Reliable and Automatic Composition of Language
Extensions to C

The ABLEC Extensible Language Framework

TED KAMINSKI, University of Minnesota, USA
LUCAS KRAMER, University of Minnesota, USA
TRAVIS CARLSON, University of Minnesota, USA
ERIC VAN WYK, University of Minnesota, USA

This paper describes an extensible language framework, ABLEC, that allows programmers to import new,
domain-specific, independently-developed language features into their programming language, in this case
C. Most importantly, this framework ensures that the language extensions will automatically compose to
form a working translator that does not terminate abnormally. This is possible due to two modular analyses
that extension developers can apply to their language extension to check its composability. Specifically, these
ensure that the composed concrete syntax specification is non-ambiguous and the composed attribute grammar
specifying the semantics is well-defined. This assurance and the expressiveness of the supported extensions is
a distinguishing characteristic of the approach.

The paper describes a number of techniques for specifying a host language, in this case C at the C11 standard,
to make it more amenable to language extension. These include techniques that make additional extensions
pass these modular analyses, refactorings of the host language to support a wider range of extensions, and
the addition of semantic extension points to support, for example, operator overloading and non-local code
transformations.

CCS Concepts: « Software and its engineering — Extensible languages; Translator writing systems
and compiler generators;

Additional Key Words and Phrases: extensible compiler frameworks, domain specific languages, language

composition, attribute grammars, context-aware scanning

ACM Reference Format:

Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017. Reliable and Automatic Composition of
Language Extensions to C: The ABLEC Extensible Language Framework. Proc. ACM Program. Lang. 1, OOPSLA,
Article 98 (October 2017), 29 pages. https://doi.org/10.1145/3138224

1 INTRODUCTION AND MOTIVATION

A fundamental issue in software development is the reuse of independently-developed software
components that allow programmers to easily and reliably reuse the work of others. In most
programming languages, this is supported by a module or package mechanism so that a developer
can distribute their work as a library. The programmer using the library need only understand the

Authors’ addresses: Ted Kaminski, Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA,
tedinski@cs.umn.edu; Lucas Kramer, Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA,
krame505@umn.edu; Travis Carlson, Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA,
travis.carlson@cs.umn.edu; Eric Van Wyk, Computer Science and Engineering, University of Minnesota, Minneapolis, MN,
USA, evw@umn.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Copyright held by the owner/author(s).
2475-1421/2017/10-ART98
https://doi.org/10.1145/3138224

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3138224
https://doi.org/10.1145/3138224

98:2 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

exposed interface and can use several in the same program without worrying about their interaction.
In short, they “just work” and provide a means for the modular development of software using
components developed by independent parties.

This work takes another step towards a vision for programming in which programmers can
import new language features into their compilers with the same ease at which they now import
libraries into their programs. Language features, packaged as composable language extensions, can
provide concrete syntax for new (domain-specific) language constructs, semantic analyses (such as
error checking) of these and host language constructs, and optimizations of the new constructs.
In this vision, programmers (as users of language extensions) are able to freely and easily use the
combination of language features of their choice that address challenges of the task at hand without
needing to understand the inner workings of their compiler or language extension specifications.

Specifically, this paper describes ABLEC, an extensible specification of C, at the C11 standard.
It uses the SILVER ' attribute grammar system [Van Wyk et al. 2010] and the CoPPER parser and
context-aware scanner generator [Schwerdfeger 2010; Van Wyk and Schwerdfeger 2007], which is
bundled into SILVER. SILVER specifications define the semantic analysis and code generation tasks as
attributes and their defining equations. These specifications also define concrete syntax as regular
expressions and context-free grammars that are extracted and processed by COPPER to construct a
scanner and parser. Language extensions are thus also specified using SILVER. Extensions can add
new concrete syntax by specifying new productions and symbols (nonterminals and terminals)
that are composed with the host language concrete syntax specification and the specifications
of other selected language extensions. Corresponding new productions and nonterminals for the
abstract syntax, and the mapping from concrete to abstract syntax, is also specified. Extensions can
also introduce extended semantics, in the form of new attributes and attribute equations on both
existing host-language abstract syntax productions and newly introduced extension productions.

We make use of two modular analyses provided by these tools to ensure that language extensions
specify additions to the syntax and semantics, and not potentially conflicting modifications, of the C
host language. The modular determinism analysis [Schwerdfeger 2010; Schwerdfeger and Van Wyk
2009] analyzes the concrete syntax specification of an extension in relation to the host language. It
ensures that any collection of extensions that individually pass this analysis can be automatically
composed to form a specification with no lexical ambiguities and from which a deterministic
LALR(1) parser can be generated. The single caveat is that the programmer may need to perform a
disambiguation that is similar to what is done in Java when two packages each introduce a different
class with the same name. The second is the modular well-definedness analysis [Kaminski 2017;
Kaminski and Van Wyk 2012] that provides a similar guarantee on the semantics side: that the
attribute grammar for the composed language is well-defined [Knuth 1968; Vogt et al. 1989] and
thus will not terminate abnormally due to missing equations. In essence, these analyses ensure
that language extensions can be reliably and automatically composed, meaning that the resulting
specification of an extended language is guaranteed to be unambiguous and complete.

The modular analysis guarantees are made at the meta-language level, on the SILvER and COPPER
specifications. The modular well-definedness analysis, and other static checks performed on SILVER
specifications, provide the SILVER language with a solution to the so-called expression problem,
as described in Section 2.2. This provides an illuminating framework to discuss distinguishing
characteristics of SILVER and other approaches to language extension. While these analysis ensure
that the composition of the host language and extensions succeed is unambiguous and complete,
they do not provide any guarantees about the meaning of the extended language. We discuss work
on meta-level semantic guarantees in Section 10.3.

ISee http://melt.cs.umn.edu/silver, archived at https://doi.org/10.13020/D6QX07

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

http://melt.cs.umn.edu/silver
https://doi.org/10.13020/D6QX07

Reliable and Automatic Composition of Language Extensions to C 98:3

The modular analyses guarantees allow this approach to make a clear distinction between
extension users, that is, programmers, and extension developers. Extension developers need an
understanding of language design and how to implement their extension using SILvER. They must
understand the modular analyses and adjust their specifications to satisfy them. Extension users,
however, do not need this understanding. To create a custom extended language, the programmer
need only list the desired extensions. The supporting tools can then automatically compose the
specifications of the host language and extensions to generate a compiler for the extended language.

Most previous work on extensible languages and frameworks does not provide the guarantees
described above and thus cannot make a clear distinction between extension users and developers.
Work that does provide similar guarantees supports language extensions that are less expressive
than those supported by ABLEC. This paper describes ABLEC as our effort to find a “sweet spot” of
language extensibility in which syntactically and semantically expressive extensions can reliably
and automatically be composed to form a working translator that will not terminate abnormally.

Contributions. The paper makes these contributions:

e A description of ABLEC, an extensible specification of C, at the C11 standard.

o Illustration of sample language extensions that pass CoPPER and SILVER’s modular analyses
and thus reliably and automatically compose. A regular expression language extension further
illustrates how extensions can build on top of other language extensions.

e Identification of points of tension where desired syntax was modified to accommodate the
modular restrictions.

e Description of refactorings to and features of the host language syntax specification to make
it more amenable to additional language extensions.

e Additions to the host language semantic analysis and code generation specification to enable
more types of language extensions. Specifically to support operator overloading and non-local
code transformations that lift declarations to the global scope.

o Definition of a new criterion for the expression problem useful in framing challenges in
language extensibility.

Road-map. Section 2 first provides an overview of ABLEC that elaborates on the goals of the work
(Section 2.1), then frames the discussion of language extensibility in terms of the expression problem
and provides a new criterion for it (Section 2.2), and describes the structure of the ABLEC system
(Section 2.3). The remainder is organized around the perspective of language extensibility as seen by
programmers that compose language extensions, developers that implement language extensions,
and the designers of the host language specification. Section 3 illustrates how programmers direct
the supporting tools to compose the chosen set of language extensions in ABLEC. Sections 4 and 5
describe the specification of the syntax, and respectively, the semantics of language extensions.
These serve as background and describe how we use the SiLvER and CopPPER tools in ABLEC.
Sections 6 and 7 describe how the host language designer can write the specification of the syntax
and, respectively, semantics of the host language to enable additional types of language extensions.
Section 8 shows how extensions can use and extend other extensions. Section 9 describes related
work before section 10 discusses future work and concludes.

2 EXPRESSIVE LANGUAGE EXTENSIONS IN ABLEC
2.1 Full-featured Language Extensions and Their Composition

Our work on SILVER, COPPER, and ABLEC is related to previous work in extensible languages and
frameworks in which independently-developed language features can be reused and composed
to support a highly modular development of programming languages. Recent examples include

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:4 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

1. #include <stdio.h> 20. cilk int count_matches (Tree *t) {

2 21. match (t) {

3. typedef datatype Tree Tree; 22. Fork(t1,t2,str) -> {

4. datatype Tree { 23. int res_t1, res_t2, res_str;

5. Fork (Treex, Tree*, const charx); 24. spawn res_t1 = count_matches(t1);
6 Leaf (const charx); 25. spawn res_t2 = count_matches(t2);
7. 3} 26. if (str =~ /[1-91%/)

8 27. res_str = 1;

9. cilk int count_matches (Tree *t) ; 28. else

10. 29. res_str = 0;

11. cilk int main (int argc, char *xargv) { 30. sync;

12. int count; 31. cilk return res_t1 + res_t2 +

13. Tree *tree; 32. res_str;

14. // initialize tree from a file 33. }

15. spawn count = count_matches(tree); 34, Leaf (/[1-91%/) -> {

16. sync; 35. cilk return 1; }

17. BFEEtf ("matches = %d\n", count); 36. _ => { cilk return @; }

18. cilk return o; 37. %} ;

19. } 38. }

Fig. 1. An example program, using composable language extensions that provide algebraic data types with
extensible pattern matching, Cilk-style parallel programming abstractions, and regular expressions, which
extend the host language and the pattern-matching syntax of the algebraic data type extension.

frameworks for extending Java such as Sugar] [Erdweg et al. 2011], MetaBorg [Bravenboer and Visser
2004], the JastAdd [Ekman and Hedin 2007b] extensible Java Compiler [Ekman and Hedin 2007a],
frameworks for extending C such as Xoc [Cox et al. 2008], XTC [Grimm 2006], and mbeddr [Voelter
et al. 2012], language embedding using staging as in DeLite [Rompf and Odersky 2010], and
Wyvern [Omar et al. 2014] and VerseML [Omar 2017], two type-driven extensible languages.

To clarify the general goals of these approaches and identify the distinguishing characteristics
of the ABLEC approach consider the example program in Fig. 1. This ABLEC program uses 3
independent language extensions to count, in parallel, the number of nodes in a binary tree whose
string values match a specified regular expression. Extension syntax begins with a marking terminal
(see Section 4) and these are underlined in this and all other examples in the paper.

(1) The first extension provides algebraic datatypes (ADTs) as found in ML or Haskell. Lines 3-7
define the structure of a binary tree that contains strings at its nodes. Lines 21, 22, 34, and
36 are the pattern-matching constructs that inspect the tree nodes and extract the values
stored on those nodes in a way that is easier and safer to use than C struct and union data
structures.

(2) The second provides parallel task abstractions from Cilk [Frigo et al. 1998], a monolithic
extension of C. Lines 24 and 25 spawn two parallel Cilk functions to recursively process the
tree. The sync statement on line 30 waits for the spawned tasks to finish, before computing
the sum and returning it.

(3) The third extension provides regular expression matching facilities commonly found in
scripting languages such as Perl and Python. On line 26 a new infix operator (=~) is used to
match the regular expression. This extension not only extends the host language, but also
extends the pattern language introduced in the ADT extensions. This is seen on line 34 where
a regular expression pattern is nested in the Leaf pattern constructor.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:5

This program shows the programmer experimenting with three different language extensions in
a single program. All three extensions provide new syntax (new language constructs) that are,
after semantic analysis, translated down to plain C. The resulting C program is then compiled by a
traditional C compiler.

These extensions demonstrate two types of extension-based semantic analysis. First, the ADT
extension checks that patterns in a match statement are linear (each variable only appears once),
an analysis over the pattern constructs introduced by the extension. Second, the Cilk extension
does semantic analysis over not only its constructs but also host-language constructs. To translate
a Cilk function to C, two versions of it are generated — a fast and a slow clone [Frigo et al. 1998].
These clones implement the work-stealing parallel task abstractions in the Cilk run-time. The slow
clone contains multiple entry points for resuming execution when work (e.g. from a spawn of a
function) is stolen to be shared among processors; thus it maintains a so-called cactus-stack of
frames similar to those in a standard activation record stack. To generate C code to implement this,
information about all local variables in the function must be collected. This requires an analysis of
not only the Cilk constructs, but also the C constructs and other extension constructs (such as the
match construct on line 8 in Fig. 1). As described below, this ability to extend software (in this case
a C translator) with new variants (here, syntax) and new operations (here, semantic analysis) over
new variants is sometimes referred to as the expression problem [Wadler 1998].

In drawing out distinctions between ABLEC and other approaches to language extensibility we
consider two concerns: who composes the language features and how expressive the extensions
are.

Who composes the language features? Does someone who understands compiler implementation
techniques need to write “glue code” to compose the extensions with each other and the host lan-
guage? Or, can a programmer, with no knowledge of language implementation techniques, reliably
and automatically perform the composition? It is our contention that for extensible languages to
have a significant impact on the practice of software development it must be programmers that can
perform this composition and that this composition reliably results in a working compiler for the
programmer-specified extended language. Some systems, such as Sugar] and JastAdd, support the
automatic composition of extensions. However, this composition can fail. In Sugar], for example,
this may result in an ambiguous grammar specifying the syntax of the new language. Even though
a generalized parser is used in this system and can thus parse ambiguous grammars, the resulting
parse may generate multiple parse trees. Problems like this (a particular form of abnormal termina-
tion of the compiler) can leave the non-language expert programmer in a difficult situation. The
ABLEC approach draws a critical distinction between a programmer that uses extensions and an
extension developer that writes them.

How expressive are the supported extensions? While distinctions raised by the previous question can
be made objectively, some distinctions about expressiveness are subjective. Nearly all systems place
some restrictions on syntactic expressiveness as the parser for the extended language must be able
to differentiate new language constructs. (An exception here is mbeddr [Voelter et al. 2012] which
uses a projectional editor and all syntactic ambiguities can be resolved by the programmer directly
in the editor.) While systems based on generalized parsing (such as Sugar] and Metaborg) allow for
a wider variety of syntactic extension, the restrictions imposed by the modular analyses in ABLEC
still leave room for rather expressive syntax without paying the price of possibly ambiguous parses
of user programs. The extensions in Fig. 1 can be nested and naturally fit into the host language. In
addition to these, several other extensions to ABLEC have been developed that support the assertion
that expressive extensions can be reliably and automatically added to a host language. These include
embedding SQL in C for statically type-safe queries, Halide-style parallelization and vectorization

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:6 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

transformations [Ragan-Kelley et al. 2012], term-rewriting facilities (as in TOM [Balland et al.
2007; Moreau et al. 2003] and Kiama [Sloane 2011]), Go-style concurrency constructs, C++ style
templates for structure and functions, C++ style type-safe enumerated types, numeric interval
types that overload arithmetic operators, generic vectors, and lambda-expressions. Many of these
are described in the paper. Others can be found in a corresponding technical report [Kaminski et al.
2017] or in the ABLEC documentation and software?.

At least some questions of semantic expressivity can be answered more objectively, specifi-
cally, does the approach support extensions that can perform semantic analysis of host language
constructs, even when they contain constructs introduced by other extensions? Some systems
such as JastAdd do support this, but require the writing of additional “glue code” to compose the
specifications, thus making it difficult for non-expert programmers to orchestrate the composition
of different language extensions. The expression problem provides a clarifying framework for
considering these kinds of questions and is discussed in the following sub-section.

2.2 Extensible Language Framework Criteria

ABLEC language extensions written in SILVER can add both new syntactic constructs and new
semantic analyses over those new constructs, host language constructs, and constructs introduced
by other extensions. SILVER provides a solution to an old problem that Wadler [1998] named the
expression problem. The core of this problem is the ability to modularly add new data variants and
new operations over the pre-existing and new data variants. In considering the expression problem
as applied to the representation of abstract syntax and applying it to SILVER, new syntactic constructs
correspond to new data variants and new semantic analyses correspond to new operations. Zenger
and Odersky [2005] paraphrased Wadler’s description identifying four criteria that a language must
satisfy to solve this problem and added a fifth. We add another criterion that needs to be solved to
support the type of automatic, programmer-driven language feature composition described above.
We list all of these below with their implications for extensible languages and will point out in the
remainder of the paper how SILVER, and thus ABLEC language extensions written in SILVER, satisfy
these criteria.

EP1: extensibility in adding new data variants and new operations: In attribute grammars (AGs),
this amounts to adding new productions to the grammar (variants) and new attributes and
their defining equations (operations). Many attribute grammar systems, including SILVER,
satisfy this criterion since new equations can be specified for productions defined in different
modules.

EP2: strong static typing: Besides avoiding typical runtime type errors, of specific interest is the
assurance that no operation will be missing an implementation for a variant it applies to.
For AGs, this means that no production in the composed attribute grammar will be missing
an equation that is needed in computing attribute values since missing equations result in
abnormal termination of semantic analysis.
In higher-order attribute grammars with forwarding [Van Wyk et al. 2002], such as SILVER,
not all productions need a defining equation for all attributes that decorate the nonterminals
of the production. Thus the modular well-definedness analysis tracks the flow of attribute
values and is more sophisticated than merely checking that all possible equations are present.

EP3: no modification of existing code: In our setting this means that the composition of the host
language and multiple extensions cannot require modifying their specifications.

2See http://melt.cs.umn.edu/ableC for sources and artifact, archived at https://doi.org/10.13020/D6VQ25

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

http://melt.cs.umn.edu/ableC
https://doi.org/10.13020/D6VQ25

Reliable and Automatic Composition of Language Extensions to C 98:7

EP4: separate compilation and type checking: SILVER (unlike many AG systems) separately type
checks and compiles AG modules. The modular well-definedness analysis ensures that strong
static typing can be done independently on individual modules before they are composed.

EP5: Zenger and Odersky’s “independent extensibility”: It must be possible to compose independent
extensions to the base system without one having prior knowledge of the others.

For languages that satisfy the above five criteria, one may still need to write code in that language,
sometimes called “glue code”, to compose the base artifact and the independently-developed
extensions. This makes it much less feasible for a non-expert programmer to direct the composition
of language features. We thus introduce an additional criterion:

EP6: automatic composition: No “glue code” need be written to compose a collection of independent
extensions with the base artifact. While not necessarily applicable in all settings, for extensible
languages, satisfying this additional criterion ensures that a non-expert programmer can
(direct the tools to) perform the composition of the host language and the language extensions.
For ABLEC and other languages specified using SILVER this criterion means that no attribute
equations need to be written by the end-user: the programmer trying to use extensions.

Reliable and automatic composition of language extensions. It is our conjecture that for an ex-
tensible language or extensible compiler framework to support the composition of independent
language extensions by a non-expert programmer and have impact in the mainstream of software
development, it must at least solve the following two challenges, and ABLEC does.

(1) Parsing extended programs must be reliable and always result in either a syntax error or
the single expected parse tree. This does not necessarily preclude the use of generalized
parsing, but some reliable form of modular ambiguity detection or means for isolating
extension constructs (e.g. as is done in Wyvern [Omar et al. 2014], VerseML [Omar 2017],
or Eco [Diekmann and Tratt 2014]) would be needed. PEGs [Ford 2004] construct a single
parse tree but the order in which grammars are composed determines which ambiguities are
automatically removed, which results in unexpected shadowing of productions and parse
trees and thus may give unexpected results.

e approach for abstract syntax representation and semantic analysis of the extende
2) The approach for abstract synt P tati d ti lysis of the extended
program needs to meet all the expression problem criteria given above.

The expression problem criteria (EP1-EP6) apply to the meta-language: to SILVER, not ABLEC.
ABLEC benefits because it is written in SILVER, and these criteria provide static guarantees that the
compiler can be organized in highly modular ways, supporting extensions as independent modules.
Our discussion of the expression problem is not relevant to the semantics of the ABLEC language.
In our context this means that the composition of language extensions (that pass the modular
analyses) are unambiguous and complete. This does not provide any guarantees about semantics or
meaning of the programs written in the extended language. For example, neither SILVER or ABLEC
provide support to ensure that there is no incorrect capture of name uses by declarations generated
by language extensions. We discuss work in this area in Section 10.3

2.3 ABLEC - Attribute Grammar Based Language Extensions for C

ABLEC is a specification of C, at the C11 standard, written in SILVER. The concrete syntax is specified
using the familiar formalisms of a context-free grammar in which regular expressions are associated
with the terminal symbols. From these a scanner and parser can be generated. The abstract syntax
and static semantics are specified as an higher order [Vogt et al. 1989] attribute grammar [Knuth
1968]. These specifications are all written using SILVER. Concrete syntax specifications are extracted

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:8 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

pts.xc
U
org:A:ADT ‘
com:B:cilk U — scanning
edu:C:regex pts.i — parsing
U U — AST construction
——= o kg
I — operator overloading
edu:umn:cs:melt:ableC pts.c o .
~ lexical syntax U — lifting new declarations
— context free syntax gcc — C code generation
— AG semantics U
pts.o

Fig. 2. Structure of ABLEC and example application for the extended program in Fig. 1.

and passed to COPPER, a context-aware scanner and parser generator that is integrated with
SILVER, and from the attribute grammar specifications a demand-driven AG evaluator is generated.
S1LVER orchestrates the translation of these specifications to Java and their compilation into an
executable JAR file. The left of Fig 2 shows three language extensions, org:A:ADT, com:B:cilk,
and edu: C: regex being composed with the C host language specification for form this executable
for this extended language. SILVER grammars are expected to be named using the developer’s
Internet domain name to ensure grammar elements have unique names when fully-qualified by the
grammar name. The three extensions are given names to indicate that they could be developed by
independent parties even though we have written them all and their actual implementations used
the same edu:umn:cs:melt prefix in their names.

The process of using a generated instance of ABLEC (with or without any language extensions)
is also outlined in Fig 2. An extended or plain C program is run through the C pre-processor cpp,
processed by the ABLEC instance to create a plain C program, which is then finally compiled by
GCC. The primary tasks performed by the ABLEC instance are listed in the right of the figure
and described in the remainder of the paper. In this regard, ABLEC is not unlike other extensible
language frameworks such as Polyglot [Nystrom et al. 2003], an extensible framework for Java
in which language specifications/extensions are written in Java. One can write specifications (in
SiLVER for ABLEC, Java for Polyglot) that use the host language specification to create new dialects
of that host language, perform advanced static analyses, or construct translators to other languages.

The novelty of ABLEC is that the supporting tools (SILVER and CoPPER) and the design and imple-
mentation of the C specifications that make up ABLEC support the vision of reliable and automatic
composition on independently-developed language extensions described in the introduction. This
is not possible in, for example, Polyglot.

In addition, the host language C specifications in ABLEC provide a number of extension points
to enable classes of language extensions that would not otherwise be possible. It is worth noting
that most extensions that we have developed for ABLEC do not require these. They were written
and passed the modular analyses without any changes needing to be made to the host language
specification. These extension points in the host language allow new categories of language
extensions to be made. These include mechanisms to support the adding of new infix operators to
the concrete syntax, type-based overloading of existing infix operators, non-local transformations
that propagate declarations up to an enclosing scope in the syntax tree, and extensible type

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:9

qualifiers. These are enhancements to the host language that cannot be added as composable
language extensions as we define them in this paper as they change the behavior of the language.
Operator overloading changes, for example, the equations on the production for the addition (+)
operator to query its sub-expression types for a production that will overload it at those types.
Thus, host language designers need to pay some attention to adding extension points such as
those described in these two sections. This illustrates the balance that we are attempting to strike
that provides strong guarantees of extension composition but still supports expressive language
extensions.

3 THE PROGRAMMER’S PERSPECTIVE

The extended C program in Fig. 1 does not make use of any novel language features; it is the
use of all of them in a single program that is unique and of interest here. Cilk [Frigo et al. 1998]
was developed as a version of C with additional features for parallel programming with the same
constructs (though with slightly different syntax) as in the example. Similarly, TOM [Moreau et al.
2003] provides an extended version of C that supports algebraic datatypes and term rewriting, and
regular expressions are commonly found in scripting languages. The programmer writing this
program may want to use this particular combination of language features, but tools like Cilk and
TOM limit them to using just one or ad-hoc combinations of them. ABLEC allows this programmer
to choose the set of language features that suit the task at hand, without (i) requiring them to write
any “glue code” to compose these extensions, or (i) there being any chance that some particular
combination of extensions or programs that use them will cause the automatically-generated
translator to terminate abnormally.

Programmer directed composition. To generate an extended ABLEC
translator, the programmer needs to merely select the set of extensions construct PTS as
that they desire for the task at hand. Fig. 3 shows the specification that edu:umn:cs:melt:ableC
the programmer would write to generate the extended ABLEC transla- translator using
tor that can process the program in Fig. 1. This directs an extension org:A:ADT;
composition DSL to generate the SILVER code, simply a declaration of ~ com:B:cilk;
a parser and a main function with a call to a driver, that defines the edu:C:regex;
custom translator (called PTS) for the project based on the ABLEC host
language using the specified language extensions. This is illustrated in
Fig 2. This translator uses the generated scanner and parser to detect
syntax errors or, in their absence, construct the abstract syntax tree for
the extended language program. On this tree attributes are evaluated
to perform semantic analyses to check for domain-specific type errors
and opportunities for optimization, and if no errors are reported, generate plain C code that can be
compiled using a traditional C compiler. Currently we require the use of GCC or Clang as they
have a few extensions that simplify code generation for extensions. This is described in Section 7.

The task of ensuring the selected extensions have passed the modular analyses falls on the
extension developers (as described in Sections 4 and 5). If all the extensions pass these analyses then
this composition process is guaranteed to succeed. The modular determinism analysis ensures that
no lexical or parse table conflicts can occur in the composed language, with the single exception
that marking terminals may have overlapping regular expressions and the programmer will need
to resolve this ambiguity. As described below, each extension production that declares a new type
of host language phrase (e.g. expression, statement, or declaration) must begin with an initial
symbol called a marking terminal. Examples from Fig. 1 include datatype, match, cilk, and the
forward slash (“/”). Typically these are keywords, but regular expressions use the slash as a marking

Fig. 3. The programmer
written specification for
composing the extensions
in ABLEC.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:10 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

terminal. For example, if the keyword match was also the marking terminal for another extension
included in Fig. 3, then a lexical ambiguity would occur and would be reported by CoppEr. But
this is easily fixed by the programmer. The composition DSL supports a mechanism in COPPER
for specifying a prefix for overlapping terminals that the programmer uses in the program to
disambiguate the phrases matched by more than one marking terminal. To do this, the programmer
could add the clause with prefix "ADT" to the org:A:ADT extension entry in Fig. 3 to allow
ADT: :match to be written instead of match when using the match statement, thus fixing the lexical
ambiguity. A similar specification is written for the other extension with a match marking terminal.
The programmer can also specify a default to be recognized when no prefix is written. This is
similar to what Java programmers do: using the full package name of a class when two or more
imported packages define a class with the same name.

In using ABLEC, programmers need not write SILVER or COPPER specifications to compose
language extensions. Thus they need not write the “glue code” mentioned in expression problem
criterion EP6. This composition DSL illustrates the extent of concerns the end-user has: extending
what host language, with what set of extensions, and providing any prefixes for clashing marking
terminals.

4 DEVELOPING CONCRETE SYNTAX FOR ABLEC EXTENSIONS

This section discusses how COPPER’s context-aware scanning and modular determinism analysis
are used in ABLEC and by extension developers to define their extension’s concrete syntax and
check that it will compose with other, similarly checked, language extensions. Note that we do not
need the extensibility “in both directions” criterion of the expression problem (EP1) for concrete
syntax specifications. The expression problem and its criteria is used to frame our discussion on
the AG semantics specifications, which is discussed in Section 5.

Specification of lexical and concrete
syntax. COPPER uses the traditional grammar org:A:ADT;
formalisms of regular expressions jpports edu:umn:cs:melt:ableC;
and context-free grammars to spec-
ify the lexical and, respectively, con- marking terminal MATCH /match/;
crete syntax of languages and lan- Stmt_c ::= MATCH ’(’ Expr_c ’)’ ’{’ cs::Clauses_c '}’
guage extensions. Fig. 4 shows part
of the concrete syntax specification nonterminal Clauses_c, Clause_c, Pattern_c;
(in an abbreviated form) of the match ~ terminal BIND /->/;
construct in the ADT extension. Af- Clause-c ::= Pattern_c BIND *{’ Stmt_c "}’

ter declaring the grammar name and
importing the host language speci- Fig. 4. Partial abbreviated SiLvER specification of match construct

fication, since components of it are " the ADT extension.

referenced, a terminal symbol for the

match keyword is declared. It is indicated as a marking terminal. Next is the production for the
match statement, using host language nonterminals Stmt_c and Expr_c and the extension defined
nonterminal Clauses_c, which derives a sequence of Clause_c phrases. Three new nonterminals
and a new terminal symbol are then defined. The following production specifies a single clause
in a match statement as being an pattern, a binding symbol, and statements inside curly braces.
Note that terminal symbols whose regular expressions are simple strings can be written inside
single quotes. (This figure does not show the traditional mechanisms used to indicate that match
has precedence over host identifiers nor the semantic actions that construct abstract syntax trees
from concrete ones since these do not affect composition.)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:11

Context-aware scanning. One of the unique features of CopPER that we rely on is context-
aware scanning [Schwerdfeger 2010; Van Wyk and Schwerdfeger 2007]. This leads to fewer lexical
ambiguities and thus fewer LR parse table conflicts. To illustrate how this works, consider the BIND
terminal. The host language terminal symbols for parentheses and curly brackets are used in this
extension, and the host terminal for pointer/field dereference with regular expression -> could also
have been used. Note that this host terminal and BIND have overlapping (actually the same) regular
expressions. But there is no lexical ambiguity because the context in which the host -> operator
terminal can appear is different from the context in which the BIND terminal can appear. The
latter is only valid after a pattern, whereas the host -> is valid after a host expression nonterminal
(Expr_c). In an LR parser, a terminal is “valid” in a context, represented by a LR parser state, when
that terminal has a shift, reduce, or accept action, but not an error action. The scanner uses this state
to disambiguate the lexical ambiguity that would otherwise occur. A similar lexical ambiguity that
is resolved by context is for the “*” operator. This can be the C multiplication operator or regular
expression closure operator. Regular expressions, in Fig. 1, are parsed just like the other extension
constructs and not enclosed in a C string.

Modular determinism analysis. Context-aware scanning thus makes it more likely that concrete
syntax specifications of extensions will compose without lexical ambiguities or parse table conflicts,
but it does not guarantee it. Such a guarantee is provided by CopPER’s modular determinism
analysis which is run on extensions independently, by the extension’s developers. It ensures that
the composition of the host language and any set of other extensions that pass the analysis will
have no lexical ambiguities and no parse table conflicts. The full details of this analysis can be
found in the previous work of Schwerdfeger [2010]; Schwerdfeger and Van Wyk [2009], but the two
primary conditions it checks for to provide this strong composition guarantee are described here.
First, every extension-defined production with a host language nonterminal on the left-hand side
must have a marking terminal as its first symbol on the right-hand side. After this, the extension is
free to define its syntax. These marking terminals indicate the unambiguous transition (as a shift
action) from host language to a particular extension’s syntax. As we have seen in Section 3, in the
case where these marking terminals do exhibit a lexical ambiguity, the programmer can directly
resolve it in the specification of the extended language.

Second, every production in the extension that transitions back to the host language (by having
host language nonterminals on its right-hand side) must not add any new terminals (except marking
terminals) to the follow set [Aho et al. 1986] of any host language nonterminal. In Fig. 4, the match
production contains an expression (sc: : Expr) which is followed by a host language right paren
and the Clause_c construct contains a statement followed by a right curly brace. This is allowed
since these terminals are already in the follow sets of these nonterminal symbols. An interesting
consequence of this rule is that syntactically rich languages with large follow sets are easier to
extend.

The restrictions imposed by the modular determinism analysis are permissive enough to allow
rather natural syntactic extensions, but can require more “punctuation”, such as the curly braces,
than we might prefer. An example of this is the curly braces around statements in match clauses.
Without the curly braces in the Clause_c production Stmt would be followed by the terminals that
begin a Pattern, thus adding new terminal symbols to their follow set and violating the restrictions.
In Section 6 we will see some ways in which the host language syntax can be specified to avoid
some of these concerns and allow for more flexible syntax in extensions.

Another implication of the restrictions of this analysis can be seen in the syntax of the Cilk
extension. In the Cilk languages [Frigo et al. 1998], the spawn keyword was written before the
name of the function being spawned, whereas in Fig. 1 one can see that this keyword, the marking

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:12 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

terminal, is before the assignment statement and thus precedes, for example, res_t1 instead of the
function call. This is because the transformation of spawn down to plain C code involves not only
the function call, but the variable into which the return value is copied. And thus the syntax for
this extension must include both of these components. A second variation from the Cilk language
is the need for the cilk keyword before the return statement. This is because the return statement
also plays a role in the transformation of a Cilk function down to plain C, and we need to ensure
that a special Cilk-specific version of this statement appears in the abstract syntax tree. (If the cilk
keyword is omitted, the Cilk extension raises an error when the extended program is analyzed and
translated to C.)

These illustrate points where the restrictions that ensure composability of independent extensions
arise and affect the concrete syntax. The compromises made here seem reasonable, given that we
now have a strong guarantee that there will be no parsing issues when the extensions are composed
and used by the programmer.

CoppER has a relaxed version of its modular determinism analysis that allows parse tables for
extensions to be generated separately (thus supporting separate compilation) and composed with
the host language later [Schwerdfeger and Van Wyk 2010], but we do not use that feature.

5 DEVELOPING SEMANTICS FOR ABLEC EXTENSIONS

In this section we describe how the semantics (e.g. type checking and C code generation) of
language extensions are specified as SILVER attribute grammars. The discussion highlights how the
six expression problem criteria, EP1 — EP6, are satisfied by the ABLEC approach.

Attribute grammars [Knuth 1968] (AGs)
have been extended with features like higher-
order attributes [Vogt et al. 1989] and refer-
ence [Hedin 2000] / remote [Boyland 2005] at-
tributes to result in a useful general-purpose
programming model in their own right. They
provide semantics for context-free languages
by decorating abstract syntax tree (AST) nodes
with semantic information. Attributes are as-

grammar org:A:ADT;
import edu:umn:cs:melt:ableC:abstractsyntax;

abstract production match
s::Stmt ::= sc::Expr cs::Clauses
{ e.unparse = "match (" ++ sc.unparse ++ ")"
++ "{" ++ cs.unparse ++ "}"
sc.env = e.env;
cs.env = e.env;

sociated with nonterminals in the underlying
context-free grammar and equations associated
with productions define attribute values. The
semantics for composition of attribute gram-
mars is straightforward by the union of the sets

cs.scrutineeType = sc.typerep;

forwards to if null(sc.errors ++ cs.errors)
then stmtSeq (mkInit(sc), cs.transform)
else errorExpr(sc.errors ++ cs.errors);

of nonterminals, productions, equations, etc. in }
different grammar modules. However, to sat-
isfy the separate compilation criteria (EP4) of
the expression problem this simple process is
not used in SILVER.

First, we consider the abstract syntax production match in Fig. 5. The first two lines indicate that
this is part of the ADT extension and builds on (imports) the abstract syntax of the host language.
This production would be used by the semantic action of the match concrete syntax production
in Fig. 4 to construct ASTs for match statements. It has equations defining values for two host
language—declared attributes. The first is the synthesized attribute unparse, which constructs the
text representation of the program and propagates this information up the syntax tree. The second,
env, is an inherited attribute that propagates the environment (symbol table) that associates names
with their declarations and types down the tree. The forwards to clause, discussed in more detail

Fig. 5. Attribute grammar fragment defining part of
the algebraic data type language extension.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:13

below, specifies the translation of the match construct down to plain C code if there are no errors
detected on the scrutinee (sc) or on the clauses (cs) or, if there are errors, to special error node that
reports such errors.

This extension also declares a new inherited attribute scrutineeType that decorates Clauses
nonterminals and is used by clauses in a match statement to ensure that the type of the pattern is the
same as the type of the scrutinee sc. If this is not the case, extension clause productions generate
error messages describing the errors in the patterns and pass them up the AST in the errors
attribute. This shows how extensions can generate error messages that refer to code written by the
programmer and not in terms of the generated host language C code. Extensions can also perform
non-trivial analysis to detect errors that cannot be detected (at least not easily) in the generated C
code. For example, the match construct can also check that the patterns in the clauses are exhaustive.
The extension that adds syntax for SQL queries, described in a technical report [Kaminski et al.
2017], uses the database schema to check for type errors in SQL queries written in an extended C
program.

During attribute evaluation the
equations compute values for at-
tributes on the AST. An AG is ef-
fectively complete if equations ex-
ist so that needed attributes can

grammar com:B:cilk;
imports edu:umn:cs:melt:ableC:abstractsyntax;

synthesized attribute slow_clone<a> :: a;

be computed for all possible syntax
trees. That is, no required equations
are missing. Knuth defined a static
analysis to check for AG complete-
ness [Knuth 1968], and extensions
such as higher-order attributes ex-
tended this analysis [Vogt et al. 1989]
accordingly. This analysis (along with
traditional typing rules for opera-
tions on primitive values such as inte-

attribute slow_clone<Stmt> occurs on Stmt;
attribute slow_clone<Expr> occurs on Expr;

aspect production while (note aspect not abstract)

s::Stmt ::= cond::Expr body::Stmt

{ s.slow_clone = while (cond.slow_clone,
body.slow_clone);

}
abstract production sync
s::Stmt ::=

{ s.slow_clone = ...

gers and strings) provide strong static
typing of attribute grammars (EP2). 3}

While the match production shows
how new variants are added to the
host language, the grammar in Fig. 6
shows how new operations can be
added, in the form of new attributes on existing productions. This illustrates how attribute grammars
satisfy the extensibility in “both directions” criteria (EP1). The original Cilk language translated
down to plain C code, and in doing so generated two versions of each cilk function: a fast and slow
clone that coordinate the stealing and distribution of work across all available processors. The slow
clone is created using the slow_clone attribute, a higher-order polymorphic attribute that creates
the syntax tree of the slow clone. The type of the attribute is the same as the nonterminal type of
the node it decorates (when it occurs on a Stmt it is a tree of type Stmt). The aspect production for
the host language while production has the equation for creating the slow clone code for a while
loop. Similar aspect productions exist for all host language productions, though some naturally do
more than rebuild the tree as is done here. Aspect productions allow new equations to be associated
with existing productions defined elsewhere in this grammar or in an imported one.

Names (for productions, attributes, etc.) in SILVER have a short representation that is used in the
specifications in this paper, but also have a “fully qualified” representation that is used internally in

forwards to ... call to CILK2C_AT_SYNC_FAST() ... ;

Fig. 6. Attribute grammar fragment defining part of the Cilk lan-
guage extension.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:14 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

SILVER when checking names against one another. These fully qualified names are similar to the
fully qualified names in Java that are based on the name of the defining package. Similarly the name
of the SILVER grammar (based on the developers Internet domain name) containing a declaration is
used to form the fully qualified name. Thus there are no possible name clashes between different
SILVER grammars and two extensions cannot, for example, introduce productions that define new
types or other constructs that have the same fully-qualified name. While their names used inside a
grammar module may be the same, they are distinguished by their full names. If a grammar needs
to refer to two names with the same short representation then the fully qualified name can be used.
But in S1LVER specifications that combine grammars there is typically no need to directly refer to
these elements and thus no need to write fully qualified names.

To satisfy the automatic composition criteria (EP6), ABLEC uses the SILVER feature called for-
warding [Van Wyk et al. 2002]. This is how, for example, the slow_clone attribute (new analysis) is
computed for the match construct (new syntax). Forwarding allows a production such as match to
specify a computation that would produce a semantically equivalent tree composed of host language
constructs. For the match construct in Fig. 5 this is the sequence of some initializing statements
that refer to the expression being matched against (nkInit(sc)), followed by the transformation
of the clauses (computed in the attribute transform) into a nested sequence of if-then-else state-
ments that implement the pattern matching. Queries for attributes without a defining equation
are passed to the forwarded-to tree and their values are computed there. Thus, the slow_clone
attribute for match is computed on the host AST that it forwards to, and these host productions
have equations for slow_clone specified in aspect productions in the Cilk extension, as in Fig. 6.
Similarly, the match production does not explicitly define the synthesized errors attribute but
relies on forwarding to get a value for this attribute, either from the list of errors on the errorExpr
node (which is just the list provided as its single argument) or the empty list of errors from the
stmtSeq node. For the Cilk sync statement in Fig. 6 this is a call to the Cilk run-time. Thus new
analyses need only specify equations for the host language, and when computing that analysis on
any new syntax (that is, new productions from a different, independent extension) the analysis can
always be computed on the forwarded-to tree, rather than directly on the extension node.

Extensions can do sophisticated analysis and transformation over their syntax to compute their
forwards-to trees. For example, in our initial regular expression extension implementation we
translated regular expression literal (e.g. on line 13 of Fig. 1) to values of type regex_t in the
POSIX regular expression library. This required simply generating the string representation of
the literal. In another version, the abstract syntax of the regular expression does the standard
transformation into a non-deterministic finite automata and then into deterministic finite automata
that is represented as a C struct with the expected transition table, list of final states, etc.

Note that Zenger and Odersky’s independent extensibility criteria (EP5) is also satisfied by this
approach. In this example, the programmer can choose to use just one or both extensions. The
ADT and Cilk extensions are independent, but the regular expression extension explicitly and
intentionally depends on the ADT extension and extends its notion of patterns. It imports both
the host language and ADT grammars. While the primary contribution of the ABLEC approach
is to support independently-developed extensions, explicit dependencies on other extensions is
supported and discussed further in Section 8.

The no modification of existing code criteria (EP3) is demonstrated by the use of SILVER imports
statements, both by extension specifications (Figs. 5 and 6) and in the composition specification
written by the programmer in the DSL that composes the host language and extensions (Fig. 3).

Finally, although forwarding allows extensions to compose, satisfying EP6, the separate com-
pilation and typing criteria (EP4) is provided by SILVER’s type checking mechanisms [Kaminski
and Van Wyk 2011] and by its modular well-definedness analysis [Kaminski 2017; Kaminski and

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:15

E «= E+'T | E‘="T | T | E == E AddOp ETL | ETL
T == T‘«F | T‘/F | F ETL == ETL ETLOp ETL | ETR
F w= ‘CEY | var ETR == EIN ETROp ETR | EIN
(@) ETN == T EINOp T | T
T =T MulOp TFL | TFL
E w= EAddOp T | T (ETL (left associative), ETR (right associa-
AddOp == ‘+ | =’ tive), and ETN (non-associative))
(b) (c)

Fig. 7. Evolution of expression grammar from traditional (a) to allowing infix operators as existing prece-
dence/associativity levels (b) to allowing infix operators at new precedence/associativity levels between host
language ones (c).

Van Wyk 2012]. This analysis enforces certain structural properties on the relationship between
modules containing certain kinds of declarations to exclude the possibility of having two different
equations for a single attribute for a single production. They also ensure syntax extensions actu-
ally make use of forwarding, to satisfy criteria EP6. It further ensures that the flow types of host
language nonterminals do not change. Flow types track what inherited attributes may be used to
compute a synthesized attribute. For example, the fact that the env attribute is used to compute the
errors attribute is recorded in the flow type for expressions, statements, and other host language
nonterminals. This restriction ensures that, in addition to always having a defining equation for
synthesized attributes, the attribute grammar will always have a value for each necessary inherited
attribute.

This combination of SILVER features such as its module system, forwarding, and its modular
well-definedness analysis are used to satisfy the 6 expression problem criteria, EP1 — EP6, given in
Section 2.2.

6 ENABLING ADDITIONAL SYNTACTIC EXTENSIONS TO ABLEC

We now turn our attention to the role of host language developer and ways that concrete syntax
can be specified to allow a wider class of extensions to pass the modular determinism analysis in
CopPER. The techniques discussed here, and in the next section on semantics, are applicable to
other extensible host languages besides ABLEC.

Grammar refactoring for new infix operators. The modular determinism analysis requires exten-
sion productions with a host language nonterminal on the left-hand side to begin with a marking
terminal. For the Cilk and ADT examples in Fig. 1 this seems a reasonable restriction and required
only minor adjustments to the Cilk syntax. But this prevents adding new infix operators, such as
the regular expression matching operator =~ on line 26, when productions for infix operators use
the common LR-style with the operator terminals between expression nonterminals, as illustrated
in Fig 7(a). (We abstain from using SILVER syntax here as it is a bit verbose and also use short
single-letter names for some nonterminals.) Attempting to add a new infix operator, say @, with
the same precedence and associativity as addition (+) would entail writing this new production
that does not begin with a marking terminal, thatisE == E ‘@’ T.

To allow such a new operator, we refactor the grammar to give infix operators (at each precedence
level and associativity) their own nonterminals, as shown in Fig. 7(b). Now, the new infix operator
can be added in the extension grammar using the new production AddOp ::= ‘@ . This refactoring
requires no change to how the abstract syntax is represented. We can go a step further and refactor
the host language grammar to allow new infix operators with either left, right, or no associativity

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:16 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

at precedence levels between those of existing operators. To allow such operators at the precedence
between additive operations (derived from E) and multiplicative operations (derived from T), we
can add three new nonterminals between E and T in the grammar for each type of associativity, as
shown in Fig. 7(c). Extension writers can then add new productions for these ETLOp, ETROp, and
ETNOp operator nonterminals just as was done for AddOp above. This technique is used to allow
for the new infix operator “=~” in the regular expression extension.

This pattern is used throughout the ABLEC grammar for all infix operators. Admittedly, writing
the expression grammar in this way is rather tedious. However, the strong composability guarantees
that we have here make this a small price to pay. It is only an up-front cost to the host language
developer, but has many benefits for the end user programmer.

7 ENABLING ADDITIONAL SEMANTIC EXTENSIONS IN ABLEC

This section describes various features in the specification of the host language abstract syntax and
semantics of ABLEC that allow for additional classes of language extensions. All of these enrich
the host language by providing semantic extension points or adding host language constructs that
go beyond what is needed in a monolithic implementation of C. One simple example of these is
the inclusion of the GNU C Compiler extension for statement-expressions which has the concrete
syntax of ({ statement-list ; expression ; }).This frequently-used construct executes its statements
before evaluating the final expression as its value. For example, a pattern in a match statement is
translated to an if-then-else condition that uses this to assign values to pattern variables that are
then used in the statement part of the clause before evaluating to true or false to indicate a pattern
match.

Below we first describe operator overloading, which provides, as an alternative to parsing, a
second way to introduce extension productions into the abstract syntax tree. Next, we describe
how language extensions can specify non-local transformations and lift new declarations up global-
scope of the program, and then describe how the extensible type qualifiers of Foster et al. [1999]
are incorporated into ABLEC. We conclude with a discussion of an extensible environment and
mechanism for performing substitutions on abstract syntax trees.

7.1 Operator Overloading

Many languages such as C++ and Python, but not C, allow operators to be overloaded to apply to
new types of values. The abstract syntax of ABLEC is structured so that extensions can overload host
language operators for types that they introduce. These new extension types may be associated with
syntax for value literals and semantic analyses for domain-specific error checking, thus providing
benefits beyond what is available in library-based operator overloading in the languages. But for
operator overloading, no new concrete syntax is added, instead, the overloading mechanisms of
ABLEC create the extension abstract syntax.

As an example, consider an extension that provides arithmetic over integer intervals. An interval
type and value constructor are the only syntactic extensions, but it overloads arithmetic operators.
The following fragment negates the first interval, adds the result to the second, and assigns to x
the interval range from 4 to 8:

interval x; x = - interval[1,3] + intervall[7,9];

In scanning and parsing this example, it is concrete syntax in the ABLEC host language that
recognizes the unary minus (=) and addition (+) operators and creates the initial AST for them. For
unary minus expressions the so-called dispatching production unaryMinusDispatch is used, see
Fig. 8. This production has a so-called collection attribute named overloads that is a list of pairs of
extension names and productions that may overload this operator. It is initialized to the empty list

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:17

grammar edu:umn:cs:melt:ableC:abstractsyntax;

abstract production unaryMinusDispatch

um: :Expr ::= e::Expr
{ production attribute overloads :: [Pair<String, Expr ::= Expr> 1;
overloads := [];

local attribute overloadExpr :: Maybe<Expr>;
overloads = lookup (extName(e.typerep), overloads);

forwards to case overloadExpr of
| just(fwrd_prod) -> fwrd_prod(e)
| nothing() -> unaryMinus(e) ;

Fig. 8. Operator overloading: Dispatch production for unary minus.

using the : = initial-value operator instead of the definition operator =. This production looks in its
overloads attribute for a pair with the same extension name as is found on the type (typerep) of
the child expression e; lookup returns nothing() if no match is found, if one is found it returns
the production wrapped in a just production. These implement a type similar to Maybe in Haskell
or option in ML dialects. If no overloads are found, unaryMinusDispatch forwards to the host
language unaryMinus of e. Otherwise it uses the production found in the overloads attribute
(fwrd_prod) and uses it to construct the tree to forward to.

In Fig. 9 the interval extension spec-
ifies that it overloads unary minus
by using an aspect production for
unaryMinusDispatch to add the pair con-
taining its name and the production that
implements unary minus on intervals
(unaryMinusInterval). This is done us-

grammar org:D:interval;
import edu:umn:cs:melt:ableC:abstractsyntax;

aspect production unaryMinusDispatch
um: :Expr ::= e::Expr
{ overloads <- [pair("org:D:interval",

ing the <- contribution operator instead
of the = or := operator. The produc-
tion unaryMinusInterval may do ad-
ditional error checking and will then
forward to the C language implemen-
tation of interval unary minus. (These
equations are elided since our concern
is how this production is added to the
AST without any new concrete syntax.)
Thus, unaryMinusInterval is used just

unaryMinusInterval) 1;

}

abstract production unaryMinusInterval
um: :Expr ::= e::Expr

{ ... equations and forwards-to specification...

}

Fig. 9. Operator overloading: Extension fragment for over-
loading unary minus.

like other abstract productions are. The

only difference is that it is not the semantic actions in the parser that introduce it, but this operator

overloading mechanism. Note that the type of second pair element in overloads is the same type

as the unary minus dispatching production and the overloading interval unary minus production.
ABLEC supports overloading of many host language operators including array access, function

call, field access, using this technique, or a slight variation of it. For binary operators the “double

dispatch” problem is solved by first checking if an extension overloads the operator for both types,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:18 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

abstract production while template<a, b> struct pair a fst; b snd; ;
s::Stmt ::= cond::Expr body::Stmt
{ s.host = while(cond.host, body.host); int main() {
s.lift = while(cond.lift, body.lift); template pair<int, float> p;
s.gDecls := cond.gDecls ++ body.gDecls;
} }
(a) (b)

Fig. 10. (a) Specification of host and lifting attributes for while-loops. Other constructs follow the same
pattern. (b) Example use of the template extension that relies on this declaration lifting mechanism.

then checking just the left type, and finally the right type. Three separate collection attributes are
used for this. The vector extension described in a technical report for this paper [Kaminski et al.
2017] overloads several of these operators. In addition, extensions that introduce new operators, such
as the infix operators discussed previously, can use this technique so that they can be overloaded
by other extensions that build on them.

7.2 Non-local Transformations, Lifting Declarations

Part of the reason that ABLEC is able to solve the extended expression problem described in
Section 2.2 is that each extension construct, such as the match statement or cilk function, forwards
to its C-code implementation. This can be seen as a local transformation, although the extended
construct is not replaced in the AST by what it forwards to but just links to it so that attributes can
be retrieved from it during attribute evaluation.

But for some extensions this can be limiting as it is not uncommon for extensions to need to lift
new declarations up to the global scope of the program. For example, an extension that introduces
A-expressions (closures) needs to lift the function that implements it up to the global scope. Thus
we have added the ABLEC host language production injectGlobalDecls with the signature Expr
::= Decls Expr that expressions such as a A-expression can forward to. The first child is the
declarations that are to be lifted; the second is the expression that implements the extension. In the
case of the A-expression the list of declarations contains the implementing function and generated
struct to implement the environment containing values of free variables. The expression initializes
this struct and then evaluates to a reference to the lifted function declaration.

This injectGlobalDecls construct is in the ABLEC host language but is not an actual C construct
that the vendor C compiler (that compiles the generated host language C program to produce an
executable) will recognize and thus it must be translated away by ABLEC. This is done using two
higher-order synthesized attributes that are similar to the slow_clone attribute seen previously.
The first is host. It is defined for all host productions that constitute the abstract syntax of the
language and injectGLobalDecls. For example, the host attribute on the while loop production,
see Fig. 10(a), simply reconstructs the tree with its host children. Extension productions do not
define this attribute and thus the computation of the host attribute occurs only on host language
productions.

The main driver function, implementing the process described in Fig. 2, gets the host attribute
off of the AST constructed by the parser generated for the extended language. This tree contains
no extension constructs but will contain injectGlobalDecls constructs. From this host tree, the
driver process gets the 1ift attribute, which computes the tree in which declarations propagated
up the syntax tree in the gDecls attribute are inserted in the syntax tree above the globally-
scoped declaration in which they occur. An invariant maintained by these two attributes is that all

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:19

declarations in the host tree occur either in 1ift or in gDecls. Fig. 10(a) shows these attributes
for the while-statement.

One extension that utilizes lifting is the template extension, which provides C++-style templated
types and functions to be declared and instantiated. For example, a programmer can use this
extension to implement a templated struct defining a generic pair, as shown in Fig 10(b). This
requires the instantiated version of the pair struct to be lifted to the global level. Note that writing
the same instantiation of pair in multiple places should not result in the same struct being lifted
to the global score multiple times. It is the responsibility of the extension writer to ensure that
duplicate declarations are not created; a declaration passed to injectGlobalDecls is wrapped up
in a utility production that first checks the environment to see if the declaration already exists,
before forwarding to the empty declaration or the declaration that was intended to be lifted. To
enable this, new definitions from gDecls being passed up the tree are inserted into the environment
at the global scope for all points in the tree to the right of where the new declaration was injected.
Note the second use of template to instantiate a pair struct with int and float in Fig 10(b). C++
does not require template in this location, but since extensions need to begin with a marking
terminal, our implementation of templates requires this extra use. This is another example of the
adjustments to extension syntax that extension developers must sometimes make to ensure that
their extensions will compose with others. More details about the template extension may be found
in the technical report for the paper [Kaminski et al. 2017]. C++ templates are very complex and
we have not attempted to implement them in their entirety.

Note that this can be generalized to lift declarations to different enclosing scope levels. For
example, it could be used in an extensible specification of Java to lift declarations up to the
enclosing method, class, or package level.

7.3 Extensible Type Qualifiers

Foster et al. [1999] introduced an elegant and extensible notion of type qualifiers to support a
simple notion of subtyping. As an example, consider the C type qualifier const; a value of type
int * can be used anywhere that a value of qualified type const int * is expected, but not vice
versa. Annotating a type with const thus indicates a supertype; they call this a positive qualifier.
In contrast, a pointer qualified as nonnull (added as an extension, to indicate that the pointer is
not null) can be used anywhere that an unqualified pointer is expected, but not vice versa; this
is a negative qualifier. In a discussion of practical considerations of extending a language with
new type qualifiers, Foster et al. [1999, Section 2.5] assert that the changes to concrete syntax are
minimal and could be easily implemented using well-understand techniques to avoid ambiguity.
The extensibility and non-ambiguity guarantees of ABLEC make it well-suited for providing support
for these kinds of qualifier extensions.

Syntactically, adding extensions like this is simple as the concrete productions consist of simply
the marking terminal (e.g. nonnull) on the right hand side. These construct a simple AST of
host language nonterminal type TypeQualifier. In the initial design of ABLEC, type compatibility
involving type qualifiers was done in an ad-hoc manner based on the semantics of the qualifiers built
into C. This was generalized to support arbitrary type qualifiers by adding a Boolean isPositive
attribute to TypeQualifier that the extension production defines to indicate if a qualifier is positive
or negative. Additionally, the type compatibility function was changed so that to determine if type
71 is a subtype of type 73, it checks that the positive qualifiers on 7 is a subset of the positive
qualifiers on 7,, and that the negative qualifiers on 7, is a subset of the negative qualifiers on 7.

The subtyping semantics of the type qualifiers in C, which consist of const volatile, and
restrict, have been implemented in the host language in the manner described. The semantics of
const additionally disallows non-initial assignments. This is done by generating an error on the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:20 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

assignment production if the type qualifiers on the type of the assigned-to expression contains the
const qualifier.

One type qualifier that we have implemented as an extension is nonnull. The new production for
nonnull simply consists of the marking terminal, and constructs an AST of type TypeQualifier.
The subtyping semantics of nonnull are obtained from the checks added to the host language
as discussed above. Like const, the semantics of nonnull extend beyond subtyping. In order to
statically detect possible null-pointer dereferences, we may wish to require any pointer that is
dereferenced to be annotated as nonnull. This is easily accomplished by an aspect production for
the pointer-dereference operator that generates an error if the list of qualifiers on the type of the
expression being dereferenced does not contain nonnull. (This is similar to the aspect production
for unaryMinusDispatch added by the interval extension on the left in Fig 9.) There are many
practical uses of type qualifiers in addition to the few mentioned here. Another extension we have
developed is based on the work of Dietl et al. [2011] and utilizes type qualifiers to implement
type-safe enumerations like those in C++ (but not C).

Extensible type qualifiers differ from other kinds of extensions in that new checks are performed
that may cause previously error-free code to no longer be allowed. This presents some difficulty
when using new type qualifiers with libraries that do not use new qualifiers like nonnull (and
is addressed by previous work [Shankar et al. 2001]) and, as in our case, with independently-
developed extensions that may generate (that is, forward to) host language code that does not use
new extension-introduced qualifiers. If soundness is required of the semantics of type qualifiers —
e.g. if every possible dereference of null should be caught — then a certain number of false positives
is unavoidable. For example, code generated by an extension that is developed independently of the
nonnull extension may declare and deference pointers, but has no way to annotate such pointers
as nonnull. Abstract syntax tree nodes for constructs such as expressions and statements have
annotations that indicate their location. This location is structured data, constructed by a loc
production to indicate a position in a source file or by a generatedLoc production to indicate
that the construct was generated during forwarding or some other transformation process. This
location information can be used by the aspect production for dereference to check if the location
indicates that the dereference was generated, and if it was it does not produce an error message if
the expression to be dereferenced is not qualified by nonnull.

The system of type qualifiers that we have added to ABLEC is flow-insensitive. Foster et al.
[2002] expand the usefulness of type qualifiers with a notion of flow-sensitivity, allowing qualifiers
to be inferred where possible and to differ at each program point. Adding support in ABLEC for
flow-sensitive type qualifiers is future work. Type qualifiers in ABLEC can also introduce rich forms
of concrete syntax. For example, a qualifier for specifying physical units can include expressions
over SI measurement names; for example a type can be qualified by units(kg*m*2) to indicate a
measurement in newtons. Additionally qualifiers can inject dynamic code checks in static analysis
is infeasible or not appropriate for the situation; for example, a runtime check comparing a pointer
to null before dereference can be generated where a static check is not possible. They can also
inject code for tasks such as logging or automatic conversion of data. Carlson and Van Wyk [2017]
provide a more complete discussion of the capabilities of ABLEC type qualifiers.

7.4 Extensible Environment and Substitution Mechanisms

Another feature that extension writers may need is the capability to add additional namespaces to
the environment. This is used in the template extension where templated declarations must be able
to be looked up to find their parameters and the declaration to substitute. This can be implemented
by structuring the environment itself as a tree of definitions, and allowing extensions to add new
attributes to represent contributions from new namespaces.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:21

One pattern that may occur for extension writers is to be able to fill in ‘holes’ in a pre-constructed
AST. This is the case for the template extension, where a function or type expression must have
names substituted for types. ABLEC also provides, as a utility to extension writers, a way to parse
strings into ASTs, which may have names which must be replaced with sub-trees. To allow this,
ABLEC provides as a utility for extension writers a set of attributes which can be used to transform
the AST into a substituted version.

8 EXTENSIONS MAY USE OR EXTEND OTHER EXTENSIONS

While the focus on this work is on independently developed language extensions and how they
can be automatically and reliably composed, this section describes how language extensions can
intentionally depend on other extensions: either to make use of other language extension constructs
in their translation or to extend the syntax introduced by some other extension. An example of this
first type of dependence can be seen in an extension that adds a simple vector type and overloads
the addition operator + for concatenating vectors, as seen in the example below and described in
more detail in the technical report for the paper [Kaminski et al. 2017]:

vector<int> a = ...; vector<int> b = ...; vector<int> ¢ = a + b;

The vector concatenation production forwards to a call to a template function that implements
concatenation. Here the vector extension imports the template extension so that it may consider
the composition of ABLEC and the template extension as the “host” language that must forward to.

The second type of dependence is more interesting and can be seen on line 34 of Fig. 1 where
the regular expression extension extends the concrete (and abstract) syntax of the pattern language
derived by the Pattern_c (respectively, Pattern) nonterminal defined in the ADT extension. The
regular expression Pattern production forwards to the pattern expression (shown in concrete
syntax form here) “v where rxmatch(v, trx) }” where v is a pattern variable that always matches
the string scrutinee (in this case the string in the Leaf constructor), trx is the translation of the
regular expression literal to the C host language, and rxmatch is a function provided by the regular
expression extension that evaluates to true if trx matches the string. This value is what determines
if the when clause will cause the pattern to match or not.

9 RELATED WORK

There are many tools and techniques for extending programming languages and compilers. Below
we discuss various categories of these tools, focusing on those most closely related the work
presented here and how these address the extensible language challenges discussed in Section 2.2.

Traditional Compilers. These are usually constructed to allow compiler engineers to add new
analyses and optimization passes. Examples of these include the Rose compiler framework [Quinlan
2000], the Glasgow Haskell compiler (GHC), Cil [Necula et al. 2002], and LLVM and its associated C
compiler, Clang. While some of these even allow programmers to turn on or off various integrated
extensions, they do not support extensions that introduce new syntax in any meaningful way
beyond directly modifying the compiler nor provide a solution to the expression problem.

Extensible language frameworks. There are several language tools that similarly use declarative
formalisms such as context-free grammars, attribute grammars, or term rewriting rules. These
include attribute grammar approaches such as JastAdd [Ekman and Hedin 2007b] and Kiama [Sloane
2011], term-rewriting systems such as Stratego [Visser 2001] and Spoofax [Kats and Visser 2010],
and general meta-programming systems such as Rascal [Klint et al. 2009]. While these nicely
support the modular specification of language features, they generally lack some notion similar to
forwarding to satisfy the automatic composition criteria (EP6). Most modern attribute grammars

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:22 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

do not use a well-definedness check and thus do not satisfy the separate compilation and type
checking criteria (EP4). In contrast, JastAdd does statically check that grammars are well-defined,
but after grammar modules have been composed.

Of particular interest is the work in using attribute grammars for the modular development of
languages [Adams 1993; Farrow et al. 1992; Ganzinger 1983; Kastens and Waite 1994; Saraiva and
Swierstra 1999], but this work is primarily aimed at helping compiler engineers reuse language
specifications and provide no analyses like SILVvER’s modular well-definedness analysis. For example,
the JastAdd [Ekman and Hedin 2007b] attribute grammar system, in which reference attributes
were developed, also supports higher-order attributes [Vogt et al. 1989], and circular attributes. It
was used to specify the Extend] extensible Java compiler [Ekman and Hedin 2007a] in which an
initial Java 1.4 specification was extendend to Java 1.5, 6, 7, and 8. This demonstrates JastAdd’s good
support for modular language extensions but, as mentioned above, checks for well-definedness are
done after grammar modules have been composed.

The Spoofax [Kats and Visser 2010] language workbench is a similar system but uses Stratego-
based term-rewriting and a variety of domain specific languages for specifying language syntax and
semantics. It uses scannerless generalized LR (SGLR) parsing, and thus can generate a parser for
any context-free grammar, but this approach provides no guarantees that the composed grammar
is not ambiguous. However, by eschewing a traditional scanner and parsing down to the character
level, SGLR can handle overlapping keywords in a manner not unlike a context-aware scanner.
Sugar] [Erdweg et al. 2011] is an extensible specification of Java built using Spoofax that aims to
provide language extensions as libraries that are simply imported into a program. SGLR parsers
are constructed when the extended program is compiled, and are cached to avoid rebuilding on
every compilation. While the library-based model with runtime composition is a major advantage
of Sugar], it suffers the same drawbacks mentioned for the Spoofax language workbench.

XTC [Grimm 2006] and Xoc [Cox et al. 2008] are two notable extensible C compilers. XTC
supports modular specification of syntactic extensions to C using parsing expression grammars
(PEGs). These are similar in form to context-free grammars but compose using ordered-choice
for productions with the same left-hand side. These are difficult to reason about since ordered-
choice silently removes all ambiguities. Though unlikely, this does present the possibility for one
extension’s syntax to elide the syntax of another. ABLEC shares the same goals of programmer-
directed composition of language extensions as Xoc [Cox et al. 2008], another extensible C compiler.
Xoc uses a GLR-based parser, so extension specifications have a form similar to those in ABLEC. But
Xoc provides no assurances that the extensions will reliably compose and grammar ambiguities are
presented to the programmer as a syntax error. Xoc uses an attribute grammar-like mechanism for
semantic analysis but neither it, nor XTC, support something like forwarding nor satisfy all of the
expression problem criteria EP1- EP6.

There are other instances of extensible languages constructed using CopPER and SILVER. But both
ABLE] [Van Wyk et al. 2007] (for Java) and ABLEP [Mali and Van Wyk 2011] (for Promela) predate
the modular well-definedness analysis (ABLE] also predates the modular determinism analysis) and
thus do not attempt to find the sweet-spot of extensibility that ABLEC does and thus many of the
problems faced by ABLEC are not addressed in those earlier works.

Projectional editing systems. MPS [Voelter 2011] and Intentional Programming [Simonyi et al.
2006] are extensible language systems that avoid the need for a parser by using a special editor that
lets one alter ASTs directly, even though it looks as if one is editing a text file. While this avoids
the challenges of building composable parser specifications, it does lock the programmer into a
specific editing tool, whereas ABLEC allows programmers to use the text editor of their choice.
mbeddr [Voelter et al. 2012] is an extensible C translator built using MPS that adds a number of

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:23

extensions for building embedded systems. It does not offer a solution to all of the expression
problem criteria, instead opting for an object-oriented solution, and so adding new analyses may
involve changing the host language implementation. Intentional Programming, on the other hand,
does satisfy the automatic-composition criteria (EP6) since forwarding was originally specified in
Intentional Programming. But it does not satisfy the separate type checking criteria (EP4).

Additional approaches. Macros systems (traditional, hygienic, etc.) [Weise and Crew 1993] and
embedded domain specific languages [Hudak 1996] allow new language constructs to be added but
are limited to the existing syntactic forms of the language. Perhaps the most interesting system
with macros is Racket [Flatt 2010] which supports hygienic macros [Kohlbecker et al. 1986] and
builds a type system on top of an underlying dynamic language through macros (called Typed
Racket), demonstrating the semantic analysis capabilities of its macro system. However, it and
other macros systems do not offer a solution to all of the expression problem criteria. For embedded
DSLs, new analysis is restricted to what can be embedded into the host language’s existing type
system, and these embeddings typically result in difficult to understand error messages.

The Delite project uses Scala as a host language for embedding domain-specific constructs and
lightweight modular staging [Rompf and Odersky 2010], a type-based approach to multi-stage
programming, to analyze and optimize DSLs embedded in Scala. Delite comes with no ready
solution for the expression problem, but the approach is potentially flexible enough to simply adopt
by convention one of Scala’s solutions for the problem. While this approach avoids an external
translator such as ABLEC, it does require a sophisticated host language that supports multi-stage
programming,.

Rendel et al. [2014] explore the relationship between object algebras and attribute grammars in
the context of the expression problem. A technique is presented for encoding L-attributed grammars
as object algebras in Scala, and claims of the scheme’s modularity are supported by a case study in
which a monolithic compiler is made extensible by translating it into the encoding. Although EP4
is addressed in the sense that attributes can be defined and type-checked separately, it is only at
composition-time that errors are raised; without a modular well-definedness analysis there is no
guarantee that independently-developed algebras will compose error-free.

There are many solutions to the expression problem in the programming language literature, e.g.
the very direct Scala solution by Wang and Oliveira [2016]. The composition process here, and in
similar approaches, involves writing new classes that thus have new constructor method names
that build the AST. This presents a problem here since extensions need a known name to use to
construct host language ASTs to forward to.

Safe extensibility. While most extensible language frameworks seems to value expressiveness
over reliable composition, not all do. Wyvern [Omar et al. 2013, 2014] and VerseML [Omar 2017]
are the only extensible language systems besides ABLEC, to our knowledge, that supports reliable
composition of independently developed language extensions, at least syntactically, without aban-
doning parsing in favor of projectional editing. It uses a white-space sensitive parsing technique
that uses indentation to isolate extension fragments to be parsed by a language extension. Or
alternatively, Wyvern extension fragments can also be wrapped in balanced braces, parentheses or
quotations which ensure the same isolation constraint. Wyvern uses a bi-directional type system to
determine the types of these fragments and then chooses the parser to use based on the type. This
parser runs after the initial parsing step which skips the language extension fragments. The aim
here is to isolate the independently-developed language extensions and is similar in intent to the
goals of CoPPER’s modular determinism analysis. The major difference is that Copper distinguishes
extensions syntactically, where Wyvern leverages type information to do so. Since this type-based
distinction happens during program compilation, and not during the composition of extensions as

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:24 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

done by COPPER, it is more flexible than what is used in ABLEC. While Wyvern ensures extension
syntax can be composed safely, it does not accommodate introducing new semantic analysis of the
host language and thus also does not satisfy the expression problem criteria.

10 CONCLUSIONS, DISCUSSION, AND FUTURE WORK
10.1 Conclusions

In this paper we have described ABLEC, an extensible language framework for C, and shown
several composable language extensions for it. These extensions all satisfy the requirements of the
modular determinism analysis (MDA) and the modular well-definedness analysis (MWDA). Doing
so ensures that the composition of these, and other extensions that satisfy the analyses, will form a
language specification that is unambiguous and complete. A primary contribution of the paper is to
demonstrate that the restrictions imposed by MDA and MWDA in a mainstream general purpose
host language are not onerous. While they impose some restrictions on language extensions in
order to provide certain guarantees on the composability of independently-developed language
extensions, they still allow rather expressive and useful extensions to be specified. Additional
examples of language extensions can be found in the technical report for the paper [Kaminski et al.
2017] and on the ABLEC website?. ABLEC is available under an open source license.

Most of the extensions we have developed, such as the Cilk and algebraic datatype extensions,
required little forethought in the design of the C host language SILVER specification. However, we
have found that structuring the host language in certain ways and adding some extension points in
the grammar do allow additional kinds of extensions to be made. For example, in Section 6, we
refactored the concrete syntax specification of C to allow new infix operators to be added. This did
not change the language, but did change the results of the modular determinism analysis to allow
new infix operators. We also added, in Section 7.2, a mechanism for lifting new declarations from
an extension use point to the global scope of the program.

10.2 Discussion

The goal of the modular analyses is to ensure that the composed translator not terminate abnormally
due to unforeseeable interactions between extensions. Extensions can have bugs that, for example,
divide by 0 or take the head of an empty list and thus cause the translator to abort. Similarly there
are unenforced restrictions that extension writers use their Internet domain name in naming their
grammars and that their extension passes the modular analyses. Another unenforced restriction is
that extension writers do not claim to overload operators for host language types or extension types
that they do not define. These are not enforced but violating these restrictions and assumptions is
easily detected and the offending extension is easily identified. The aim is that extensions writers
acting in good faith can avoid composition errors that the programmer composing the extension is
not prepared to handle.

One question to ask about this work is the following: if there are additional extension-enabling
refactorings to make or facilities to add to ABLEC how would these changes to the host language
affect existing language extensions? Would existing working extensions now fail the modular
analyses with the new host language? For example, we are in the process of adding attributes
to construct program flow graphs to perform control and data flow analysis. This will likely add
additional host language inherited attributes potentially causing extensions to fail the modular
well-definedness analysis. There is no complete solution; problems with software evolution affect
all software, but there are some observations to make. First, we note that some of the features
added in Sections 6 and 7 would not have affected pre-existing extensions. For example, adding the
non-local lifting transformations in Section 7.2 would not change the flow of attributes in a way

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:25

that would invalidate extensions that already pass the modular well-definedness analysis. Second,
we do anticipate that with more experience, the features in Sections 6 and 7 will form a hopefully
small set of “best practices” for designing extensible languages — not an unending slippery slope
of modification. We show these new features to illustrate how host language design can impact
extensibility. Finally, even though this approach may not be able to avoid breaking changes to
programming languages that do occur (e.g. migrating from Python version 2 to 3) this extensible
approach can smooth out the evolutionary process by allowing host language designers to focus
on the core fundamental aspects of the language (e.g. its type and module system) while allowing
many other design and development issues to be handled by composable language extensions.

When we talk about extensible languages or compilers, we may implicitly evaluate the claim
of extensibility from our own perspective as language developers: Is the notation for specifying
language extension convenient for me? What limitations are imposed on specifications? But this
perspective clouds what arguably matters most: the perspective of the extension user. This is the
programmer who is not a compiler engineer, and who cannot write the “glue” code necessary to
compose extensions. They do not expect the composition process to fail, neither when extensions
are composed, nor when the compiler for the composed language fails to process their program.
Thus, we have stressed the importance of composability for the programmer over convenience or
simplicity for the language extension or host language developer.

But this does not mean there are not significant benefits to language extension developers as
well. Consider the developers of Cilk. Their interest was in language abstractions for parallel
programming with sophisticated run-time support. But to realize their ideas they needed to build
their own Cilk translator that parses and analyses all of C in addition to the Cilk features. This
is no small endeavor and the journey of the Cilk abstractions from a research language to their
inclusion in the Intel compilers is a long one. Would it not be more appealing to develop one’s
ideas for new language abstractions in a framework where one can focus on those abstractions and
not need to rebuild so much language infrastructure? It is our conjecture that if, as a community,
we can provide language frameworks that have strong guarantees of composition then they are
more likely to be adopted by programmers, provide more opportunities for programmers to use
the domain-specific abstractions needed for their particular task at hand, and thus provide real
user feedback to the abstraction designers.

10.3 Future Work

While we have found ABLEC to work well for a wide variety of language extensions, there are
enhancements that we would like to make. First, neither SILVER nor ABLEC has built-in sup-
port for avoiding name capture in the generated C code as found, for example, in hygienic
macros [Kohlbecker et al. 1986]. SILVER’s module system ensures no name clashes between different
SILVER grammar modules by using fully qualified names that include the unique grammar name
of the extension (when that grammar name is based on the users Internet domain). Extension
developers can avoid name clashes in the generated C code with other extensions by prefixing
their names with a C-allowed version of the grammar name and then avoid generating duplicate
names from their extension. This works but is unsatisfactory and we are investigating extensions
to ABLEC to address this, perhaps based on recent algorithms for this [Erdweg et al. 2014; Ritschel
and Erdweg 2015].

If the extended ABLEC program reports no syntax or semantic errors, then an error caused by
inadvertent name capture or any other incorrect transformation to C is a serious problem. In fact,
we should add a third requirement to the reliable parsing and expression problem challenges in
Section 2.2, that if there are no errors in the extended program there should be no errors in the
generated program. Lorenzen and Erdweg [2016] have shown how to verify this automatically on

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

98:26 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

a significant subset of Java. While impressive, this primarily shows that the language extensions
translation and type checking are in a sense consistent with one another. In the more general setting
of attribute grammars, we also need to establish a notion of non-interference between extensions.
Specifically we want extension developers to be able to state properties about the language defined
by combining their extension with the host language. For example, the extension that introduced
the nonnull type qualifier may want to state (and prove) the property that no programmer-written
pointer dereferences of null pointers will occur at runtime. This property should continue to hold
when additional language extensions are used. We are currently investigating two approaches to
this, one that requires a strict semantic equivalence between the extension construct and what it
forwards to. This approach is described in Kaminski [2017, Chapter 6] and Kaminski and Van Wyk
[2017]. This is a testing-based approach but relies on some ideas from formal verification to be
able to define a notion of non-interference that can assign blame to language extensions that in
some sense interfere. This approach has been successfully applied to some extensions to ABLEC
but does impose additional restrictions on their expressiveness. A second approach that we are
investigating relaxes this restriction of semantic equivalence and instead requires only that the
extension preserves (or refines) the semantics (that is, attribute values) of what it forwards to.
But this approach imposes additional restrictions on what extension productions can forward to,
specifically, the child nodes whose nonterminals are declared in the host language must appear
unchanged in the forwards-to tree. Both of these approaches make different kinds of compromises
to achieve a notion of semantic composition guarantees, as opposed to the essentially syntactic/well-
formedness guarantees provided by the modular determinism and well-definedness analyses, and
further work is needed.

As mentioned above we are also in enhancing the supporting infrastructure of the ABLEC host
language attribute grammar to include attributes that construct program flow graphs. Besides the
obvious uses in performing control and data flow analysis, this could be used to support additional
extension optimizations and flow-sensitive type qualifiers as mentioned in Section 7.3.

ACKNOWLEDGMENTS

This material is partially based upon work supported by the National Science Foundation (NSF)
under Grant Nos. 1628929, 1047961, and 0905581. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not necessarily reflect
the views of the NSF.

We also thank August Schwerdfeger for his continued work on CoppPER and support in the
development of ABLEC.

REFERENCES

S.R. Adams. 1993. Modular Grammars for Programming Language Prototyping. Ph.D. Dissertation. University of Southampton,
Department of Elec. and Comp. Sci., UK.

AV. Aho, R. Sethi, and J.D. Ullman. 1986. Compilers — Principles, Techniques, and Tools. Addison-Wesley, Reading, MA.

Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles. 2007. Tom: Piggybacking rewriting
on Java. In Proceedings of the International Conference on Rewriting Techniques and Applications (RTA "07).

John Tang Boyland. 2005. Remote attribute grammars. J. ACM 52, 4 (2005), 627-687.

Martin Bravenboer and Eelco Visser. 2004. Concrete syntax for objects: domain-specific language embedding and assimilation
without restrictions. In Proceedings of the ACM Conference on Object Oriented Programming, Systems, Languages, and
Systems (OOPSLA "04). ACM, 365-383.

Travis Carlson and Eric Van Wyk. 2017. Type qualifiers as composable language extensions. In Proceedings of the 2017 ACM
SIGPLAN International Conference on Generative Programming: Concepts & Experience (GPCE ’17). ACM, New York, NY,
USA.

Russel Cox, Tom Bergany, Austin Clements, Frans Kaashoek, and Eddie Kohlery. 2008. Xoc, an Extension-Oriented Compiler
for Systems Programming. In Proceedings of Architectural Support for Programming Languages and Operating Systems

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

Reliable and Automatic Composition of Language Extensions to C 98:27

(ASPLOS).

Lukas Diekmann and Laurence Tratt. 2014. Eco: A Language Composition Editor. Springer International Publishing, Cham,
82-101.

Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivan¢ Muslu, and Todd W. Schiller. 2011. Building and Using Pluggable
Type-checkers. In Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11). ACM, New York,
NY, USA, 681-690.

Torbjérn Ekman and Gérel Hedin. 2007a. The JastAdd extensible Java compiler. In Proceedings of the ACM Conference on
Object Oriented Programming, Systems, Languages, and Systems (OOPSLA 07). ACM, 1-18.

Torbjérn Ekman and Gorel Hedin. 2007b. The JastAdd system - modular extensible compiler construction. Science of
Computer Programming 69 (December 2007), 14-26. Issue 1-3.

Sebastian Erdweg, Tillmann Rendel, Christian Kastner, and Klaus Ostermann. 2011. Sugar]: Library-based Syntactic Language
Extensibility. In Proceedings of the ACM Conference on Object Oriented Programming, Systems, Languages, and Systems
(OOPSLA °11). ACM, 391-406.

Sebastian Erdweg, Tijs van der Storm, and Yi Dai. 2014. Capture-Avoiding and Hygienic Program Transformations. In
Proceedings of the European Conference on Object Oriented Programming (ECOOP) (Lecture Notes in Computer Science),
Vol. 8586. Springer, 489-514.

R. Farrow, T. J. Marlowe, and D. M. Yellin. 1992. Composable attribute grammars. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL). 223-234.

Matthew Flatt. 2010. Reference: Racket. Technical Report PLT-TR-2010-1. PLT Inc.

Bryan Ford. 2004. Parsing expression grammars: a recognition-based syntactic foundation. In Proceedings of the Symposium
on Principles of Programming Languages (POPL). ACM, 111-122.

Jeffrey S. Foster, Manuel Fihndrich, and Alexander Aiken. 1999. A theory of type qualifiers. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI °99). ACM.

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-Sensitive Type Qualifiers. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI °02). Berlin, Germany, 1-12.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The implementation of the Cilk-5 multithreaded language.
In Proceedings of Programming Language Design and Implementation (PLDI *98). ACM, 212-223.

H. Ganzinger. 1983. Increasing Modularity and Language-Independency in Automatically Generated Compilers. Science of
Computer Programing 3, 3 (1983), 223-278.

Robert Grimm. 2006. Better extensibility through modular syntax. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI "06). ACM Press, New York, NY, USA, 38-51.

G. Hedin. 2000. Reference Attribute Grammars. Informatica 24, 3 (2000), 301-317.

P. Hudak. 1996. Building Domain-Specific Embedded Languages. Comput. Surveys 28, 4es (1996).

Ted Kaminski. 2017. Reliably Composable Language Extensions. Ph.D. Dissertation. University of Minnesota, Minneapolis,
Minnesota, USA. Available at http://hdl.handle.net/11299/188954.

Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017. Reliable and automatic composition of language
extensions to C — Supplemental Material. Technical Report 17-009. University of Minnesota, Department of Computer
Science and Engineering. Available at https://www.cs.umn.edu/research/technical_reports/view/17-009.

Ted Kaminski and Eric Van Wyk. 2011. Integrating attribute grammar and functional programming language features. In
Proceedings of the 4th International Conference on Software Language Engineering (SLE °11) (LNCS), Vol. 6940. Springer,
263-282.

Ted Kaminski and Eric Van Wyk. 2012. Modular well-definedness analysis for attribute grammars. In Proceedings of the
International Conference on Software Language Engineering (SLE) (LNCS), Vol. 7745. Springer, 352-371.

Ted Kaminski and Eric Van Wyk. 2017. Ensuring Non-interference of Composable Language Extensions. In Proceedings of
the 2017 ACM SIGPLAN International Conference on Software Language Engineering (SLE °17). ACM, New York, NY, USA.

U. Kastens and W. M. Waite. 1994. Modularity and reusability in attribute grammars. Acta Informatica 31 (1994), 601-627.

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax Language Workbench. Rules for Declarative Specification of
Languages and IDEs. In Proceedings of the ACM Conference on Object Oriented Programming, Systems, Languages, and
Systems (OOPSLA). ACM.

Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2009. RASCAL: a Domain Specific Language for Source Code Analysis and
Manipulation. In Proceedings of Source Code Analysis and Manipulation (SCAM).

D. E. Knuth. 1968. Semantics of Context-free Languages. Mathematical Systems Theory 2, 2 (1968), 127-145. Corrections in
5(1971) pp. 95-96.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. 1986. Hygienic macro expansion. In Proceedings
of the 1986 ACM conference on LISP and Functional Programming. ACM Press, 151-161.

Florian Lorenzen and Sebastian Erdweg. 2016. Sound Type-dependent Syntactic Language Extension. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2016). ACM, New York,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

http://hdl.handle.net/11299/188954
https://www.cs.umn.edu/research/technical_reports/view/17-009

98:28 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk

NY, USA, 204-216.

Yogesh Mali and Eric Van Wyk. 2011. Building Extensible Specifications and Implementations of Promela with AbleP. In
Proceedings of the International SPIN Workshop on Model Checking of Software (LNCS), Vol. 6823. Springer, 108-125.

Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. 2003. A Pattern Matching Compiler for Multiple Target
Languages. In Proceedings of the 12th International Conference on Compiler Construction (LNCS), Vol. 2622. Springer,
61-76.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. 2002. Cil: Intermediate Language and Tools for Analysis and
Transformation of C Programs. In Proceedings of the 11th International Conference on Compiler Construction (Lecture Notes
in Computer Science), Vol. 2304. Springer-Verlag, 213-228.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myer. 2003. Polyglot: An extensible compiler framework for Java.
In Proceedings of the 12th International Conference on Compiler Construction (LNCS), Vol. 2622. Springer, 138-152.

Cyrus Omar. 2017. Reasonably Programmable Syntax. Ph.D. Dissertation. Carnegie Mellon University, Pittsburgh, USA.

Cyrus Omar, Benjamin Chung, Darya Kurilova, Alex Potanin, and Jonathan Aldrich. 2013. Type-Directed, Whitespace-
Delimited Parsing for Embedded DSLs. In Proceedings of the First Workshop on the Globalization of Domain Specific
Languages (GlobalDSL °13). ACM, New York, NY, USA, 8-11.

Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and Jonathan Aldrich. 2014. Safely Composable
Type-Specific Languages. In Proceedings of the European Conference on Object Oriented Programming (ECOOP ’14), Richard
Jones (Ed.). Lecture Notes in Computer Science, Vol. 8586. Springer, 105-130.

Dan Quinlan. 2000. ROSE: Compiler Support for Object-Oriented Frameworks. Parallel Processing Letters 10, 02n03 (2000),
215-226.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. 2012. Decoupling
Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. ACM Transactions on Graphics 31, 4,
Article 32 (July 2012), 12 pages.

Tillmann Rendel, Jonathan Immanuel Brachthéuser, and Klaus Ostermann. 2014. From object algebras to attribute grammars.
In ACM SIGPLAN Notices, Vol. 49. ACM, 377-395.

Nico Ritschel and Sebastian Erdweg. 2015. Modular Capture Avoidance for Program Transformations. In Proceedings of the
2015 ACM SIGPLAN Conference on Software Language Engineering (SLE °15). ACM, New York, NY, USA, 59-70.

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A pragmatic approach to runtime code generation
and compiled DSLs. In Proceedings of the ACM SIGPLAN 2010 Conference on Generative Programming and Component
Engineering (GPCE °10). ACM, New York, NY, USA, 127-136.

Joao Saraiva and Doaitse Swierstra. 1999. Generic Attribute Grammars. In 2nd Workshop on Attribute Grammars and their
Applications. 185-204.

August Schwerdfeger. 2010. Context-Aware Scanning and Determinism-Preserving Grammar Composition, in Theory and
Practice. Ph.D. Dissertation. University of Minnesota, Department of Computer Science and Engineering, Minneapolis,
Minnesota, USA. Available at http://purl.umn.edu/95605.

August Schwerdfeger and Eric Van Wyk. 2009. Verifiable Composition of Deterministic Grammars. In Proceedings of the
Conference on Programming Language Design and Implementation (PLDI *09). ACM, 199-210.

August Schwerdfeger and Eric Van Wyk. 2010. Verifiable Parse Table Composition for Deterministic Parsing. In Proceedings
of the 2nd International Conference on Software Language Engineering (LNCS), Vol. 5969. Springer, 184-203.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. 2001. Detecting Format String Vulnerabilities with Type
Qualifiers. In Proceedings of the 10th USENIX Security Symposium. Washington, D.C., 201-218.

Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. Intentional software. SIGPLAN Notices 41, 10 (2006),
451-464.

Anthony M. Sloane. 2011. Lightweight language processing in Kiama. In Proceedings of the 3rd summer school on Generative
and Transformational Techniques in Software Engineering III (GTTSE *09) (LNCS), Vol. 6491. Springer, 408-425.

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010. Silver: an Extensible Attribute Grammar System. Science
of Computer Programming 75, 1-2 (January 2010), 39-54.

E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. 2002. Forwarding in Attribute Grammars for Modular Language
Design. In Proceedings of the 11th Conference on Compiler Construction (CC) (LNCS), Vol. 2304. Springer-Verlag, 128-142.

Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and Derek Bodin. 2007. Attribute Grammar-based Language Extensions
for Java. In Proceedings of the European Conference on Object Oriented Programming (ECOOP) (LNCS), Vol. 4609. Springer,
575-599.

Eric Van Wyk and August Schwerdfeger. 2007. Context-Aware Scanning for Parsing Extensible Languages. In Proceedings of
the International Conference on Generative Programming and Component Engineering (GPCE ’07). ACM, 63-72.

Eelco Visser. 2001. Stratego: A Language for Program Transformation based on Rewriting Strategies. System Description of
Stratego 0.5. In Rewriting Techniques and Applications (RTA’01) (Lecture Notes in Computer Science), A. Middeldorp (Ed.),
Vol. 2051. Springer-Verlag, 357-361.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

http://purl.umn.edu/95605

Reliable and Automatic Composition of Language Extensions to C 98:29

Markus Voelter. 2011. Language and IDE development, modularization and composition with MPS. In Proceedings of the
Generative and Transformational Techniques in Software Engineering (GTTSE ’11) (LNCS), Vol. 7680. Springer, 383-430.

Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. 2012. Mbeddr: An Extensible C-based Programming
Language and IDE for Embedded Systems. In Proceedings of the 3rd Annual Conference on Systems, Programming, and
Applications: Software for Humanity (SPLASH Wavefront ’12). ACM, New York, NY, USA, 121-140.

H. Vogt, S. D. Swierstra, and M. F. Kuiper. 1989. Higher-order Attribute Grammars. In Proceedings of ACM Conference on
Programming Language Design and Implementation (PLDI). ACM, 131-145.

Phil Wadler. 1998. The expression problem. (December 1998). Discussion on the Java-Genericity mailing list, available at
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt.

Yanlin Wang and Bruno C. d. S. Oliveira. 2016. The Expression Problem, Trivially!. In Proceedings of the 15th International
Conference on Modularity (MODULARITY ’16). ACM, New York, NY, USA, 37-41.

D. Weise and R. Crew. 1993. Programmable Syntax Macros. ACM SIGPLAN Notices 28, 6 (1993).

Matthias Zenger and Martin Odersky. 2005. Independently extensible solutions to the expression problem. In Proceedings of
the Workshop on Foundations of Object-Oriented Languages, FOOL ’12.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 98. Publication date: October 2017.

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Abstract
	1 Introduction and Motivation
	2 Expressive language extensions in ableC
	2.1 Full-featured Language Extensions and Their Composition
	2.2 Extensible Language Framework Criteria
	2.3 ableC - Attribute Grammar Based Language Extensions for C

	3 The Programmer's Perspective
	4 Developing Concrete Syntax For ableC Extensions
	5 Developing Semantics for ableC Extensions
	6 Enabling Additional Syntactic Extensions to ableC
	7 Enabling Additional Semantic Extensions in ableC
	7.1 Operator Overloading
	7.2 Non-local Transformations, Lifting Declarations
	7.3 Extensible Type Qualifiers
	7.4 Extensible Environment and Substitution Mechanisms

	8 Extensions May Use Or Extend Other Extensions
	9 Related Work
	10 Conclusions, Discussion, and Future Work
	10.1 Conclusions
	10.2 Discussion
	10.3 Future Work

	Acknowledgments
	References

