
CSci 5511 Spring 2009

2nd Midterm Exam Key

Wednesday April 15

75 minutes == 75 points

Open book and notes - no computer

1. 15 points - The game of nim is played as follows. There is a stack of 5 pennies. Two

players alternate removing 1, 2, or 3 pennies from the stack. The player who picks up

the last penny loses. Show by drawing the game graph that the player who plays the

second move can always win. 5
2 3 4

1
p 1l o s e s

2 1 3 2
R = 3 R = 2 R = 1

1
p 1l o s e sp 1l o s e s

R = 1 R = 1 R = 2 R = 1 R = 2 R = 3
p 1 ' s m o v ep 2 ' s m o v e

p 1 ' s m o v e

In the above graph, the states are represented by the number of pennies left in the
stack. With his first move, the player with the second turn (p2) can choose to force
the player going first (p1) into taking the last penny (i.e., always choose to remove a
number R of pennies to leave only one for the first player’s second turn.) p2 can do
this regardless of the number of pennies p1 removes in his first move.

2. 15 points

(a) Represent the following set of facts in a semantic network:

Apes and monkeys are primates.

All primates eat fruits.

Chimpanzees are apes.

Baboons are monkeys.

1

Chimpanzees eat insects.

Bananas are fruits.

Termites are insects.

P r i m a t e s
A p e sM o n k e y s

B a b o o n s C h i m p a n z e e s
I n s e c t s

B a n a n a s
F r u i t s

T e r m i t e s

S u b s e t O f S u b s e t O f S u b s e t O f S u b s e t O f
S u b s e t O f S u b s e t O f

E a t E a t

(b) What procedure could you use to answer the following kind of question: “Does A

eat B?”. Describe it informally in terms of how the arcs in the networks will be

traversed.

Here, we want to employ a sort of bidirectional graph search. Start from the most
specialized object “A” (e.g., Chimpanzees or Baboons). Check if it has a property
“eats”. If it has this property check if “A” eats “B”. If not, move up to the next
set in the inheritance tree, and check for the “eats” property. For example, if we
started from “Baboon”, we’d next check “Monkeys”. Continue this until either
a superset containing “A” has the property “eats” with relation to “B” or all of
the sets “A” inherits from are traversed. Note that doing this will only take us as
far as “eats fruit”. When we start with “A”, we also need to start with “B” and
similar to a bidirectional search, we need to move up the hierarchy to see if the
path from “A” and from “B” intersect. Alternatively, once we find the property
“eats”, we have to go down the tree to see if “B” is in that tree. For instance
“Bananas” is a subclass of fruit, so when we find “eats fruit”, we have to see if
“B” is a subclass of “Fruit”

(c) Answer the following questions and explain briefly your reasoning:

Does a baboon eat bananas?

Yes. “Baboon” inherits from “Monkeys” which inherits from “Primates” which
eat “Fruits”. “Bananas” are a subset of “Fruits”

Does a baboon eat termites?

No. “Baboons” inherit nothing from “Chimpanzees”, which are the only subset
of “Primates” on the network that eat termites.

2

3. 15 points - All people who are not poor and are smart are happy. Those people who

read are smart. John can read and is not poor. Happy people have exciting lives. Can

anyone be found with an exciting life?

(a) Write the sentences in predicate calculus, using appropriate predicates.

i. ∀x¬Poor(x) ∧ Smart(x) ⇒ Happy(x)

ii. ∀xReads(x) ⇒ Smart(x)

iii. Reads(John) ∧ ¬Poor(John)

iv. ∀xHappy(x) ⇒ HasExcitingLife(x)

v. ∃xHasExcitingLife(x)

(b) Convert them to Conjunctive Normal Form.

i. Poor(x) ∨ ¬Smart(x) ∨ Happy(x)

ii. ¬Reads(y) ∨ Smart(y)

iii. Reads(John)

iv. ¬Poor(John)

v. ¬Happy(z) ∨ HasExcitingLife(z)

vi. HasExcitingLife(S)

(c) Who has an exciting life? Answer by using resolution with refutation.

First, we’re trying to prove that someone has an exciting life, ∃xHasExcitingLife(x).
We negate, convert to CNF, and add it to the KB. This becomes ¬HasExcitingLife(w).
Since we are trying to answer a question, we can use an answer literal. We take a
literal, like Answer(personWithExcitingLife), and add it to the negated goal via
disjunction. So our negated goal becomes: ¬HasExcitingLife(w)∨Answer(w).
Now, this resolution process generates an answer whenever a clause is produced
containing only a single answer literal. Thus, our KB is:

i. Poor(x) ∨ ¬Smart(x) ∨ Happy(x)

ii. ¬Reads(y) ∨ Smart(y)

iii. Reads(John)

iv. ¬Poor(John)

v. ¬Happy(z) ∨ HasExcitingLife(z)

vi. ¬HasExcitingLife(w) ∨ Answer(w)
We then apply resolution to arrive at a single answer literal (Answer(???)).

vii. ¬Smart(John) ∨ Happy(John) (i,iv) {x/John}

viii. Smart(John) (ii,iii) {y/John}

ix. Happy(John) (vii,viii)

x. HasExcitingLife(John) (v,ix) {z/John}

xi. Answer(John) (vi,x) {w/John}

3

4. 15 points - Write the following sentences in predicate calculus, using appropriate

predicates:

(a) All big houses are expensive.

∀x[House(x) ∧ Big(x)] ⇒ Expensive(x)

(b) A house is prestigious only if it is big.

∀x[House(x) ∧ Prestigious(x)] ⇒ Big(x)

Note that “p only if q” gets translated as p ⇒ q, and that “only if” is not the
same as “if and only if”.

(c) Any small apartment costs less than any big house.

∀x, y[Apartment(x) ∧ House(y) ∧ Small(x) ∧ Big(y)] ⇒ Cost(x) < Cost(y)

(d) There is a house which is bigger than any apartment.

∃h∀aHouse(h) ∧ Apartment(a) ⇒ Size(h) > Size(a)

(e) All apartments have at least one bathroom.

∀aApartment(a) ⇒ ∃bBathroom(b) ∧ In(b, a)

(f) There is only one red house.

∃hHouse(h) ∧ Red(h) ∧ ∀xHouse(x) ∧ Red(x) ⇒ x = y

5. 15 points - Answer the following questions briefly but precisely. Justify your answers.

(a) Suppose you use resolution to prove that KB |= α. Does is mean that α is valid?

A valid sentence is one that is true in all models. If KB |= α, then we know that
α is true in all models for which the KB is true. However, this does not include
all models, so no, this does not mean that α is valid.

(b) Is it true that in first-order logic, if a sentence is entailed, it can always be proven

using resolution with refutation?

Yes. This is because resolution is refutation-complete, meaning that if a set of sen-
tences is unsatisfiable, then resoluton will always be able to derive a contradiction.
That is, if KB |= α, then KB ∧ ¬α can always be resolved to NIL.

(c) Is it true that it is always possible to prove that a sentence in propositional logic

is entailed or not entailed by a knowledge base? Is this also true if the sentence

is in predicate calculus?

Because resolution is refutation-complete (as noted in the last question), we can
always prove entailment of a sentence. The question is if we can disprove entail-
ment.

In propositional logic, we can do this. This is because propositonal logic is de-
cidable. This means, with propositional logic, we can always decide if a given
sentence has membership (or not) with a valid set of sentences in the KB.

However, in first-order logic, we can’t do this. This is because first-order logic
is semidecidable. We can only decide if a sentence is entailed, but not if it isn’t
entailed.

4

