A New Approach to Stateless Model Checking of LTL Properties

Elaheh Ghassabani
School of Computer Engineering
Iran University of Science and Technology
Tehran, Iran
ghasabani@comp.iust.ac.ir

Mohammad Abdollahi Azgomi*
School of Computer Engineering
Iran University of Science and Technology
Tehran, Iran
azgomi@iust.ac.ir

Abstract

Stateless model checking is an appropriate model checking technique for software verification. Existing stateless model checkers do not support the verification of linear temporal logic (LTL) because the existing algorithms of verifying LTL formulae are state-based, while stateless model checkers do not store any program states. This paper proposes a novel approach to stateless model checking of LTL formulae, based on the Actor formalism. Instead of translating an LTL formula into a Buechi automaton, which is the standard approach in model checking, the formula is translated into a set of actors that communicate with one another as well as with the main engine that explores the state space. As state space explosion is one of the main obstacles in practical applications of model checking, having such techniques that do not rely on recording of the visited states, can be a solution to this problem. We have modeled the proposed method using Rebeca, which is an actor-based modeling language with a formal foundation. The whole Rebeca model is translated into the Promela modeling language. Then, the models are verified using model checkers RMC and Spin. The proposed method modeled in Rebeca, the verification results, and an illustrative example are also presented in this paper.

Keywords: Software verification, stateless model checking, linear temporal logic (LTL), Actor model.

1. Introduction

In recent years, it has become more prevalent to develop concurrent programs in order to utilize the computational power of parallel or multi-core processors. Even by using conventional methods of testing, such as various forms of stress and random testing, it is still difficult to detect all concurrency errors in a program [1]. Model checking [2, 3] is a promising method for detecting and debugging concurrency errors [1, 3, 4]. However, traditional model checkers are not appropriate to verify code written in general purpose programming languages because they make users (manually) model their target systems. Therefore, the validity of verification results relies on the constructed model. For this reason, it is essential that the input model conform to the target code. However, modeling is a demanding task that needs special expertise and knowledge [5]. A solution to this problem, useful for real-world software, is to have a tool that verifies program code instead of the
program model specified in a formal modeling language. Such tools are called code model checkers.

From one point of view, code model checking can be classified into two categories: (1) stateful model checking, and (2) stateless model checking. Although stateful techniques are ideally suited to verify sequential programs, they usually run into the state space explosion problem verifying parallel programs. Owing to saving (all) the state space, the rise in the concurrency level may result in more complexity as well as the exponentially growth of the state space. In such situations, stateless model checking can be useful. Stateless model checking is especially appropriate to explore the state space of large and complicated programs because accurate capturing and controlling all the needed states of a large program could be a hard, or even impossible, task [1, 6, 7]. Global variables, heap, thread stacks, and register contexts are all part of the program state. Even if all the program states could be captured and controlled, processing such large states would be very expensive [8, 9].

The notion of stateless model checking was proposed in [10] by Godefroid simultaneously with the appearance of code model checking. A stateless model checker explores the program state space without capturing program states. The program is concretely executed, and its state space is systematically explored. Therefore, all execution paths of the program generating by nondeterministic choices are covered [1, 11].

In this paper, we refer some model checking techniques as conventional. Needless to say, conventional model checkers are tools that apply such techniques. Generally speaking, model-based model checkers (e.g. Spin [12]) as well as stateful (or state-based) ones, such as GMC [13] and Spin [12], are known as conventional model checkers. Obviously, a stateful code model checker, such as GMC [13] and MOPS [14, 15], falls into the category of the conventional tools. Using a conventional model checker, users can formally specify their system properties. Most of these tools often support linear temporal logic (LTL) [16] for this purpose. On the downside, such tools face state space explosion verifying LTL in large programs.

We stated that stateless model checkers do not suffer from state space explosion owing to their stateless nature. However, as far as we know, existing stateless (code) model checkers do not support verifying LTL formulae because existing LTL checking algorithms are state-based. This paper proposes a new Actor-based method for stateless model checking of LTL formulae. Using this method, we are able to dynamically check any desired number of LTL formulae without having any concerns about state space explosion. The method is designed as an LTL verification method for a new stateless model checker called distributed stateless code model checker (DSCMC) [17, 18]. DSCMC has been developed based on the Actor model [19, 20]. This tool is suited to verify concurrent (multi-threaded) programs [17]. The proposed LTL verification method is also based on
the Actor model hence, all its internal components are independent actors running in parallel.

The remainder of this paper is organized as follows. Section 2 gives the formal background required for this paper. Section 3 covers related work. Section 4 describes the proposed method for verifying LTL formulae. In this section, we model our method using Rebeca modeling language, specify the properties of the model in LTL, and then describe the verification process and results. Section 5 gives an example to illustrate the proposed method. Section 6 briefly discusses the implementation issues. Finally, Section 7 mentions some concluding remarks.

2. Preliminaries

This section presents the formal background of this paper. The first subsection states required formal definitions. The next subsection is a brief introduction to the semantics of LTL. Finally, the last subsection briefly introduces the Actor model [20] as well as Rebeca modeling language [21] used in order to model actors’ interactions.

2.1. Program model

Transition systems are often used in computer science as models to describe the behavior of systems. They are directed graphs where nodes represent states and edges model transitions, i.e. state changes. A state describes some information about a system at a certain moment of its behavior. A state of a sequential computer program indicates the current values of all program variables together with the current value of the program counter that indicates the next program statement to be executed [3]. We use transition systems with atomic propositions for the states. Atomic propositions (APs) intuitively express simple known facts about the states of the system under consideration [3].

Definition 1. Transition system. A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where S is a set of states, Act is a set of actions, $\rightarrow \subseteq S \times Act \times S$ is a transition relation, $I \subseteq S$ is a set of initial states, AP is a set of atomic proposition, and $L : S \rightarrow 2^{AP}$ is a labeling function [3].

Here, 2^{AP} denotes the power set of AP. For convenience, we write $s \overset{\alpha}{\rightarrow} s'$ instead of $(s, \alpha, s') \in \rightarrow$. The intuitive behavior of a transition system can be described as follows. The transition system starts in some initial state $s_0 \in I$ and evolves according to the transition relation \rightarrow. That is, if s is the current state then a transition $s \overset{\alpha}{\rightarrow} s'$ originating from s is selected nondeterministically and taken, i.e. the action α is performed and the transition system evolves from state s into the state s'. This selection procedure is repeated in state s and finishes once a state is encountered that has no outgoing transitions [3].

For a sequential program, a program graph (PG) over a set of typed variables is a digraph whose
edges are labeled with conditions on these variables and actions. Intuitively, a program graph is like the program control flow graph (CFG), where executing an instruction changes the program state. Needless to say, each sequential program has a program graph, which can be interpreted as a transition system [3]. After interpretation, states of the transition system are pairs of the form \((l, \eta)\) where \(l\) is a program location and \(\eta\) denotes values of all the program variables in location \(l\) [3]. Here, there is no need to state the formal definition and transition system semantics of a program graph (i.e. the definitions of \(PG\) and \(TS(PG)\)); for more information, please see [3].

In a computer program, \(APs\) can be defined on the program variables. These are known facts expressed in the form of the *simple conditions*. For example, in a program that has two boolean variables \(a\) and \(b\), \(APs\) for states can be defined as different combination of simple conditions on these variables; e.g. \(s_i\) might have \(APs\) like “\(a == true\)”, “\(b == false\)”, etc.

A concurrent system is composed of a finite set of threads or processes, whose state space is defined by using dynamic semantics in the style of transition systems. Each process executes a sequence of statements in a deterministic sequential programming language, such as C, C++ or Java. Threads are a particular type of processes that share the same heap [22]. A multithreaded program can be modeled as a concurrent system, which consists of a finite set of threads, and a set of shared objects. Threads communicate with one another only through shared objects [23].

The transition system of a multithreaded program with \(n\) threads running in concurrent is defined as \(TS(PG_1 || PG_2 || \ldots || PG_n)\) where \(PG_i\) is the program graph of \(i^{th}\) thread and || denotes the interleaving operator. Interleaving means the nondeterministic choice between activities of the simultaneously acting threads. For the sake of simplicity, we do not mention the formal definition of interleaving of program graphs. For a precise definition, please see [3].

Definition 2. Path [3]. Let \(\pi = s_0 s_1 s_2 \ldots\) be an infinite path of transition system \(TS\), where \(s_i\) is a state of the transition system. A path is formed from a sequence of actions. Thus, \(\pi\) is formed from the execution of actions \(a_j\) for \(j = 0, 1, 2, \ldots\) such that \(s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \ldots\).

Definition 3. A path of \(s\) is a path started from \(s\). \(Paths(s)\) is called the set of all the paths of \(s\). \(Paths(TS)\) is a set of all the paths in \(TS\) [3].

2.1.1. Stateless model checking
A stateless model checker explores the state space of a program without capturing any program states. The program is executed under the control of a special scheduler, which systematically enumerates all execution paths of the program obtained by the nondeterministic choices. In other words, the scheduler controls the nondeterministic execution of threads [1, 7, 11]. Obviously, this
method is a kind of code model checking which is execution-based [24].

In this paper, we also follow the Godefroid’s method [7]. As this method is applied to the source code level, it is very similar to software testing. In fact, it is a systematic testing method. A stateless model checker systematically explores all possible interleavings of threads in the program under specific input for that program. Intuitively, a stateless model checker explores the state space of a program by concretely and continuously re-executing the program such that the model checker generates a different thread scheduling scenario for each execution. [25].

As a stateless model checker concretely executes programs, it can be a time-intensive process to verify a program. For this reason, the existing stateless model checkers explore the program state space from a fixed initial state (i.e. from fixed program input) as if set \(I \) had only one member. However, It is worth mentioning that even by taking this approach, they can find many concurrency errors in large programs, which are impossible to detect using conventional model checking [1, 22, 23, 26, 27]. When a program is executed, the execution is equal to a path of its state space (i.e. a path of \(TS(PG) \)). It should be pointed out that the process of stateless model checking is composed of finite iterations. Each iteration is equivalent to the execution of program \(P \) under the control of the model checker scheduler.

Definition 4. Each execution of program \(P \) (i.e. each iteration of stateless model checking for \(P \)) is a path in the transition system of the program graph of \(P \) (i.e. a path in \(TS(PG_P) \)). Hereafter, we define some notations:

1. \(SMC(P, s_0) \) is a function of stateless model checking (i.e. state space exploration) for program \(P \) from the initial state \(s_0 \) such that \(SMC(P, s_0) \leftrightarrow \text{Paths}(s_0) \), where \(\leftrightarrow \) is the notation of mapping in a function, and \(\text{Paths}(s_0) \in \text{Paths}(TS(PG_P)) \).

2. \(TS = (S, Act,
\rightarrow, I, AP, L) \) is the transition system of the program graph for program \(P \) (i.e. \(TS = TS(PG_P) \)) during \(SMC(P, s_0) \), where \(s_0 \in I \).

3. \(i_{j,s_0} \) denotes \(j^{th} \) iteration of the stateless model checking process (SMC), which denotes the process is started from \(s_0 \in I \).

4. \(i_{j,s_0} \leftrightarrow \pi_j, \pi_j \in \text{Paths}(s_0), \text{Paths}(s_0) \in \text{Paths}(TS(PG_P)) \).

2.1.2. Fair stateless model checking

In this paper, we take the approach proposed by Musuvathi and Qadeer [1] as fair stateless model checking. In this method, it is unexpected for a program not to terminate under a fair schedule. In other words, non-termination under fair scheduling is potentially an error [1]. Our method is also applicable to programs that are expected to terminate under all fair schedules. However, these
programs may not terminate under unfair schedules. Such programs are called fair-terminating [1].

The concept of fair-terminating programs is based on the observation of the test harnesses for real-world concurrent programs. Practically speaking, concurrent programs are combined with a suitable test harness that makes them fair-terminating when it comes to testing. By doing so, every thread in the program is eventually given a chance by the fair scheduler to make progress, which guarantees the (correct) program as a whole can make progress towards the end of the test. Such a test harness can be created even for systems such as cache-coherence protocols that are designed to “run forever”; the harness limits the number of cache requests from the external environment [1].

Therefore, our method is applicable to a fair stateless model checker that has an explicit scheduler that is (strongly) fair and at the same time sufficiently nondeterministic to guarantee full coverage of safety properties. Such fair scheduler has been implemented in the Chess model checker [1, 28, 29] as well as DSCMC [17, 18].

Definition 5. Fairness [3]. Every thread that is enabled infinitely often gets its turn infinitely often.

It should be noted that stateless model checkers expect the program under test to eventually terminate. In other words, practically, it is not possible for a stateless model checker to identify or generate an infinite execution. They have some mechanism to deal with non-terminating programs [1, 10, 25, 26, 28]. For example, they may ask the user to set a large bound on the execution depth. This bound can be orders of magnitude greater than the maximum number of steps the user expects the program to execute. The model checker stops if an execution exceeds the bound, and reports a warning to the user. The user can examine this execution to see whether it actually indicates an error. In the rare case it is not, the user simply increases the bound and runs the model checker again [1].

Above all, the stateless model checkers that do not apply the fair stateless model checking method, like Inspect [25, 30], are unable to properly verify the nonterminating programs that are fair-terminating. This is because they cannot detect existing cycles in the state space [1, 10, 25].

2.1.3. Program states

In a multi-threaded program containing a finite set of threads and a set of shared objects, threads communicate with each other only through shared objects. Operations on shared objects are called visible operations, while the rest are invisible operations. A state of a multi-threaded program contains the global state of all shared objects and the local state of each thread. In a multi-threaded program, a visible operation performed by a thread is considered as a transition that advances the program from one global state to a subsequent global state. Such a transition is followed by a finite sequence of invisible operations of the same thread, ending just before the next visible operation of
that thread [22, 23].

To avoid exploring redundant interleavings, stateless model checkers should use dynamic partial order reduction (DPOR) [22] because the number of possible interleavings grows exponentially as the program is getting large. Partial order reduction algorithms only explore a proper subset of the enabled transitions at a given state s such that it is guaranteed to preserve the interested properties. DPOR dynamically tracks threads interactions to identify points where alternative paths in the state space need to be explored [22, 25].

To perform DPOR, a stateless model checker explores the program state space by concretely executing the program and observing its visible operations. It considers consecutive invisible operations with only one visible operation as a single operation [11, 17]. In this paper, we use the notion of code partitioning. Stateless model checkers are expected to apply some mechanisms for detecting global transitions. Therefore, we refer such mechanisms to partitioning, whereby code is divided into several global locations. In fact, the model checker interleaves threads according to these locations.

Each partition of the code (each location) starts with a visible operation, and ends just before the next visible operation. When a thread is scheduled, if it can progress, it continues executing until the end of its current location. After reaching the end of a location, it yields the processor to the model checker. If the thread holding the processor cannot progress, the scheduler should choose another thread. It goes without saying that this event may occur at the beginning of a location because only the first command of each location can be a waiting function call (a visible operation). Therefore, when it comes to LTL checking, we use the described definition for a state.

2.2. Linear temporal logic (LTL)

This subsection is a brief introduction to (propositional) linear temporal logic [16], a logical formalism that is appropriate for specifying linear-time (LT) properties [3]. LTL is called linear because the qualitative notion of time is path-based and viewed to be linear: at each moment of time there is only one possible successor state, and thus each time moment has a unique possible future. Technically speaking, this follows from the fact that the LTL formulae are path-based (i.e. they are interpreted in terms of sequences of states) [3].

Definition 6. LT Property [3]. A linear-time property (LT property) over the set of atomic propositions AP is a subset of $(2^{AP})^\omega$.

Here, $(2^{AP})^\omega$ denotes the set of words that arise from the infinite concatenation of words in 2^{AP}. An LT property is thus a language (set) of infinite words over the alphabet 2^{AP}. LTL formulae over the set AP of atomic proposition are formed according to the grammar
\[\phi ::= \text{true} \mid a \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \phi_1 \lor \phi_2 \text{ where } a \in AP. \] Here, for the trace \(\sigma = A_0 A_1 A_2 \ldots \in (2^AP)^\omega \), \(\sigma[j \ldots] = A_j A_{j+1} A_{j+2} \ldots \) is the suffix of \(\sigma \) starting in the \((j+1) \text{th} \) symbol \(A_j \) [3, 16]. The satisfaction relation (\(\models \)) is defined as follows [3, 16]:

- \(\sigma \models \text{true} \)
- \(\sigma \models a \) iff \(a \in A_0 \) (i.e. \(A_0 \models a \))
- \(\sigma \models \phi_1 \land \phi_2 \) iff \(\sigma \models \phi_1 \) and \(\sigma \models \phi_2 \)
- \(\sigma \models \neg \phi \) iff \(\sigma \not\models \phi \)
- \(\sigma \models \phi_1 \lor \phi_2 \) iff \(\exists j \geq 0. \sigma[j \ldots] \models \phi_2 \) and \(\sigma[i \ldots] \models \phi_1 \), for all \(0 \leq i < j \).

For the derived operators \(F \) (i.e. “eventually”, sometimes in the future) and \(G \) (i.e. “always”, from now on forever) the expected result is [3]:

\[F \phi \overset{\text{def}}{=} \text{true} U \phi, \quad \text{and} \quad G \phi \overset{\text{def}}{=} \neg F \neg \phi. \]

Definition 7. Semantics of LTL over paths and states [3]. Let \(TS = (S, Act, \rightarrow, I, AP, L) \) be a transition system, and \(\phi \) be an LTL-formula over \(AP \). \(TS \) satisfies \(\phi \), denoted \(TS \models \phi \), iff \(\pi \models \phi \) for all \(\pi \in \text{Paths}(TS) \).

For LTL checking, it is usually assumed that all paths and traces of a transition system are infinite. This assumption is made for the sake of simplicity; it is also possible to apply the semantics of LTL to finite paths. In other words, for LTL semantics it is irrelevant whether or not \(TS \) is finite [3]. Therefore, while stateless model checking, the fact that programs are expected to be fair-terminating makes no difference to LTL semantics.

2.3. Actor model

Actor is a model for concurrent computing to develop parallel and distributed systems. Each actor is an autonomous entity that acts asynchronously and concurrently with other actors. It can send/receive messages to/from other actors, create new actors, and update its own local state. An actor system is composed of a collection of actors, some of whom may send messages to (or receive messages from) actors outside the system [31]. An actor using a command like \(\text{send}(a, v) \) creates a new message with receiver \(a \) and contents \(v \), and then puts it to the message delivery system. This system guarantees the received message will be finally delivered to actor \(a \). It can create another actor with a command like \(\text{newadr}() \). Suchlike commands create a new actor and return its address. Each actor may have its own behaviors to process received messages. In other words, an actor’s behavior embodies the code that should be executed by the actor after receiving a message [19].

As we stated, this paper uses the Actor model to propose its new verification method, which is also implemented by using an actor language. An actor language is an extension of a functional language. Erlang [32, 33] is arguably the best known implementation of the Actor model [31]. We
are implementing the method proposed in this paper by using Erlang. In such languages, functions are used to define actors’ behaviors. That is, each actor has a behavioral functional that embodies the actor behaviors after receiving particular messages.

In this paper, we model our method using Rebeca (Reactive Object Language) [34, 35], which is an actor-based modeling language with a formal foundation [34]. Then, we use the model checking technique to verify our models. For this purpose, model checker RMC [36] is used, which is a tool for direct model checking of Rebeca models, without using back-end model checkers. Using RMC, properties should be specified based on state variables of rebecs.

Rebeca is a Java like language, which is mainly a modeling language with formal verification support and a background theory [21]. A Rebeca model consists of concurrently executing reactive objects called rebecs. In fact, rebecs are actors that communicate with each another by asynchronous message passing. Each message is put in the unbounded queue of the receiver rebec, specifying a unique method to be invoked when the message is serviced [35].

Fig. 1 illustrates the definition of a simple Rebeca class. Although in a pure actor model the queue length is unbounded, the modeler has to declare the maximum queue size in the class definition owing to model checking. This size is indicated in parenthesis next to the reactiveclass name. A class definition uses two central declarations knownrebecs and statevars. The knownrebecs entry shows the actors this rebec can communicate with. The rebecs included in the knownrebecs part of a reactive class definition are those rebecs whose message servers may be called by instances of this reactive class. The statevars defines variables used for holding the rebec state [37].

```java
reactiveclass Rebec1(5) {
    knownrebecs { Rebec2 actor2 ; }
    statevars {}
    msgsrv initial () {
        self.msg1();
    }
    msgsrv serv_msg1() {
        /* Send a message to actor2, which should be processed by
           method process_msg in reactiveclass Rebec2. This message
           contains an integer value like "7" */
        actor2.process_msg (7);
    }
    msgsrv serv_msg2 () {
        /* Handling message 2 */
    }
}
```

Fig. 1 A typical class definition in Rebeca

After these declarations, the methods that handle messages are defined like Java code. These methods are called the message servers of the reactiveclass because their task is to serve incoming messages. Each reactive class definition has a message server named initial. In the initial state,
each rebec has an initial message in its message queue, thus the first method executed by each rebec is the *initial* message server. A message server contains one or more Rebeca statements. The logical and arithmetic expressions in Rebeca are similar to Java. However, not all of the Java expressions are valid in Rebeca, and only a set of essential set of operators are included [37]. For more information about Rebeca, please see [34, 37].

The execution of rebecs in a Rebeca program takes place in a coarse grained interleaving scheme. In this manner, each rebec takes a message from the top of its queue and executes its corresponding message server. During execution, other rebecs are not allowed to be executed; i.e. the execution of a message server is atomic [37, 38].

3. Related work

As far as we know, prior to DSCMC [17, 18], there have been three stateless model checkers, namely *Inspect* [11, 30], *CHESS* [28, 29], and *VeriSoft* [7, 39]. Among these tools, *CHESS* and *Inspect* are concerned with verifying multi-threaded programs. The strengths of *Inspect* are that it is distributed, and supports POSIX threads [26, 40]. On the downside, it cannot deal with programs with cyclic state space. In comparison with *Inspect*, *CHESS* is able to detect and prune unfair cycles in the program state space so it can be used for detecting problems related to fair cycles (e.g. livelocks) [1].

Unfortunately, none of the foregoing tools support verifying LTL formulae because existing algorithms of checking LTL formulae are based on graph algorithms and need to save the transition system of a program as the graph of its state space. In other words, these algorithms are state-based so they are applicable to stateful model checking techniques. A stateless model checker does not save any program states. Therefore, it is impracticable to apply existing LTL checking algorithms to stateless model checking.

LTL checking algorithms usually follow an automata-based approach taken from [41]. In this approach, the negation of the LTL formula is translated into a *Buchi automaton* [3, 42], synchronized with the transition system of the program state space, and then the verification problem is reduced to a simple graph problem [42]. Handling of large state spaces is so difficult (or even impractical) that the state space explosion has always been a pressing and serious problem in the stateful model checking field.

In order to verify LTL formulae, stateful model checkers have to capture the state space of the program, and the number of states grows exponentially in the number of variables in the program graph: for N variables with a domain of k possible values, the number of states grows up to k^N. Even if a program only contains a few variables, the state space that must be analyzed may be very large. This exponential growth in the number of parallel components and the number of variables
leads to the enormous size of the state space of practically relevant systems. The reality is that verification problem in stateful model checking is particularly space-critical \[3\]. Nevertheless, many researches have been undertaken into this field leading the way to great achievements including some recent work in \[43-46\].

Of all the researches in this area, the work by Ganai \textit{et al.} \[46\] is more relevant to stateless model checking. Coping with state space explosion, they combined state-based and path-based (like stateless method) model checking, and then used a divide and conquer technique to explore state space. The main focus of their work is on proposing a new state exploration technique by combining state-based and path-based methods together. In other words, they also used the conventional techniques for verifying LTL formulae and did not propose a new LTL verification method (the focus of this paper).

Another work in this area was carried out by Evangelista and Kristensen \[43\]. They proposed an algorithm that is a combination of the common on-the-fly LTL model checking algorithms with sweep-line method \[47\]. Conventional on-the-fly LTL model checking is based on the exploration of a product Buchi automaton; i.e. the negation of the LTL formula to be checked is represented as a Buchi automaton, and then the product of this property automaton and the state space, viewed as a Buchi automaton, are explored using a nested depth-first traversal \[42\] in search for a cycle containing an acceptance state (an acceptance cycle). This work also has nothing to do with stateless model checking and is appropriate to the stateful techniques.

De Wulf \textit{et al.} \[44\] proposed algorithms for LTL satisfiability and model-checking. In their algorithms nondeterministic automata were not constructed from LTL formulae. They directly alternated automata using efficient exploration techniques based on anti-chains. Similar to the previous work, their method is also not suitable for stateless model checking.

In this literature, the concept of runtime verification really stands out, which checks whether a system execution satisfies or violates a given correctness property \[48\]. A procedure that on-the-fly verifies conformance of the system’s behavior to the specified property is called a monitor. Nowadays, there are a variety of formalisms to specify properties on observed behavior of computer systems including variants of temporal logic such as LTL\(_3\) and TLTL \[49\]. In addition, currently, a lot of methods have been proposed to construct monitors \[48-50\].

The main idea of runtime verification is to monitor and analyze software and hardware system executions. Although this idea is fairly analogous to the idea of stateless model checking, methods used for runtime verification are completely different. In runtime verification, monitoring is carried out as follows. Two “black boxes”, the system and its reference model, are executed in parallel and stimulated with the same input sequences; the monitor dynamically captures their output traces and tries to match them. The main problem is that a model is usually more abstract than the real system,
both in terms of functionality and timing. For this reason, trace-to-trace matching is difficult, which causes the system to generate events in different order or even miss some of them [48].

To sum up, as far as we know, any LTL verification method in the stateless model checking field has not been proposed yet; this paper presents a new LTL checking method for this field.

4. Method

This section describes a novel method for stateless model checking of LTL formulae. In this method, LTL formulae are dynamically checked during program execution without storing any program states. For this reason, it is possible to verify any number of LTL properties away with affecting on the size of the program state space and state space explosion. The method to verify LTL formulae, proposed in this section, is quite different from conventional LTL checking algorithms.

In our method, we suppose that there is a stateless model checker that runs the program under test and systematically explores its state space. This model checker should accept all possible interleavings under strong fairness [1, 3, 17]. To generate different possible interleavings, the program must be repeatedly run under the stateless model checker until all possible thread scheduling options are generated. This paper concentrates on how LTL properties can be verified using such model checkers. Our method is proposed as a unit of LTL checking, which should cooperate with the stateless model checker. This unit is an actor system, a collection of actors with a hierarchical structure. To verify (rather than systematically test) a program, we need a new definition of stateless model checking, called complete stateless model checking (CSMC).

Definition 8. CSMC. Let program P have n possible initial states, $n \geq 1$ (i.e. the set I has n members). CSMC for P, denoted $CSMC_{P,n}$, is defined as a set of stateless model checking functions: $CSMC_{P,n} = \bigcup SMC (P, s_i)$ for $i = 1, 2, ..., n$.

Corollary 1. If $I = \{s_0\}$ then $CSMC_{P,1} = SMC (P, s_0)$.

In fact, the definition of CSMC includes all the possible members of the I set, whereas SMC considers only one selected member of this set. Hereafter, for the sake of simplicity, we suppose that the initial states set, I, has only one member then according to Corollary 1, $CSMC_{P,1} = SMC (P, s_0)$. Therefore, Theorem 1 is stated based on this premise, but it can easily be extended to a program with any number of initial states. LTL formulae are considered based on paths of a transition system. In our method the whole process of checking LTL is performed through different program executions.
Theorem 1. Program P satisfies LTL property ϕ iff ϕ is held by all iterations of stateless model checking:

$$TS \left(PG_p \right) \models \phi \text{ iff } i_{j,s_0} \models \phi, \forall i_{j,s_0} \in SMC \left(P, s_0 \right)$$

PROOF.

1. During $SMC(P, s_0)$, according to Definitions 3 and 4: $i_{j,s_0} \leftrightarrow \pi_p, \pi_j \in Paths(s_0)$.

Paths($s_0)$ $\in Paths(TS(PG_p))$. As a result, π_j is obtained from i_{j,s_0}.

2. From Definition 8: $TS(PG_p) \models \phi$, iff $\pi \models \phi$ for all $\pi \in Paths(TS)$.

3. Based on Corollary 1, $CSMC_{P,1} = SMC \left(P, s_0 \right)$; consequently $Paths(TS) = Paths(s_0)$.

4. According to 2 and 3: $TS(PG_p) \models \phi$, iff $\pi \models \phi$ for all $\pi \in Paths(s_0)$.

In consequence of 1 and 4,

$$TS \left(PG_p \right) \models \phi \text{ iff } i_{j,s_0} \models \phi, \forall i_{j,s_0} \in SMC \left(P, s_0 \right) \quad \square$$

Intuitively, if an LTL property is violated in one program execution, it means that the property has been violated in one path of $TS(PG_p)$; consequently, the program does not satisfy this property. In the same way, if an LTL property is held by all iterations of stateless model checking then the property is satisfied by all paths of $TS(PG_p)$; consequently, the program satisfies the property.

We use this theorem as a basis for LTL checking in stateless model checking. It shows the feasibility of applying LTL checking to this field. But, the major need in this regard is to have an LTL checking method that can work with the stateless nature of the model checker. The remainder of this section proposes such method to solve this problem.

4.1. An actor system for LTL checking

In light of the grammar of LTL formulae [3], terminals in this grammar are atomic propositions (i.e. $a \in AP$) [3]. As we mentioned in Section 2, an atomic proposition is a simple condition defined on program variables (e.g. $a > 0$, $b = 0$, $c != d$, etc.). Therefore, every LTL formula ends in simple conditions. The result of a simple condition is always either true or false. We use this fact for designing the unit of LTL checking.

Now, let us introduce the idea of the method with a simple example. Suppose you specify an LTL property as "$(\neg ((a > 0) \land (b = 1))) \mathbf{U} (c = 0))$" where a, b, and c are integer variables in the program. The parse tree for this property is shown in Fig. 2. All LTL properties, like this property, are evaluated from leaves towards the root of the parse tree; i.e. in this example, first, operator and (\land) should be evaluated, next, the not operator (\neg), and then operator until (\mathbf{U}) can be evaluated. We exploit this fact in our method; as it can be seen, leaves of a parse tree are simple conditions (or
APs) while both of its root and intermediate nodes are LTL operators.

![Fig. 2](image)

Fig. 2 The parse tree of $\neg((a > 0) \land (b = 1)) \lor (c = 0))$

To check an LTL formula by our method, first a property is parsed, next an actor whose behavior corresponds to the root operator is created, and then existing sub-trees of the root are sent to the behavioral function of this actor as its arguments; e.g. in the above example, an actor who behaves corresponding to operator U is created and two sub-trees are sent to its behavioral function as its input arguments. Thereafter, this actor also makes the parse tree for each input argument (i.e. each sub-tree). In the same way, an actor for the root operator of each sub-tree is created and related sub-trees are sent to them. This process is continued by new actors until reaching the leaves; e.g., in this example, the actor with $until$ behavior creates another actor with not behavior, and then the created actor creates a new actor with and behavior. When this new actor reaches a leaf (i.e. a simple condition) after parsing one of its arguments, it should create a new actor that checks a simple condition (we call such actors condition checkers). The intermediate nodes of the primary parse tree are called workers that are actors that behave corresponding to LTL operators. This hierarchical structure described here is shown in Fig. 3 (a). There are two other kinds of actor in this hierarchy, property checker and master, which are described below.

In this paper, we suppose the existence of a mechanism in the model checker so that condition checkers are be able to monitor the state of the intended APs. At the implementation level, the model checker can think of different mechanisms. For example, based on the property the user has defined, it can instrument the program code such that at every point in the code that the variables in the APs of the property are defined\(^a\), a piece of code is added to the original code, by which the simple conditions in the property (i.e. APs) can be monitored during stateless model checking. By doing so, condition checkers are informed about the status of their desired APs at the end of each state.\(^b\) A similar mechanism has been implemented in DSCMC [17].

\(^a\) The variable definition means that a new value is assigned to the variable (e.g. using of the assignment operator “$=$”).

\(^b\) The definition of a state in the context of stateless model checking is given in Section 2.1.3.
Fig. 3 The hierarchical structure of the Unit of LTL checking. (a) Existing actors and their roles. (b) Usage of the hierarchical structure of the actor system for modeling.

The unit of LTL checking (Fig. 3 (a)) has a major actor as the master actor, whose task is to load the user-defined LTL properties at the beginning of stateless model checking, and then create a property checker actor for each property. The property checker actors use a function for parsing a given property. This function creates the parse tree of its input argument, and then returns the root of this tree and sub-trees of the root. Thereafter, the property checker creates a worker that will be in charge of the sub-tree. The return sub-tree is also sent as an input argument to the behavioral functions of this worker.

As it was previously pointed out, the created worker by property checker also parses its input arguments (i.e. sub-tree(s) sent by property checker). Then, with respect to the parse tree of its arguments, it also creates other worker actor(s). Needless to say, workers are different in their behavior. Permissible behaviors for workers exactly correspond to LTL operators. For example, and worker, not worker, and until worker have the same semantics of operators \land, \neg, and U, respectively. You can see the procedure for creating the described hierarchy in Fig. 4.
Our method for verifying LTL formulae is similar to the *divide-and-conquer* method; each *property checker* actor parses an LTL property, and then creates a *worker* actor to evaluate the operator in the root of the parse tree. Consequently, the created *worker* also repeats this process until a *worker* actor reaches the simple condition(s). In other words, tasks are downwardly dispatched, then, results are upwardly collected from *workers* to their supervisors, and finally the results of evaluating get to *property checkers*, which are at the top level of the verification hierarchy (of course, after the *master*).

4.2. **Modeling in Rebeca**

This section models the actor system described in the previous subsection. In this regard, we use Rebeca modeling language [34, 35, 38].

We need an abstract model that correctly embodies the possible interactions between actors. For this purpose, we exploit the hierarchical structure shown in Fig. 3. In this structure, the position of an intermediate node (*worker*) is similar to Fig. 3 (b). As described earlier, *workers* correspond to LTL operators. The behavior of each *worker* actor is modeled in Rebeca using the structure shown in Fig. 3. That is, each *worker* has a supervisor and at least one child. That is to say, each *worker* is an LTL operator that can have at most two children. Each child may also be an LTL operator. Besides, *condition checkers* are also children of their immediate parent (*worker*). Each *worker* has one supervisor (its immediate parent), which may be an LTL operator or a *property checker*. As it can be seen, a child only sends its evaluation result (*true* or *false*) to its *supervisor*, regardless of whether it is a *condition checker* or an LTL operator. A *supervisor* also can receive either *true* or *false* from the *worker* regardless of the fact that the *worker* is which LTL operator.

On account of the above structure, it does not matter to a *worker* who its children and its supervisor are. Every *worker* only receives *true* or *false* from its children, and only sends *true* or *false* to its supervisor. Therefore, we can model the LTL checking unit, and verify the behavior of each actor (i.e. behavioral functions) independently. In this model, the behavior of each *worker* is
characterized in Rebeca, and then other actors the worker can communicate with are modeled as black boxes that correspond to the same worker’s supervisor and children. That is, black boxes used in the model, namely Child, and Parent, are actors that behave like a child and a supervisor, respectively (see Fig. 3). A child is expected to send only either true or false to the worker, and a supervisor also expects to receive the result of the verification from the worker.

Before moving on to modeling, we should point out the role of actors master, property checker, and condition checker. These actors are important when it comes to the implementation of the model. In terms of modeling, it makes no difference to the result of verification who creates property checkers and workers, or how the model checker informs condition checkers about the APs status. The main focus of the model should be maintained on how a worker behaves as a particular LTL operator, and how it evaluates its operands. For this reason, we model a worker regardless of who its parent and child (children) are. For instance, as for the Until operator, the model should demonstrate the way by which this actor evaluates results of its operand; e.g. how to act when it receives a true message from its left operand, how to act when it never receives a true from its right operand, and so on.

We model the behavior of the workers that correspond to and (\(\land\)), not (\(\neg\)), and Until (U) operators. Other LTL operators can be derived from these operators. Each of the foregoing operators is independently modeled; i.e. the children (or supervisor) of each operator are viewed as a black boxes that only send (or receive) true and false.

Fig. 5 shows program graphs of workers. In these state charts, the parts of the model where actors are created and killed are omitted in order to simplify models.

Fig. 6 models three rebecs that correspond to (a) stateless model checker, (b) child, and (c) supervisor. The rebec who models stateless model checker, SMC, initiates the execution of the model from the method sendAP on line 10 of Fig. 6 (a). This rebec models the fact that at the end of each state, the stateless model checker sends the status of the desired APs to the condition checkers. After that, condition checkers send the results to their supervisors, and next their supervisors, according to their own functionality, evaluate the results and send them to their own supervisors. In practice, this process should continue until the most upper worker evaluates the results and sends the result of its evaluation to its own property checker. In the models, we suppose that Child (Fig. 6 (b)) is an intermediate worker that its immediate supervisor is one of the LTL operators and, not, or until. Practically, such an actor receives the results of verification from its children, but here, rebec Child itself randomly generates this result at line 14, Fig. 6 (c).
There are two rebecs of Child in our model: leftWorker and rightWorker. For a binary operator, the worker corresponding to that operator receives two results: one is sent by rightWorker and the other is sent by leftWorker. As for the unary operator not, only messages from leftWorker are processed.

In the models, rebec Supervisor (Fig. 6 (b)) models the immediate supervisor of the worker whose behavior is supposed to be modeled (i.e. one of the workers that acts as one of the LTL operators not, and, until). Supervisor using message server result_fromOp receives the result of verification from such a worker (line 13, Fig. 6 (b)).

In Rebeca, verification is performed based on state variables of rebecs so for the rebecs in Fig. 6., two variables used to specify properties of our models are state variables result and resultReceived in rebec Supervisor (lines 4-5, Fig. 6 (b)). The received result from the LTL operator (worker) is saved in variable result. We need variable resultReceived while modeling because Rebeca initializes state variables at the beginning of execution so the variable result has a value even before receiving the real result from the worker. Therefore, when resultReceived turns into true, it denotes that the Supervisor has just received the result from the worker (at line 14 Fig. 6 (b)).
4.2.1. Modeling LTL operator Until

Fig. 7 shows the rebec for the actor that behaves corresponding to LTL operator until. This rebec behaves similar to the state chart shown in Fig. 5 (d). As our method uses the Actor model, it is nondeterministic that which actor first processes its incoming messages. Therefore, in the model, you may see some code or state variables for required synchronization. For example, when leftWorker and rightWorker send their own results to rebec Until, it is unpredictable that which actor first sends its message. However, we know that both of them send messages about the same state. Therefore, rebec Until first requires to receive both of these messages, and then evaluates them. This situation is modeled using state variables rFlag and lFlag as well as message servers from_leftChild and from_rightChild.
When both of variables lFlag and rFlag become true, it means that rebec Until has received the result from both of its children then it comes to processing. Therefore, method until_bhv at line 16 of Fig. 7 is executed. This method exactly represents the same concept shown in Fig.4 (d). In this method, the rebec uses variables leftOp and rightOp. Variable leftOp contains the value of the last message sent by leftWorker. In the same way, rightOp contains the value of the last message sent by rightWorker. In order to verify the model, we use two state variables updatedLeftOp and updatedRightOp, which contain the results respectively sent by leftWorker and rightWorker after synchronization. This is because the initial state that should be considered to verify the model is not the same initial state in the model. In light of the fact that Rebeca itself initializes state variables, leftOp and rightOp contains initial values before receiving any messages from leftWorker and rightWorker. This situation brings about some problem while specifying properties of the model because the until operator is sensitive to the initial state of its operands. To resolve this issue, we use auxiliary variables updatedLeftOp and updatedRightOp for specifying properties.
4.2.2. Modeling LTL operator \(\text{And} \)

The rebec corresponding to LTL operator \(\land \) is shown in Fig. 8. This rebec also behaves according to the state chart shown in Fig. 5 (a). This rebec also first receives the results from both of its children using message servers \textit{from_left_Child} and \textit{from_right_Child}, and then it behaves as LTL operator \(\land \) using method \textit{and_bhv} at line 11 of Fig. 8.

Rebec \textit{And} uses two state variables \texttt{leftOp} and \texttt{rightOp} for saving the results sent by \textit{leftWorker} and \textit{rightWorker}, respectively. In addition, these variables are used for specifying the properties of the model as well as its verification.

![Fig. 8 Rebeca model for And worker](image)

4.2.3. Modeling LTL operator \(\text{Not} \)

The rebec shown in Fig. 9 models the behavior of the \textit{worker} that acts as LTL operator \(\neg \). Also, this behavior can be seen in Fig. 5 (b). For the sake of brevity, we use the same structure of \textit{Child} and \textit{SMC} shown in Fig. 6 for the \textit{Not} rebec. Therefore, this rebec also has a message server named \textit{from_right_Child}, while this message server has no effect on the behavior of this rebec because it only considers the result sent by \textit{leftWorker} saving it in state variable \texttt{opr} at line 11. This state variable is used for verifying the model as well.

After receiving the message from its child, rebec \textit{Not} processes it using method \textit{not_bhv} at line 7. That is, it negates \texttt{opr} and sends it for its Supervisor (i.e. variable \texttt{parent}) on line 8.
To verify our model, we use model checking; in this section, properties that should be satisfied by models are specified in LTL. We have used the latest versions of model checkers RMC [36] and Spin [12] for verifying our models.\(^6\)

In terms of LTL operator U, the safety property, which was verified and proved to be true in the model, is that when left operand remains true until the right operand becomes true, Supervisor should receive a true message from rebec Until, otherwise it should receive a false. In our method, as described above, the left operand is the same result sent by leftWorker saved in updatedLeftOp, and the right operand is the same result sent by rightWorker saved in updatedRightOp. This property is specified in LTL as follows:

\[
G \left((\text{until}.\text{updatedLeftOp} \ U \ \text{until}.\text{updatedRightOp}) \land \text{parent}.\text{resultReceived} \right) \rightarrow \text{parent}.\text{result}
\]

\[
G \left(\neg (\text{until}.\text{updatedLeftOp} \ U \ \text{until}.\text{updatedRightOp}) \land \text{parent}.\text{resultReceived} \right) \rightarrow \neg \text{parent}.\text{result}
\]

The safety property that rebec And is expected to hold is that Supervisor receives a true from rebec Until when both of its left operand and right operand are true, otherwise it should receive a false. This property was also verified and proved true. In our model, the left operand is the same result sent by leftWorker, and the right operand is one sent by rightWorker, which are saved in variables leftOp and rightOp, respectively. Therefore, the LTL specification of this property is as follows:

\[
G \left((\text{and}.\text{leftOp} \land \text{and}.\text{rightOp}) \land \text{parent}.\text{resultReceived} \right) \rightarrow \text{parent}.\text{result}
\]

\[
G \left(\neg (\text{and}.\text{leftOp} \land \text{and}.\text{rightOp}) \land \text{parent}.\text{resultReceived} \right) \rightarrow \neg \text{parent}.\text{result}
\]

For LTL operator \neg, it is expected that Supervisor receives a true from rebec Not if the operand of operator \neg is false. Obviously, in our method, the operand of a not operator is an actor. In the models, the value of this operand is the same result sent by leftWorker to rebec Not. The rebec

\(^6\) Both of Rebeca and Promela models as well as the output of RMC and Spin have been attached to this paper.
saves this value into its state variable opr. Therefore, the LTL property should be held by rebec Not is as follows:

\[
\begin{align*}
G (\neg \text{not.op} \land \text{parent.resultReceived}) \rightarrow \text{parent.result}) \\
G (\neg \text{not.op} \land \text{parent.resultReceived}) \rightarrow \neg \text{parent.result})
\end{align*}
\]

Table 1 shows the results of the verification of the foregoing properties by model checkers Spin [12] and RMC [36].

<table>
<thead>
<tr>
<th>Property</th>
<th>Status</th>
<th>Depth reached</th>
<th>Transitions</th>
<th>States</th>
<th>Time (sec)</th>
<th>Memory (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spin</td>
<td>Version 6.2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Until</td>
<td>Satisfied</td>
<td>272</td>
<td>3161</td>
<td>2045</td>
<td>0.2</td>
<td>64.636</td>
</tr>
<tr>
<td>And</td>
<td>Satisfied</td>
<td>109</td>
<td>2703</td>
<td>1797</td>
<td>0.2</td>
<td>64.636</td>
</tr>
<tr>
<td>Not</td>
<td>Satisfied</td>
<td>108</td>
<td>3041</td>
<td>1991</td>
<td>0.2</td>
<td>64.636</td>
</tr>
<tr>
<td></td>
<td>RMC</td>
<td>Version 2.2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Until</td>
<td>Satisfied</td>
<td>21</td>
<td>504</td>
<td>224</td>
<td>0</td>
<td>8.17</td>
</tr>
<tr>
<td>And</td>
<td>Satisfied</td>
<td>15</td>
<td>384</td>
<td>164</td>
<td>0</td>
<td>5.92</td>
</tr>
<tr>
<td>Not</td>
<td>Satisfied</td>
<td>15</td>
<td>458</td>
<td>196</td>
<td>0</td>
<td>6.9</td>
</tr>
</tbody>
</table>

5. **An illustrative example**

This section describes a simple example of stateless model checking of an LTL property to illustrate the proposed method. This example is a version of the mutual exclusion problem with two threads. The pseudo code of the problem is shown in Fig. 10 (a). The safety property that program should satisfy is that two threads do not enter the critical section at the same time, which is specified in LTL as “G (\neg (\text{crit1} \land \text{crit2}))”; consequently, the APs used by the user in the LTL property are \text{crit1} and \text{crit2}. In this section, we describe the process of verification of this property step by step.

As we described in Section 2.1.3, the stateless model checker is expected to partition the program code according to visible operations. You can see the partitioned code of Fig. 10 (a) in Fig. 10 (b). Based on the rule of partitioning, each of \text{T1} and \text{T2} is divided into six locations. During stateless model checking, the model checker schedules threads based on these locations.
crit1 := false;
while (true){
 /enter local section/
 // do something
 /exit local section/
 x := 1;
 b1 := true;
 wait (x = 2 ∨ ¬b2)
 /critical section/
 crit2 := true;
 b2 := 0;
 crit2 := false
}

crit2 := false;
while (true){
 /enter local section/
 // do something
 /exit local section/
 x := 1;
 b2 := true;
 wait (x = 2 ∨ ¬b1)
 /critical section/
 crit2 := true;
 b2 := 0;
 crit2 := false
}

// Shared variables:
b1 := false; b2 := false; x := 1;

Fig. 10 An example of the mutual exclusion problem

It should be pointed out that at the end of each location (i.e. after a thread yields the CPU due to reaching the end of its current location), the model checker informs condition checkers about the current status of their AP. Hereafter, we suppose that stateless model checker has partitioned the program (i.e. Fig. 10 (b)) and is ready to start model checking.

Now, let us start explaining the verification process for this example. First of all, the master actor loads the defined property. Here, the user has defined only one property so master only creates one property checker, which is responsible for verifying the specified property. Now, property checker should create the hierarchy of workers. Frst, it standardizes the specified property as follows:

\[G (¬ (crit1 ∧ crit2)) = ¬F ¬ (¬ (crit1 ∧ crit2)) = ¬ (true U (crit1 ∧ crit2)) \]

Next, property checker should parse this property and initiates creation of the hierarchy of workers. The parse tree for this property is shown in Fig. 11. After parsing, property checker creates a worker that behaves as a not operator, and sends the sub-tree of the not operator to this worker. This worker also parses the received sub-tree, creates an until worker, and sends the sub-tree under operator until to the created worker. The until worker also parses its sub-trees and creates a condition checker as its right child, which only generates true. For its left child, the until worker creates an and worker sending the reminder of the tree to this worker. After parsing the received sub-tree, the and worker creates two condition checkers that check APs crit1 and crit2.
After creating the hierarchy, the model checker begins exploring the state space and verification. Suppose the model checker first schedules $T2$; therefore, $T2$ performs its computation from the beginning of location 1 to the end of this location. At the end of this location, $T2$ is preempted, and the stateless model checker sends the status of APs to the condition checkers. At this time, both of crit1 and crit2 are false, hence “condition checkers 2” and “condition checkers 3” send false to the “worker 3” (see Fig. 11). As “worker 3” is an and operator, it generates false because both of its operands are false. Therefore, “worker 2” receives a false message from its right worker and receives a true from its left worker. According to the behavior of an until worker (Fig. 7 and Fig. 5 (d)), the “worker 2” still waits for hearing from its children in the next status. For the sake of brevity, we summarize this process in Table 2. As you can see in Table 2, the model checker schedules threads as follows: “s_1: $T2$, s_2: $T2$, s_3: $T1$, s_4: $T1$, s_5: $T1$, s_6: $T1$, s_7: $T1$, s_8: $T2$, s_9: $T2$, $s_{10}: T2$”. The described situation recurs until s_7.

We go on explaining with s_7, where $T1$ enters the critical section and crit1 becomes true. As a result, at the end of this state, “condition checker 2” receives a true message and “condition checker 3” receives a false. Consequently, “worker 3” generates a false message so the reminder of the process is similar to what was described above. This situation recurs until the end of s_9, where $T2$ also enters the critical section causing crit2 to become true.

At the end of s_{10}, the model checker sends true to both “condition checker 2” and “condition checker 3”, whereby “worker 3” also concludes a true result, and sends it to “worker 2”. Therefore, “worker 2” receives true from both left worker and right worker so it also sends a true message to
“worker 1”. As “worker 1” is a not operator, it negates the received result. Consequently, “worker 1” evaluates the result of verification as false. This result is sent to property checker. When property checker receives a false, it concludes that a violation has occurred.

Table 2. The verification process for the example shown in Fig. 10
Symbol “-” under some states denotes its corresponding actor sends no message in that state.

<table>
<thead>
<tr>
<th></th>
<th>s_0</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
<th>s_8</th>
<th>s_9</th>
<th>s_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>The scheduled thread</td>
<td></td>
<td>T2</td>
<td>T2</td>
<td>T1</td>
<td>T1</td>
<td>T1</td>
<td>T1</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>Location number T1 points to</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Location number T2 points to</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b1</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>b2</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>crit1</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>crit2</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>Message received by “condition checker 2”</td>
<td>-</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>Message received by “condition checker 3”</td>
<td>-</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>Message sent by “worker 3”</td>
<td>-</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>Message sent by “worker 2”</td>
<td>-</td>
<td>False</td>
</tr>
<tr>
<td>Message sent by “worker 1”</td>
<td>-</td>
<td>False</td>
</tr>
</tbody>
</table>

To briefly explain this example without complexity, we considered a non-terminating program. But, suppose that loop “while (true)” does not exist. Therefore, the program eventually comes to an end. In this case, the stateless model checker generates possible finite executions of the program.

Suppose it generates different executions as follows:

\[i_{0,s_0} : T1, T1, T2, T1, T1, T2, T2, T2, T1, T1, T2, T2. \]
\[i_{1,s_0} : T1, T2, T2, T1, T1, T2, T2, T2, T1, T1, T1. \]

...
\[i_{k,s_0} : T2, T2, T1, T1, T1, T1, T1, T2, T2, T2. \]

As a result, the property is independently checked in each iteration. According to Theorem 1, if the property is satisfied in all iterations, then the program satisfies the property. Obviously, if the property is violated in (at least) one iteration, for example in \(i_{k,s_0} \), it means that the program does not satisfy the property.
6. Implementation issues

All actors of the verification hierarchy act in parallel with the stateless model checker. This hierarchy is very quickly formed at the beginning of stateless model checking. We are going to implement our method by Erlang programming language [33], in which processes (i.e. actors) are very lightweight and cheap to create (about 100 times lighter than threads) [51]. Message passing in Erlang is also very fast (about one micro second) [32, 51]. Therefore, there is no concern about the process creation and message-passing overhead. Erlang provides the best implementation of the Actor model [31], whereby we can precisely implement the proposed method.

7. Conclusions

This paper proposes a new verification method for stateless model checking of LTL properties. As far as we know, none of the existing stateless model checkers support checking LTL formulae because the existing LTL checking algorithms are state-based. For this reason, they are only applicable to stateful model checking techniques.

Our method is different from common LTL checking methods. The conventional algorithms are graph-based and need the program state space, while our method verifies formulae dynamically without storing any program states. The proposed method is designed based on the Actor model. Thanks to this model, we can create cheap and lightweight actors that check LTL properties simultaneously with stateless state space exploration.

The method proposed in this paper is designed as the unit of LTL checking for DSCMC [17, 18], which is a parallel stateless code model checker. We are implementing this method in DSCMC. This tool needs to analyze and instrument program code before performing stateless model checking. Currently, code is manually instrumented in DSCMC. Therefore, in the future, code instrumentation must be automated for using DSCMC in large programs. Once this has been done, we will be able to utilize the proposed method for real-world programs.

As for stateless model checking, it may be impractical to precisely handle non-deterministic user input. Then in practice, using the method to verify large programs may be transformed to systematically testing, but it is still powerful enough to explore the state space of large programs whose state space exploration is impractical using state-based methods [1, 7, 22, 23, 26, 28]. However, to cover more execution paths, the method can be improved by employing test generation techniques, such as white-box fuzz testing [52, 53] and symbolic execution [54].
References

