke networks) when sacrificing revenue on a particular flight can increase
overall revenue of the entire network.
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The current state of yield management and competition in the airline industry is a
direct result of historical decisions made about regulation in the industry [Smith et al.
1992]. The techniques evolved beginning with a simple overbooking of flights. Due to
regulatory changes, airlines became free to adjust the airfare for each seat without
restriction. This allowed airlines to divide the seats for each flight into different “fare
classes” and charge different prices for effectively the same service. The development
of fare classes was critical in maximizing passenger throughput in hub-and-spoke air
networks because a passenger taking a single non-stop flight will accrue a different
amount of revenue than a passenger taking a longer multi-stop flight. To maximize
revenue, an airline needs to be able to offer competitive fares to both types of passen-
gers and yield management is a way to amortize these differences within the company.

In traditional yield management, the lowest air ticket prices quoted to customers
are based on the available seats in each fare class for a particular flight (or origin-
destination pair in the case of multi-stop itineraries). An airline can adjust the rate-
of-fill for a particular flight by moving seats between fare classes (i.e. by moving high
cost seats into lower cost fare classes). These decisions are traditionally made by hu-
mans who take into account previous demand, current sales, and competitive market
conditions.

Yield management can be applied to other industries with properties such as the
need to handle advance reservations, a range of customer values for the same prod-
uct, the ability for customers to cancel, a non-negligible probability of no-shows, or
stock perishable inventory [Elmaghraby and Keskinocak 2003]. Industries with these
properties include hotel booking, railroad transport (linear networks, many origin-
destination pairs along a shared linear route), car rental, electric utility, and broad-
casting industries.

Dynamic pricing can also be beneficial in industries that can store inventory but
these techniques have traditionally not been applied because of the high cost of chang-
ing prices. Instead, these industries have concentrated on aggressively tracking inven-
tories to reduce overall inventory size and cost.

The key features enabling dynamic pricing are availability of demand data, ability
to inexpensively change prices, and the use of decision support tools.

Additional market studies have addressed how the airline market has changed with
the introduction of low cost airlines (LCAs). An overview of the competitive consider-
ations in pricing strategies developed by LCAs in the European air travel market is
in [Piga and Filippi 2002]. A general econometric model is developed to assess the most
significant factors determining ticket prices from LCAs. The authors find that tickets
purchased between 30 and 8 days prior to departure are more expensive than tick-
ets bought in other periods. Tickets bought in the few days prior to departure can be
significantly cheaper but are not always available due to demand. The econometric re-
sults show that the LCAs do not compete against conventional airlines on price alone.
They also use horizontal product differentiation to minimize the necessity to compete
on price. Specifically, LCAs use secondary airports (not significantly served by conven-
tional airlines) and fly on schedules that are maximally distant from existing players.
Preferences about schedule convenience and location also play a significant role in
customers’ purchasing decisions and ought to be considered in any predictive model in
this domain.

In a later investigation ([Bachis and Piga 2011]) on measurements of market power
of LCAs in the European airline market, airlines that have a significant share of the
traffic at an individual airport tend to have higher prices than other carriers at the
same airport. Also, an airline having a large portion of traffic between two pairs of
airports (one direct route) tends to have greater market power than an airline having
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a large portion of traffic between two airports without a direct route. There is greater
substitutability on routes with one or more stops, so market power is lower.

Some work has been done for determining optimal purchase timing for airline tick-
ets. Our work has been inspired by [Etzioni et al. 2003], where several purchasing
agents attempt to predict the optimal purchase time of an airline ticket for a partic-
ular flight. The agents determine the optimal purchase time within the last 21 days
prior to departure for specific flights in their collected data set. The authors compute
the purchasing policy (a sequence of wait/buy signals) for many unique simulated pas-
sengers with a specific target airline, target flight, and date of departure to satisfy.
The optimal policy (the sequence of buy/wait signals that leads to the lowest possi-
ble ticket price) is used as a benchmark for each simulated passenger and the cost of
each alternative purchasing agent is computed. The aggregate result shows that, given
these purchasing criteria, it is possible to save a significant amount when purchasing.
We understand that Bing Travel’s “Fare Predictor” is a commercialized version of the
models in [Etzioni et al. 2003], so real-world results from this form a benchmark for
our results.

Our work extends the state-of-the-art because we directly compute a policy for find-
ing the minimum cost ticket of any flight from any airline given a route and departure
date. This is a more difficult problem because the aggregate minimum price varies less
than the price of an individual flight from an individual airline. Our paper goes beyond
their work in several ways: the model is not limited to a single flight, the purchases
are up to 60 days before departure (instead of 21 in the existing work), the model is
compared against realistic financial benchmarks (including buying as early as possi-
ble), and the model provides a regression estimate for the expected best price between
the current date and departure.

There are several efforts in the game theory community to model aspects of the
airline ticket domain, usually for the purpose of understanding competitive market
dynamics of the oligopoly of sellers. In [Subramanian et al. 1999], a dynamic pro-
gramming model is presented for determining optimal fare class allocation (of four
fare classes) on a single flight. The major contribution of this model lies in incorporat-
ing fare class-dependent and time-dependent cancellation, overbooking, and no-show
probabilities. Valuable insights provided by this study are that booking limits need not
change monotonically over time (may increase or decrease), it may be optimal to accept
a lower fare class while simultaneously rejecting a higher fare class (due to differences
in cancellation characteristics), and cancellations cause the optimal policy to depend
on both total capacity and remaining capacity.

A one-shot game theory-based simulation of pricing competition in the airline ticket
price domain is presented in [Isler and Imhof 2008]. When two airlines with significant
capacity compete with each other and their products are not sufficiently differentiated,
the equilibrium price falls to a minimum price threshold, referred to as the “spiral
down” price. This result may shed some light on the long term decisions airlines make
about airplane size and flight frequency. The authors also note that the airline pricing
domain is more similar to a repeated game than a one-shot game. Other equilibria
can be enforced in repeated games that are significantly above the spiral down price
found in the non-repeated game. This work also shows that a completely automatic
pricing mechanism can be potentially ruinous for an airline. There must be supervisory
mechanisms that take into account other aspects into pricing beyond price competition.

A game theory model of dynamic pricing that incorporates an oligopoly facing strate-
gic customers, buyers who will delay purchase until a future time period if there is a
high likelihood of price decreases lower price later, is presented in [Levin et al. 2009].
If even a portion of the population of customers is strategic, revenue is reduced for the
sellers and any strategic defenses in such a transparent market cannot fully amelio-
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Table I. Airline price quote specifications for all airlines from specific 5-
day round trips. The exact dates and cities shown are for illustration pur-

poses only.
Example 1 Example 2

Quote Date: 13 May 2011 13 May 2011
Origin City: SEA NYC
Destination City: IAD LAX
Departure Date: 20 May 2011 20 May 2011
Return Date: 25 May 2011 25 May 2011
No. of itineraries returned: 1135 1304
No. of airlines quoting 9 13
itineraries:

rate this effect. The critical conclusion of this work is that the most effective method to
inhibit the impact of strategic consumers is to reduce the amount of information avail-
able to consumers. This may explain in part why, in spite of the technical feasibility,
few predictive tools are available to individual purchasers of airline tickets.

From a technical perspective, this prediction problem can be phrased as a machine
learning problem involving both many features (possible variables which are relevant
to prediction) and temporal trends. In the literature, there are many exclusively data-
driven feature selection techniques applicable to this domain [Molina et al. 2002]. [Hall
2000] presents the CFS algorithm (Correlation-based Feature Selection) to perform
a filter-based feature selection using a merit heuristic (normalized Pearson’s Corre-
lation). The algorithm starts with an empty feature set and uses forward best-first
search to incrementally add features. Wrapper-based methods employing search (such
as best first search (BFS)) using an underlying machine learning algorithm have also
been employed [Kohavi and John 1997]. Both techniques are included in the results
for benchmarking.

3. DATA SOURCES

The data for our analysis was collected as daily price quotes from a major travel search
web site between Feb. 22 and Jun. 10, 2011 (109 observation days). A web spider was
used to query for each route and departure date pair in our study, so the results are
representative of what a customer could observe in the market.! This set is split se-
quentially into 3 data sets with the following lengths: 48, 20, and 41 days. The three
periods are utilized as the training set, calibration set, and test set, respectively. Each
query returned, on average, 1,200 unique round-trip itineraries from all airlines; most
queries returned results from more than 10 airlines. Example queries are in Table I.
Feature values are aggregate statistics computed from each day’s itineraries. For con-
sistency, the queries were initiated at the same time each day.

Bing Travel, a popular travel search web site, has a “Fare Predictor” tool that pro-
vides a daily buy/wait policy recommendation for many routes and departure dates.
These recommendations were obtained daily from the site for the test set period and
are directly compared with our agent’s policy.

3.1. Pricing Patterns in Historical Data

There are strong cyclic patterns in the time series of prices. For example, Figure 1
shows the mean lowest price quoted by all airlines for a specific origin-destination
pair for 2 months of 5-day round trip itineraries departing on (a) Thursdays and (b)
Mondays. The Thursday to Tuesday itinerary time series shows a regular drop in

LAll data sets are available, upon request, from the authors.
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Fig. 1. Mean lowest price from all airlines (a) for New York City (NYC) to Minneapolis, MN, USA (MSP)
5-day round trip flights having Thursday departure and Tuesday return (Th-Tu) or (b) for NYC to MSP
M-F itineraries. Each solid line series indicates quotes for a different departure (8 departure dates in each
graph). A dotted series indicates the mean.

prices for Tuesday, Wednesday, and Thursday purchases ((days-to-departure modulo
7) € {0, 1,2}), while the (b) series shows significant increases for Thursday, Friday, and
Saturday purchases. As expected, both exhibit price increases in the last few days be-
fore departure (days-to-departure < 7) but series (b) exhibits this increase earlier in
the time series. We posit that the majority of business flights would be Monday to Fri-
day itineraries, and thus demand for series (b) flights would be less sensitive to price
increases than leisure flights. The weekly depression in costs in (a) may be due to mar-
ket segmentation: customers buying mid-week are more price sensitive than weekend
purchasers.

The pricing behaviors exhibited for other origin-destination pairs also differ. A high
traffic origin-destination pair such as the New York City to Los Angeles route (shown
in Figure 2) exhibits much weaker cyclic patterns. We conjecture that strategic pricing
is likely to have a much greater observed effect for routes that have relatively few (2
or 3) competing airlines than for routes with a large number of competitors (> 3).

3.2. Observed Pricing Relationships

In this section, we characterize the pricing relationships between airlines that are
observed in the collected pricing data.

The prices quoted each day for a specific query (such as the two examples in Table
1) often vary significantly by airline, but the prices observed have structural relation-
ships which can be leveraged for prediction. Figure 3 plots the minimum price time
series for each airline from four weeks of data for a specific itinerary (depart MSP on
May 5, 2011, return NYC on May 10, 2011). Pricing patterns for competing airlines
have been covered empirically in the literature ([Bachis and Piga 2011]) and this ex-
ample illustrates these relationships. Airlines can be divided into two categories: low
cost airlines (LCAs) and "legacy” airlines (MCAs and HCAs). LCAs use their primary
advantage, the ability to offer lower ticket prices due to lower internal costs, to com-
pete aggressively against legacy airlines. Legacy airlines use other benefits to compete
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Fig. 2. Mean lowest price offered by all airlines for New York City (NYC) to Los Angeles (LAX) 5-day round
trip flights having (a) Thursday departure and Tuesday return, or (b) Monday departure and Friday return
itineraries.
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Fig. 3. A price time series for many airlines quoting prices for the NYC-MSP route for Thursday departure
(May 05, 2011) with Tuesday return. Each series represents the minimum price of the day’s quotes for a
specific airline and number of stops pair: for example, DL-0 refers to all Delta Airlines, non-stop flights and
AA-2 refers to all American Airlines, 2 intermediate stop flights.

against LCAs including: greater availability of departure times, a larger network of
connecting flights, and loyalty rewards programs.

For a specific route’s prices (shown in Figure 3), the competing airlines can be divided
into one of three categories based on the pricing behavior: LCA, MCA, and HCA. Low
cost airlines (LCAs) tend to always compete on price and will consistently offer prices
at or below all other types. A LCA may even compete against other LCAs by lowering
prices further in order to increase demand for their product. MCAs, or medium cost
airlines, are legacy airlines that tend to price aggressively for the route but will rarely
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Fig. 4. Stylized diagrams of changes in price equilibria. Three price behavior types are shown: LCA refers
to low cost airlines, MCA refers to medium cost airlines, and HCA refers to high cost airlines.

set prices below the best LCA price. HCAs, or high cost airlines, are legacy airlines that
do not compete aggressively based on price but will still quote (usually high) prices for
the route. Customers may still buy these higher priced offers (from MCAs or HCAs)
because of the other benefits of the specific airline or itinerary.

In this route, the airlines can be categorized based on behavior as:

—LCA: F9, FL, SY
— MCA: DL
— HCA: AA, CO

Some airlines will quote itineraries with different number so intermediate stops. For
example, Delta airlines (DL) quotes itineraries with no intermediate stops (non-stop,
as DL-0), 1 intermediate stop (DL-1), or 2 intermediate stops (DL-2). For the purposes
of the analysis, we treat each itinerary type separately as shown in Figure 3.

The price time series shows repeated patterns among the airlines for this departure.
The LCAs are consistently at the bottom of the price range and there is a cluster of
MCAs that have similar prices during periods of price stability. To characterize some
of the price shifts, Figure 4 provides some examples. In PE1, the MCA lowers its price
below the prevailing LCA price; on the next day, the LCAs adjust their prices to match
or beat the best price. In PE2, an LCA lowers its price, but no other airline follows. In
PE3, the LCA raises its price and the MCAs and HCAs adjust their prices upward as
well.

From a statistical analysis of the data, it is possible to make these categorizations.
These persistent relationships can be leveraged using a regression model because,
within a route, the relationships between airlines will be persistent. A machine learn-
ing model, such as those described later in Section 4.3, can leverage these to make
predictions about future prices.

4. PROPOSED MODEL

When constructing prediction models for real-world domains, practical complexities
must be addressed to achieve good prediction results. Typically, there are too many
sources of data (features). Limiting the set of features in the prediction model is es-
sential for good performance, but prediction accuracy can be lost if relevant inputs are
pruned. This is even more acute in situations where the number of observations is
limited, often a feature of real-world domains. To meet this challenge, we construct a
prediction model that involves the following distinct steps, which we then describe in
detail:
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(1) Feature Extraction — The raw data observed in the market are aggregated into a
fixed length feature set.

(2) Lagged Feature Computation — A lag scheme is computed using a hierarchy of the
features that incorporates some domain knowledge.

(3) Regression Model Construction — Using the augmented feature set generated from
the lag scheme, a regression model is generated using partial least squares (PLS)
regression.

(4) Policy Computation — A search of decision threshold parameters is done to mini-
mize calibration set cost.

(5) Optimal Model Selection — For each candidate model computed using the previ-
ous steps, the one which performs best on the calibration set is chosen. The final
performance is estimated on the test set.

Table Il. Raw Features

Class Size Variable List
Det 8 vars Days-to-departure, Quote DoW is Mon, Quote
DoW is Tue, ..., Quote DoW is Sun
All-A 3 vars ALL-min-A, ALL-mean-A, ALL-count-A
All-S 9 vars ALL-min-0, ALL-mean-0, ALL-count-0, ALL-

min-1, ALL-mean-1, ALL-count-1, ALL-min-2,
ALL-mean-2, ALL-count-2

Each-A 18 vars DL-min-A, DL-mean-A, DL-count-A, ...,
OTHER-min-A, OTHER-mean-A, OTHER-
count-A

Each-S 54 vars DL-min-0, DL-mean-0, DL-count-0, DL-min-1,
DL-mean-1, DL-count-1, DL-min-2, DL-mean-
2, ...

Note: Raw features by feature class for each quote day on a specific departure day and
route. The number of features in some classes (EACH-A, EACH-S) will vary based on the
number of airlines quoting the route. The counts given are specific to the NYC-MSP route
(92 total raw features). Features are named as “airline-statistic-#ofStops”: i.e. ALL-min-
A = minimum price quoted by any airline, ALL-min-0 = minimum price quoted by any
airline for non-stop flights only, DL-min-A = minimum price quoted by a specific airline
(DL = Delta Airlines), and Quote DoW is Mon = Boolean variable (1 if quote is retrieved
on Monday).

4.1. Feature Extraction

The large number of itineraries (>1000) in each daily query made some data aggre-
gation necessary. The features extracted for prediction are aggregated variables com-
puted from the (large) list of quotes observed on individual query days. For each query
day, there are possibly many airlines quoting flights for a specific origin-destination
and date combination. This is possibly due to strategic decisions of the airline or due
to lack of available capacity. We limit the number of airlines used for distinct features
by focusing on airlines that quote for a specific route more than 40% of the query days.
Also, each airline may present itineraries that contain non-stop segments or segments
with one or more stop. We divide the quotes by number of stops into three bins: non-
stop round trips, round trips with a maximum of one stop in each direction, and round
trips with 2 or more stops in either direction. For each bin, three features are com-
puted: the minimum price, mean price, and the number of quotes. Additionally, these
three features are computed for the union of all three bins. So for each airline, 12 fea-
tures are computed on each quote day. For airlines not exceeding the 40% criteria, their
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itineraries are combined into a separate “OTHER” category placeholder. Finally, these
same 12 aggregates are generated for all itineraries and are placed in the “ALL” air-
lines category. Boolean variables indicating the query’s weekday are added. A days-to-
departure (number of days between the query and departure dates) value is computed
based on the departure date.

A listing of the features for each query day is shown in Table II. Each of the 92 fea-
tures is in a class based on its specificity using the feature class hierarchy in Figure 5.

4.2. Lagged Feature Computation

Using only the most recent values (92 features for the NYC — MSP route) as the en-
tire feature set may provide reasonable prediction results in some domains, but such a
model cannot predict trends or temporal relationships present in the data. This simple
scheme is shown in Table ITI(b) and in the results as Minimal Lag Scheme. The need to
represent temporally-offset relationships (such as weekly cycles or trends) motivates
adding time-delayed observations to the feature set as well. We refer to this as the ad-
dition of lagged features. For instance, if the cost of a route on day ¢t —7 is representative
of the price available on day ¢ + 1, the 7 day delayed observation should have a high
weight in the model. A regression model which includes all time-delayed instances up
to a depth of n days of all features can produce good results, but the inclusion of many
variables into the model can result in poor performance. A diagram of this model is
in Table III(a). The performance of a model of this construction (n = 7) is shown in
Table VI as the model Full Lag Scheme.

Table Ill. Basic lag schemes used for benchmarking of feature selection methods. The dots “e” indicate the feature
class at the corresponding time lag is included in the feature set provided to the learning model.

Lagged Offsets
Class | o112 34567
DET °
(a) maximal scheme ALL-A R
ALL-S o | o | o | o | 0| 0| o | e
EACH-A | ¢ | o | 0o | 0o | 0| 0o | o | o
EACH-S | o | ¢ | 0o | 0o | 0o | o | 0o | @
Lagged Offsets
Class | o1 1]2]3]4|5]6]7
DET °
(b) minimal scheme ALL-A °
ALL-S °
EACH-A | o
EACH-S °

Our technique uses the assumption that more recent observations are likely to have
high informational value for price prediction, but time-delayed features may hold in-
formational value as well (i.e. the environment is not completely stochastic). The time
between a change in the market and its effect on the target variable may be longer
than one day and lagged variables can leverage those delayed relationships.

By examining all combinations (a small number) of feature classes it is possible
to automatically tune the feature vector to achieve better results. Another constraint
is added: more specific feature classes will not have more time delayed instances than
more general classes. We posit that time-delayed observations from the target variable
(such as the all airline minimum price in Class ALL-A) are likely to be most predictive.
Time-delayed observations from other more-specific feature classes may also be but
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Fig. 5. Lag scheme class hierarchy for product price prediction. Arrow denotes a subset relationship (i.e.
class ALL-A should have an equal or greater set size than class ALL-S).

Dg‘izjrsﬁi]r?iEszic Class: ALL-A
Features All airlines,
days-to-departure aggg :fage of
Quote Day vp
day-of-week
Class: ALL-S

All airlines,
{0, 1, 2+} stops
v
Class: EACH-A
Each airline,
aggregate of
stops
v

Class: EACH-S
Each airline,
{0, 1, 2+} stops

are less likely to be predictive. It is by this principle that the hierarchy and strict
ordering of lagged data additions are based. By constraining the classes so that the
less information-dense classes contribute fewer features, we prevent the inclusion of
extraneous, irrelevant features.

Next, time lagged data is reformatted to form the augmented feature set, which is
called a lag scheme expansion. A search of possible configurations is performed to find
the best performing configuration for a target (the optimal choice may be different for
each route).

The inclusion of a little domain knowledge using feature classes and a class hier-
archy to constrain the search for high-performance feature sets allows for significant
reductions in the number of possible feature set configurations. The number of lag
schemes as formulated with the hierarchy in Figure 5 for a maximum time delay of 7
days is 8517. Without the constraints between classes, there are configurations of the
5 feature classes if constrained to possible time delays of {©,0,1,2,...,7}, but many
configurations will be uninteresting variants. Finally, without the hierarchy and con-
straints between classes, there are ~ 10%? configurations of the 92 original features.?
Using both the feature classification and the constraint hierarchy allows for a greater
variety of “interesting” lag schemes to be tested for the same search effort.

While a domain expert could design a high-performance feature set, the automated
lag scheme search should contain a configuration similar to what a domain expert can
build. Also, the results of the optimal lag scheme search can elicit some surprising
relationships in the data. Table IV shows optimal lag schemes for several targets. It is
interesting to note that non-stop targets in Table IV(b, d) benefit from a larger feature
set (both in temporal depth and feature class breadth).

284 price features, and 8 deterministic features (days-to-departure and quote weekday) = 2 * (27) x (9%%)
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Table IV. Optimal lag schemes of a domestic route and an international route for a 5-day trip with Monday departure.
The dots “e” indicate the feature class at the corresponding time lag is included in the best performing feature set.

Lagged Offsets
Class | o1 1]2]3]|4|5]6]7
DET °
(a) New York — Minneapolis ALL-A b A . I . N
ALL-S oo | o |0 | e
EAcCH-A °
EACH-S
(MC: $280, EP: $317, 75.4%)
Lagged Offsets
Class | o1 1)2(3]|4|5]6]7
DET °
(b) New York — Minneapolis (non-stop only) ALL-A b A
ALL-S °
EACH-A °
EACH-S °
(MC: $365, EP: $414, 66.8%)
Lagged Offsets
Class | o112 34567
DET °
(c) New York — Hong Kong ALL-A b S . I . .
ALL-S
EAcCH-A
EAcH-S
(MC: $1190, EP: $1207, 28%)
Lagged Offsets
Class | o1 1)2(3]|4|5]6]7
DET °
(d) New York — Hong Kong (non-stop only) ALL-A b I bl B
ALL-S o | o | o | o °
EACH-A | e [ o [ o | @
EACH-S | ¢ | o | o | o

(MC: $1404, EP: $1416, 13%)

4.3. Regression Model Construction

Mathematically, PLS regression deterministically computes a linear function that
maps a vector of the input features x; into the output variable y; (the label) using
a vector of weights w. Several implementations of PLS exist [de Jong 1993; Martens
and Neaes 1992]; each with its own performance characteristics. We use the orthogonal-
ized PLS, Non-Integer PLS (NIPALS), implementation in [Wold et al. 1983]. PLS was
chosen over similar multivariate techniques including multiple linear regression, ridge
regression [Hoerl and Kennard 2000], and principal component regression (PCR) [Jol-
liffe 1982] because it produces better performance than the others and has the ability
to adjust model complexity.

This algorithm has multiple advantages. First, PLS regression is able to handle
very high-dimensionality inputs because it implicitly performs dimensionality reduc-
tion from the number of inputs to the number of PLS factors. Second, the model com-
plexity can be adjusted by changing the number of PLS factors to use in computing the
regression result. This value is adjusted in our experiments to determine the optimal
model complexity in each prediction class. Third, the algorithm is generally robust to
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highly collinear or irrelevant features. Fourth, the structure of a trained model can
be examined for knowledge about the domain. For these reasons, this algorithm was
chosen.

PLS regression allows users to adjust the model complexity by selecting the number
of PLS factors to generate when training. These factors are analogous to the principal
component vectors used in principal component regression. The number of PLS fac-
tors determines the dimensionality of the intermediate variable space that the data
is mapped to (a limit of 20 factors is used in these results). The computation time
does not significantly increase for a larger number of factors but the choice can effect
prediction performance: too few factors can cause the model to be unable to represent
relationships in the data.

Other machine learning algorithms can also be used in place of PLS. Experiments
using support vector regression (nuSVR, [Scholkopf et al. 2000]), ridge regression, and
decision trees (REPTree, [Witten and Frank 2005]) are also shown for comparison.

4.4. Policy Computation and Evaluation

An obvious approach to choosing a good regression model (lag scheme and trained
machine learning model) is to use the model with the highest prediction accuracy, but
it may not be the model that generates the lowest average cost policy. Instead, we
propose to grade the models by measuring the cost that results from following the
computed policy recommendation. To use the regression output (an expected future
price) to compute an action policy, we introduce the concept of a decision threshold
function. Given ¢é;, the model estimate future price at time ¢, the current observed
price p; and the current number of days-to-departure dg, (an integer), the current
action policy r; € {BUY, WAIT} is computed by Equation 1.

T't:{BUY N >pt*(c+(1/30)*s*ddtd) 1)

WAIT : otherwise

The two parameters c and s are expressed as decimals. Intuitively, ¢ can be thought
of as an adjustment in the likelihood of a buy signal. Values of ¢ > 1.0 correspond to a
policy that is only likely to emit BUY when the current price is far below the expected
future price. This situation indicates the current price is a bargain for the customer.
The parameter s corresponds to the percent change in the threshold per 30 days of
advance purchase (0.02 corresponds to a 2% change in the threshold at dgq = 30).
Values of s > 0.0 generate a policy more likely to WAIT when far from departure.
When a departure is far in the future and s > 0.0, the agent is more likely to wait until
a highly favorable (low) price appears before deciding to purchase. Adjusting these two
parameters can be thought of as determining the optimal level of risk depending on
the current price and the degree of advance purchase. The range of ¢ and s values
searched was [0.7,1.3] and [—0.1, 0.1], respectively, in increments of 0.01.

We use this two-parameter approach to make decisions, because it is simple, works
well, and provides an intuitive understanding of the policy computation. This is not
to rule out more sophisticated approaches, such as reinforcement learning. We leave
exploration of this aspect for future work.

4.5. Optimal Model Selection

The proposed search of lag schemes is exhaustive, but due to the feature class hierar-
chy, the number of configurations is relatively small and can be fully explored. A model
is constructed for each potential lag scheme: first, for each lag scheme a pricing model
is generated using the training set data, then the decision threshold parameters (c and
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s) are calibrated on the out-of-sample calibration set that results in the lowest average
ticket price. Performance is measured by scoring the model on the test set.

5. EXPERIMENTAL RESULTS

The experiments were designed to estimate real-world costs of using various prediction
models to develop a purchase policy. A survey of the literature revealed that: airlines
assume a relatively fixed rate of purchases until a flight is full, and most tickets for
a flight are sold within 60 days of departure [Belobaba 1987]. Using these facts, we
measure performance as the cost of following the purchase recommendations for a
specific departure once for purchases between 1 and 60 days before departure (ditd €
{1,2,...,60}). This measure involves hypothetically purchasing an itinerary precisely
60 times for each purchase algorithm under test (but some purchases may be deferred
for a few days based on the model output). Each of the 60 purchases is called a purchase
episode. Table V shows examples of purchasing signals generated by four different
policy generators (Earliest Purchase, Our Model, Optima, and Latest Purchase) for a
specific city pair and departure date. The performance of each policy generator is the
mean of the cost values across all purchase episodes.

Table V. Examples of policies computed by various models. The O symbol indicates a “WAIT” signal for that day,
and the e symbol indicates a “BUY” signal for that day. The models are compared by considering the mean value
of the cost vector and represents the average procurement price of all simulated purchases.

Days to departure .. 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Earliest Purchase aCtiOn [ ] [ ] L] [ ] [ ] L] L] [ ] L] L] [ ] L] L] [ ]
cost (in §) 258 257 257 257 257 282 292 330 298 330 330 222 469 453

Our Model action e O O e o O O O o O O o O o
cost (in $) 258 257 257 257 257 298 298 298 298 222 222 222 453 453

Optimal action O O O O O O O O O O O & QO -
cost (in $) 222 222 222 222 222 222 222 222 222 222 222 222 453 453

action O O O O O O O O O O O O O -

Latest Purchase

cost (in $) 453 453 453 453 453 453 453 453 453 453 453 453 453 453

5.1. Performance Benchmarks

The naive purchase algorithm, called earliest purchase, is to purchase a ticket once for
each day in the « day range. Its purchase episodes terminate with a purchase event on
the first day of the episode and mean cost would be equal to the mean of prices across
the o day period. The lowest achievable cost is called the optimal cost and is based
on purchasing for each of the a episodes at the lowest price between the beginning of
the episode and its departure date. The comparison methodology involving simulated
purchases is similar to that used in [Etzioni et al. 2003].

In Table VI, the results of estimated costs for several purchasing policies based on
purchasing 5-day (Monday or Thursday departure) round trip itineraries from NYC
to MSP (265 simulated purchases per column) are shown. The results show how costs
vary based on preferences such as a customer requiring non-stop itinerary as well. We
also compare our policy result against the cost of following the buy/wait recommenda-
tion from Bing Travel’s “Fare Predictor.” For different lag scheme based approaches,
there are several benchmarks: 1) the most recent observation model contains only the
most recent value from each feature, 2) the all possible lags is a model containing all
lags {0,1,..., 7} from every feature, and 3) the Time Series model contains all lags from
only the target variable.
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Table VI. Model results comparison on a single route data set for the lowest cost itinerary on any airline. All
itineraries are 5 days (Monday to Friday, or Thursday to Tuesday). Cities are NYC (New York City) and MSP
(Minneapolis, MN, USA).

Feature Learning Learning NYC-MSP NYC-MSPM-F  NYC-MSP NYC-MSP
Selection Method Method Mon-Fri nonstop Tu-Th Tu-Th nonstop
Type Output (mean cost (in $), efficiency (as % of optimal savings))
Earliest Buy/Wait  (317,0.00%)  (414,0.00%) (309,0.00%)  (374,0.00%)
Purchase
Optimal Buy/Wait (268, 100%) (341, 100%) (263, 100%) (301, 100%)
No Feature ~gjno Buy/Wait (308, 2.56%)  N/A (306,0.903%) N/A
Selection Travel
PLS w/ Mini- Regression (314,6.87%) (384,41.0%) (294, 34.0%) (354,26.7%)
mal Lag Sch.
PLS w/ Full Regression (300, 34.1%) (398, 22.4%) (316, —13.4%) (345,38.7%)
Lag Scheme
PLS w/ CFS Regression (313, 7.93%) (413, 0.223%) (308,0.331%) (371,2.98%)
Off-the-shelf
Methods PLS w/ BFS Regression (317, —1.21%) (416, —-3.56%) (310, —2.32%) (369,5.70%)
Decision Buy/Wait (288, 58.8%) (388, 35.3%) (289, 42.9%) (382, 56.8%)
Tree
nu-SVR Regression  (205,45.1%) (396, 24.5%) (289,42.9%) (338, 48.3%)
Lag Scheme ~Rjdge Regression  (293,49.9%)  (383,42.0%) (316, —13.5%) (372,2.71%)
Feature Regression
Selection Decision Regrossion (284, 65.5%) (375, 52.0%) (280,62.0%) (334, 54.4%)
Tree
PLS Regression (280, 75.3%) (365, 66.8%) (276,72.5%) (330, 59.9%)
Regression

Table VII shows there is, on average, a possible 11% savings to be achieved over ear-
liest purchase. We denote this percentage as the savings margin. Our method of a lag
scheme search coupled with PLS Regression and a decision threshold achieves consis-
tently closer to the optimal action sequence than any of the other methods compared.
The 74% efficiency achieved by PLS (in Table VI) represents a savings of 8% less than
the earliest purchase strategy for the NYC—MSP route.

5.2. Bing Travel Performance Comparison

It is surprising however that Bing Travel is not able to achieve a greater savings mar-
gin on the Any Airline target. We posit that this is due to a risk averse approach taken
by the algorithm: it is more likely than our method to advise immediate purchase.

This assertion can be validated by looking at the distribution of buy and wait signals
computed for each day by the various policy generators: in the NYC—MSP M-F route,
the optimal policy has only a 15% proportion of buy signals. It is noteworthy that the
best models constructed with our method emits a similar proportion of wait signals: in
the NYC—MSP M-F route, the model with the lowest average cost ($280) only emits
a buy signal on 34% of the days. Bing’s model has a much higher proportion of buy
signals: in the same route, the Bing model emits a buy signal 83% of the days. The
results are similar for all routes and dates in our survey: Bing emits buy signals for at
least 70% of the days. While the precise reasons for the Bing Travel model bias towards
buy signals is unknown, we posit that the model may be more averse to possible future
price increases than our tuned minimum cost approach.
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Table VII. Mean percentage-based performance comparison of various decision theoretic approaches across a
combination of 7 (domestic and international) routes by 3-digit airport code for both 5-day round trip Monday and
Thursday departures. All values are in %. Savings Margin computed as % of earliest purchase cost.

Model
Optimal Our Model Linear (LR) Ripper Earliest Purch. Latest Purch.
Method Origin: baseline  this paper [Etzioni et al. 2003] baseline baseline
HOU — NYC 100.0 70.9 7.12 -26.8 0.00 -261
MSP — NYC 100.0 73.9 3.09 -45.2 0.00 -227
NYC — CDGx 100.0 63.2 3.00 -74.8 0.00 -295
NYC — CHI 100.0 54.6 -4.73 -222 0.00 -626
NYC — HKG= 100.0 56.9 10.5 -141 0.00 -161
NYC — MSP 100.0 64.9 5.74 -121 0.00 -289
SEA — IAD 100.0 69.4 491 -25.7 0.00 -190
Mean Efficiency 100.0 64.8 4.21 -93.8 0.00 -293
Savings Margin 11.0 7.25 0.514 -10.4 0.00 -32.3

* denotes an international route.

5.3. Multi-route Comparison

To show that this technique is generalizable to other routes (including international
routes), we provide performance statistics of 7 routes in Table VII. The proposed
method achieves an average of 69% of the optimal savings which represents an av-
erage cost savings of 7.25% when compared to the earliest purchase strategy. Given
the high cost of airline tickets, this represents a significant savings. For the purposes
of comparison with existing approaches,we provide results of two decision theoretic
methods from [Etzioni et al. 2003]: Ripper and LR. Those models use a smaller number
of features compared to our model and do not leverage the competitive relationships
between airlines when making predictions. We believe prediction approaches should
consider price competition between airlines.

5.4. Specific Preference Models

The proposed model is used to predict the future expected minimum price of all avail-
able flights on a specific route and date based on a corpus of historical price quotes.
Also, we apply our model to predict prices of flights with specific desirable properties
such as flights from a specific airline, non-stop only flights, or multi-segment flights.
Buyers are likely to have preferences about airline tickets beyond price such as loy-
alty to a specific airline or the desire for overall minimum travel time. By comparing
models with different target properties, buyers can determine the likely cost of their
preferences.

The effect of more specific preferences can be observed in the prediction models that
are generated for each preference. In Table VIII, the legacy airlines (DL and CO) of-
fering multiple types including non-stop and multi-stop flights may have different lag
schemes based on the preference. The general pattern observed is that more specific
preferences (such as non-stop only flights) will require more information in terms of
more specific feature classes and more time lags than less specific preferences (such as
any flight from any airline). Also, more desirable flights such as non-stop only flights
will tend to be more expensive than multi-stop ones. This is also observed in the lag
scheme plots: our model is able to obtain an average price of $452 for Continental
(CO) non-stop flights, but can obtain an average price of $345 for flights possibly with
multiple stops.

For the LCAs, the contents of the lag schemes suggest that there is are delays in each
airline’s response to changes in prices. For example, the LCA models use little (Airtran)
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Table VIII. Optimal lag schemes for specific preferences of airline and number of stops. Experiments are for 5-day
round trips departing on Thursdays. The statistics are as follows: “MC” refers to average model cost, “EP” refers to
average earliest purchase cost, and the percentage is the savings efficiency of the model.

Legacy Airlines
Continental Airlines (CO) — Non-stop Continental Airlines (CO) — 0, 1, or 2-stops
Lagged Offsets Lagged Offsets
ES ST o o0 B0 s s
DET . DET .
ALL-A . . . ° ° . . . ALL-A . ° . . ° °
ALL-S . . . . . . ALL-S . . . . . °
EACH-A . . ° ° . EACH-A
EACH-S [ EACH-S
(MC: $452.7, EP: $483.6, 50.9%) (MC: $344.8, EP: $386.3, 74.3%)
Continental Airlines (CO) — 1-stop
Class | Lagged Offsets
0] 1] 2] 8| 4]-5]|-6]-=7
DET .
ALL-A ° .
ALL-S ° °
EACH-A °
EACH-S
(MC: $422.7, EP: $456.1, 71.1%)
Delta Airlines (D) — Non-stop Delta Airlines (DL) — 0, 1, or 2-stops
‘ Class ‘ Lagged Offsets | ‘ Class | Lagged Offsets
0| 1] 2]-3]|4]-5]-6]7 0] 1] 2] 8| 4]-5]-6]7
DET . DET .
ALL-A . . . . . ° ALL-A . . . . ° ° . .
ALL-S . ° ° . . ° ALL-S . ° .
EACH-A . EACH-A °
EACH-S . EACH-S .
(MC: $389.5, EP: $411.6, 45.5%) (MC: $366.8, EP: $393.8, 53.7%)
Low-Cost Airlines (LCAs)
Frontier (F9) — 0, 1, or 2-stops Airtran (FL) — 0,1, or 2-stops
L Lagged Offsets al Lagged Offsets
‘ aSs‘0\>1\>2|-3|-4\>5 »6|-7| aSS|0|-1\>2\«°'|-4|-5\>6\>7
DET . DET .
ALL-A . ° ° . . ° ALL-A . ° . . ° ° . .
ALL-S . . . . . ALL-S . . . . . .
EACH-A . . EACH-A .
EACH-S . . EACH-S
(MC: $319.0, EP: $357.2, 78.0%) (MC: $315.0, EP: $335.7, 67.0%)
Sun Country (SY) — Non-stop
al Lagged Offsets
"“ss|0|-1\-2\-3|-4|-5\-6\-7
DET .
ALL-A ° . . ° ° .
ALL-S °
EACH-A °
EACH-S

(MC: $352.6, EP: $399.1, 91.2%)

or no (Frontier and Sun Country) information from the current day (lag offset 0) and
previous day (lag offset —1) for prediction. An alternative explanation for no current
day information in the model may be in the airline’s role as a price leader. If an airline
is setting prices aggressively, the airline will not make rapid changes in response to
the actions of other companies in the market.

Also, Table VIII finds that some LCA models (Sun Country and AirTran) do not use
information at the EACH-S level. This suggests that these airlines do not use detailed
information from other airlines to determine their responses. The prices for these air-
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Table IX. Comparison of the two airline routes under investigation.

Significant Mean Passen-  Std. dev. of Lowest Cost Ticket
Competitors gers per Day by Departure (for 14 < days-to-
Route departure < 60)
Thu. Mon.
MSP-NYC 3 1012 0.058 0.065
NYC-LAX 6 4031 0.035 0.043

lines generally are set equal to or just below the prices of the legacy airlines, so detailed
information about the legacy airlines’ pricing for non-stop and multi-stop flights may
not be needed for prediction. Also, because the pricing relationships for the LCAs is
less sophisticated than the relationships of the legacy airlines, the prediction models
should be more effective for predicting LCA pricing than for legacy airline pricing. This
can be observed in the efficiency values observed for LCAs compared to legacy airlines.

Using these statistics, it is also possible to reason about the relative costs of various
preferences: for example, what is the expected price difference of a non-stop Delta
flight and a flight on any available airline? Such information could help customers to
quantify the expected costs of their preferences.

5.5. Significant Competitors

Comparing the effectiveness of our policy construction approach on two different air-
line routes has led to some insights about differences in the market structure of the two
routes. We define a significant competitor on a route as an airline serving more than 1%
of all passengers on a route. By comparing the results of NYC-MSP models against the
NYC-LAX models in Table VI, reveals that there is a smaller savings margin in the
NYC-LAX data. The price quotes reveal that there is significantly more competition
and passenger volume in the NYC-LAX route. A comparison® of the two routes across
several measures is provided in Table IX. The lower variance of daily minimum prices
shown in the NYC-LAX route is likely due to the large number of competitive carriers
along the route. In contrast, the NYC-MSP route has fewer “significant competitors”,
so individual airlines can assert greater pricing power.

6. CONCLUSIONS AND FUTURE WORK

To our knowledge, these results represent the state-of-the-art in ticket price prediction
using consumer-accessible data.

This investigation shows that, given publicly-observable information, it is possible
to predict airline ticket prices to systematically reduce costs. We believe that there
is a significant market for this these kinds of models in the hands of consumers. In
particular, reliable price models can assist buyers in determining the range of expected
prices for an itinerary.

While it is the most obvious purchase policy, buying at the earliest opportunity is
not the best policy in most cases. First, the long lead-time price may not be the lowest
price available for that flight before departure. Also, there is an opportunity cost asso-
ciated with early commitment: a customer risks being locked into a specific schedule
that may need to be changed (for a fee). Because there is sufficient structured price
volatility on many airline routes, there are significant opportunities for savings when
using guidance of a predictive model. In addition to the results of this work, we believe

3The raw data source for computing these values was the US Department of Transportation BTS Origin-
Destination Survey (see www.bts.gov).
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there are additional cost reductions that can be found to obtain results closer to the
optimal policy.

This feature selection technique also has wide applicability to other multivariate do-
mains where basic domain knowledge is common but not utilized. Building the feature
class hierarchy requires only basic domain knowledge to be successful; but, greater ex-
pertise in hierarchy construction will improve efficiency by focusing the feature selec-
tion search. The constraints also contribute by preventing overfitting (evident from the
poor performance of off-the-shelf feature selection approaches) which can occur with
many features and few training instances. The ability to incorporate a little domain
knowledge into the model construction facilitates improved prediction performance
and enables the discovery of meaningful relationships. Ticket price prediction is just
one potential application of this technique. A novelty of this work also rests in a formu-
lation appropriate for domains that have significant intra-variable and inter-variable
temporal relationships. The resulting lag scheme model can be examined for domain
understanding. The inclusion of lagged features in the model captures temporal rela-
tionships among features and improves the predictions. This method also contributes
in facilitating domain understanding: by examining the relative performance of can-
didate lag schemes, domain knowledge can be extracted: the significance of individual
features can be determined by observing their presence in the lag scheme.
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