1st Midterm Exam
Tuesday February 24
75 minutes == 75 points
open book and notes

1. 15 points
You are given the following graph, where each node has an identifier (a letter) and an \(h \) value. A number along an arc indicates the cost of the arc.

```
A
  ^
  |  10
  |   
  v   
B \( h=12 \)  ---  C \( h=6 \)
  |        |  6
  |        v
E \( h=1 \)  ---  D \( h=1 \)
  | 20
  |   
  v   
G \( h=0 \)
```

1. Show in what order A* expands nodes from Start to G. G is the goal node. For each node expanded during the search show its \(f \) and \(g \) values. If a node is reached on multiple paths show its \(f \) and \(g \) values each time the node is reached, and indicate its parent node.

2. What is the solution path found?

3. Is the \(h \) function admissible? is it consistent? Justify your answer.

2. 15 points
Suppose you decide to do best-first search using the following evaluation function \(f(n) = (1 - w)g(n) + wh(n) \).

1. Assuming that \(h(n) \) is admissible, what are the values of \(w \) that guarantee the algorithm will find an optimal solution? Justify your answer.

2. Is there a range of values of \(w \) which guarantees that the algorithm using the evaluation function \(f \) is admissible? If yes, what is the range? Justify your answer.

Turn to the next page for more questions
3. **15 points**

Suppose you have two admissible heuristics, h_1 and h_2. You decide to create the following new heuristic functions defined as follows:

\[
 h_3(n) = \max(h_1(n), h_2(n))
\]

\[
 h_4(n) = \max(h_1(n), 1.1 \times h_2(n))
\]

\[
 h_5(n) = \min(h_1(n), 3 \times h_2(n))
\]

\[
 h_6(n) = \frac{h_1(n) + h_2(n)}{2}
\]

For each of the new heuristics specify if it is admissible or not. Justify your answer. Would you use any of these heuristics instead of using h_1 or h_2?

4. **15 points**

Answer these questions briefly but precisely.

1. Would Hill-Climbing be appropriate for the Missionaries and Cannibals Problem? Why (or why not?).

2. Is it possible for Iterative Deepening Depth-First Search to do worse than Depth-First? Explain your reasoning.

3. Explain briefly when you would use LRTA* instead of Online-DFS.

5. **10 points**

Write a function, `remove-adj-dup`, to remove all adjacent duplicate elements in a list. It should work like this:

(\texttt{(remove-adj-duplicates '(a b b c b d d d))})

(\texttt{(a b c b d)})

6. **5 points**

Write a function, `add--numbers`, to add all the values in an association list that are numbers. It should work like this:

(\texttt{(add-all-numbers '(((color red) (weight 3) (type apple) (id 120452)))}}

120455

You reached the end of the exam