
CSci 5511 2nd Midterm Fall 2008 CSci 5511 Fall 2008 1

Answer key for 2nd Midterm Exam

Tuesday November 18
75 minutes == 75 points

1. 15 points
Show the backed-up values for all the nodes in the following game tree
and show the branches that are pruned by alpha-beta. For each branch
pruned, explain briefly why alpha-beta prunes it. Follow the convention
used in the textbook to examine the branches in the tree from left to
right.

Above shows the backed up values for each node that is examined. No
value is shown for nodes that were pruned since we did not need to
look at those nodes.

Upward pointing nodes are the results of your actions where, presum-
ably, you picked the best (highest valued) option available to you.
Downward pointing nodes are the results of actions made by your op-
ponent who, presumably, picked the option that was best for him (and,
consequently, worst for you). So the up nodes should show the largest
number directly under it and the down nodes should show the smallest
value directly below it.

There were three branches that were pruned, marked A, B and C.

A is pruned because 3 is less than 5. This is worth explaining in more
detail. The leftmost max node at level three has two choices, 5 and 3.
Given these two choices, Max will pick 5. We did not look at the node
on level five below cut-point A. Why?

Consider two examples. If that node was 1, that’s even smaller so Min
would have picked it instead of 3. But it doesn’t matter to us - we
already know one of our options is 5 so anything less than that isn’t
worth thinking about. So if the node we didn’t evaluate is less than 3,
it doesn’t change our decision because we’ll pick the 5.

On the other hand, suppose the value in the pruned node is 10. That’s
a lot better than the 5 we currently have. But it doesn’t matter - Min
gets to pick first and would have to pick between 3 and 10, so they’ll
pick 3. Meaning our choice would just be between 3 and 5, of which
we’d pick 5. So if the node we didn’t evaluate is greater than 3, it
doesn’t change our decision because Min will pick 2.

The second prune point is at B, right below level three. This is Max’s
choice. Max can either pick 8 or whatever is in the branch we pruned.
If the number is less than 8, we won’t pick it. If it’s higher than 8 (say,
11), we’ll pick it but it won’t matter because that would make Min’s
choice at level 2 between 5 and 11, and they’ll pick 5. So if it’s less
than 8, it won’t change the value at level two, and it’s more, it still
won’t change it.

The reasoning for prune point C is the same. Min already has 8 as its
first option. Its second option is either 9 or what’s in the branch we
pruned. If it’s less than 9, we won’t pick it, if it’s more, Min will choose
8. So it doesn’t matter what the values in the pruned branch are, the
value at level two will be 8.

2. 10 points

(a) What CSP algorithm would you use when given an incremental
formulation of a CSP problem? justify briefly your choice.

Depth-First Search with Backtracking and using a heuristics such
as the Minimum Remaining Values (MRV). The MRV heuristics
tends to make the algorithm to fail soon, so it can backtrack sooner
and can select the next variable without needing a complete state
formulation the way min-conflict does.

Note that this question specifically asked for a CSP algorithm. A
few people said you could use any search algorithm, which is true,
but that’s not what the question asked for.

This question also asked you to justify your answers. A large
number of people did not. Several asserted that they should use

1



depth-first search with backtracking. Why? In earlier classes, we
said that DFS was often considered one of the worst search al-
gorithms, so why use it here? Why not use breadth-first search
or A*? There is a reason but you needed to explain it. DFS
works well due to certain properties of a CSP (i.e., guaranteed
depth limit) but no better than any other algorithm (and poten-
tially worse) unless you use a good CSP-oriented heuristic (namely
MRV).

(b) Why is a complete-state formulation a good choice for CSP when
using local search? explain briefly.

The complete state formulation is required for local search al-
gorithms such as hill climbing, simulated annealing, and genetic
algorithms. These algorithms explore (often randomly) the state
space and thus need the entire state description to be available.
This is true in the complete state formulation but not in the in-
cremental formulation.

You use complete-state formulations because local search algo-
rithms (hill climbing, simulated annealing, beam search, genetic
algorithms, etc.) won’t work otherwise. These algorithms explore
the state space (often randomly and with doubling back) and thus
need the entire state description to be available. This is true in
the complete state formulation but not in the incremental formu-
lation.

A few people gave the answer that complete-state formulations
let you use the min-conflicts heuristic but did not explain why.
To know how many constraints have been violated, you need as-
signments for every variable, which is only true for complete-state
formulations. Note that this doesn’t actually answer why it is
good for local search problems - you’d still need to say that the
min-conflicts heuristic has been shown to work well on many CSPs.

Many people answered a different question, why would you want
to use local search algorithms. This was not the question asked.
Local search algorithms can solve n-queen problems quickly and
can do online learning with solution patching but these are not
reasons why local search algorithms want complete-state formula-
tions.

3. 5 points
Show the results of applying the unification algorithm to the following
expressions:

(a) UNIFY[p(x, f(u,x)), p(f(y,A), f(z,f(B,z))]

2



x/f(y,A), u/z, y/B, z/A

(b) UNIFY [p(g(A), h(u,v)), p(g(w), h(w,B))]

w/A, u/A, v/B

4. 5 points

Convert to Conjunctive Normal Form the following expression:

∀p[pet(p) ∧ ∃c[owner(c, p) ∨ feeds(c, p)]] ⇒ happy(p)

(a) implication elimination:

∀p¬[pet(p) ∧ ∃c[owner(c, p) ∨ feeds(c, p)]] ∨ happy(p)

(b) de Morgan:

∀p¬pet(p) ∨ ∀c¬[owner(c, p) ∨ feeds(c, p)] ∨ happy(p)

(c) de Morgan:

∀p¬pet(p) ∨ ∀c[¬owner(c, p) ∧ ¬feeds(c, p)] ∨ happy(p)

(d) remove ∀
¬pet(p) ∨ [¬owner(c, p) ∧ ¬feeds(c, p)] ∨ happy(p)

(e) regroup/move terms around

¬pet(p) ∨ happy(p) ∨ [¬owner(c, p) ∧ ¬feeds(c, p)]

(f) distributivity of ∨
(¬pet(p)∨happy(p)∨¬owner(c, p))∧(¬pet(p)∨happy(p)∨−feeds(c, p))

(g) drop ∧
(¬pet(p) ∨ happy(p) ∨ ¬owner(c, p))

(¬pet(p) ∨ happy(p) ∨ −feeds(c, p))

The purpose of this question was to see if you could remove the
conjunctions (∧) from the statement. Many people simply re-
moved the implication and stopped. Some of those people would
have gotten the answer had they continued working on it, some
would not because they had their parentheses in the wrong place
(in terms of logical errors, dropping the parentheses too early was
the main problem).

A few people got all the way to the next-to-last step and then left
the statement as two CNF statements joined by a conjunction.
This is not CNF form and cannot be used in resolution. The
statement needs to be broken into two statements.

5. 20 points

3



(a) Write the following statements in predicate calculus, using the
following predicates:

Alone(x) : x is alone
Friend(x,y) : x is a friend of y
Grumpy(x) : x is grumpy
Helpful(x,y) : x is helpful to y
Sibling(x,y) : x is a sibling of y

i. Anyone who has any sibling is not alone.
∀x∀y sibling(x, y) ⇒ ¬alone(x)

ii. If someone is grumpy, nobody is helpful to him.
∀w grumpy(w) ⇒ ¬∃r helpful(w, r)

or, equivalenty,
∀w∀r grumpy(w) ⇒ ¬helpful(w, r)

iii. Friends are helpful.
∀x∀y friend(x, y) ⇒ helpful(x, y)

iv. John has a sibling or a friend.
∃f sibling(John, f) ∨ friend(John, f)

(b) Convert them to conjunctive normal form.

i. ¬sibling(z, y) ∨ ¬alone(z)

ii. ¬grumpy(w) ∨ ¬helpful(w, r)

iii. ¬friend(x, y) ∨ helpful(x, y)

iv. sibling(John, S0) ∨ friend(John, S0)

(c) Prove by resolution that “If John is grumpy, John is not alone.”

grumpy(John) ⇒ ¬alone(John)

We negate it and add to the KB

¬[¬grumpy(John) ∨ ¬alone(John)]

which produces

5. grumpy(John)

6. alone(John)

We then do resolution:

4



5. with 2. {w/John} to obtain 7. ¬helpful(John, r)
7. with 3. {x/John} to obtain 8. ¬friend(John, y)
8. with 4. {y/S0} to obtain 9. sibling(John, S0)
9. with 1. {John/z, S0/y} to obtain 10. ¬alone(John)
10. with 6. to obtain NIL

6. 20 points
For each of the following sentences, decide if the logic sentence given
is a correct translation of the English sentence or not. If not explain
briefly why not and correct it. There can be more than one mistake in
each expression.

(a) There is only one red mushroom.

∃x mushroom(x)∧ red(x)∧¬ [∃y mushroom(y)∧ red(y)∧x = y]

Error: It should be ¬x = y

(b) Any red mushroom costs less than any purple mushroom.

∀x [mushroom(x) ∧ red(x)] ⇒ [∃y mushroom(y) ∧ purple(y) ∧
cost(x) < cost(y)]

Error: y should be universally quantified

(c) Some purple mushrooms are tastier than some red mushrooms.

∃x∀y [mushroom(x)∧purple(x)∧mushroom(y)∧red(y)] ⇒ tastier(x, y)

Error: instead of ∀y it should be ∃y. Also ⇒ should be wedge
instead.

(d) There is a mushroom that is tastier than any other mushroom.

∀x∃y [mushroom(x) ∧mushroom(y)] ⇒ tastier(y, x)]

Error: ∃y should be outside ∀x. mushroom(y) should be outside
the premise.

(e) All mushrooms contain at least one vitamin.

∀x [mushroom(x) ∧ ∃y vitamin(y)] ⇒ in(x, y)

Error: instead of ∧ it should be ⇒ and instead of ⇒ it should be
∧

5


