Aspect-Oriented Compilers

Oege de Moor!, Simon Peyton-Jones?, and Eric Van Wyk!

! Oxford University Computing Laboratory
? Microsoft Research, Cambridge

Abstract. Aspect-oriented programming provides the programmer with
means to cross-cut conventional program structures, in particular the
class hierarchies of object-oriented programming. This paper studies the
use of aspect orientation in structuring syntax directed compilers im-
plemented as attribute grammars. Specifically, it describes a method for
specifying definitions of related attributes as ‘aspects’ and treating them
as first-class objects, that can be stored, manipulated and combined. It
is hoped that this embedding of an aspect-oriented programming style
in Haskell provides a stepping stone towards a more general study of the
semantics of aspect-oriented programming.

1 Introduction

Compilers are often structured by recursion over the abstract syntax of the source
language. For each production in the abstract syntax, one defines a function that
specifies how a construct is to be translated. The method of structuring compilers
in this syntax—directed manner underlies the formalism of attribute grammars [2,
14,18]. These provide a convenient notation for specifying the functions that deal
with each of the production rules in the abstract syntax. The compiler writer
need not concern himself with partitioning the compiler into a number of passes:
the order of computation is derived automatically. One way of achieving that
ordering is to compute the attribute values in a demand-driven fashion. Indeed,
attribute grammars can be viewed as a particular style of writing lazy functional
programs [11,19].

Unfortunately, however, compilers written as attribute grammars suffer from
a lack of modularity [16]. In their pure form, the only way in which attribute
grammars are decomposed is by production. It is not possible to separate out
a single semantic aspect (such as the ‘environment’) across all productions, and
then add that as a separate entity to the code already written. The compiler
writer is thus forced to consider all semantic aspects simultaneously, without the
option of separating his concerns. Many specialised attribute grammar systems
offer decomposition by aspect, but only at a syntactic level, not at a semantic
one. In particular, aspects cannot be parameterised, and the compiler writer
cannot define new ways of combining old aspects into new. For the purpose
of this paper, let us define an aspect as a set of definitions of one or more
related attributes. This paper proposes an implementation of aspects that makes

them independent semantic units, that can be parameterised, manipulated and
compiled independently.

Our proposed compiler aspects are implemented in a variant of the pro-
gramming language Haskell, augmented with extensible records. It is this highly
flexible type system which allows us to give a type to each aspect. In particular,
it ensures that each attribute is defined precisely once — an important feature
when attribute grammars are composed from multiple components. It is assumed
that the reader is familiar with programming in Haskell [5]. The concepts are not
dependent on the Haskell language and they could be presented in a abstract,
language independent form. However, we hope that an concrete implementation
(available on the web [6]) will encourage others to explore aspect-oriented com-
pilers. The IATEX source of this paper is itself an executable Haskell program.
The lines preceded by the > symbol are the Haskell program that is this paper.
Note however, that some unenlightening portions of the program code appear in
ITEX comments and are thus not visible in the printed version.

2 A polymorphic type system for extensible records

We shall use the Trex extension of Haskell, which provides a rich set of record
operations [9]. In this variant of Haskell, a record with three fields called x,
y, and z may be written (x=0, y=’a’, z="abc"). The type of this expression
is Rec(x :: Int, y :: Char, z :: String). For each field name, there is a
selection function, named by prefixing with a #. We thus have, for example, that
#y (x=0, y=’a’, z= "abc") evaluates to ’a’. Records can be extended with
new fields. The function

fr=(z = "abc" | r)

adds a new field named z to its argument. The type of £ reflects that this function
should not be applied to a record that already has a field named =z:

f :: r\z => Rec r -> Rec (z :: String | r)

That is, for each row r of fields that lacks z, £ maps a record with fields r to a
record that has one more field, namely z, whose value is a string.

Since a record can be extended, it is natural to consider a starting point
for such extensions, namely the empty record, which is written EmptyRec, and
whose type is Rec EmptyRow.

3 Motivating example: Algol 60 scope rules

In contrast to a good many of its successors, Algol 60 has very clear and uni-
form scope rules. A simplification of these scope rules is a favourite example to
illustrate the use of attribute grammars [16]. A definition of an identifier x is
visible in the smallest enclosing block with the exception of inner blocks that
also contain a definition of x. Here we shall study these scope rules via a toy
language that has the following example program and abstract syntax:

>example = [Use "x", Use "y",
> Local [Dec "y", Use "y", Use "x"],
> Dec "x", Use "x", Dec "y"]

>type Prog = Block
>type Block = [Stat]
>data Stat Use String | Dec String | Local Block

We aim to translate programs to a sequence of instructions for a typical stack
machine. The type of instructions is

>data Instr = Enter Int Int | Exit Int | Ref (Int,Int)

Each block entry and exit is marked with its lexical level. Each entry is also
marked by the number of local variables declared in that block. Each applied
occurrence of an identifier is mapped to a (level, displacement) pair, consisting of
the lexical level where the identifier was declared, and the displacement, which is
the number of declarations preceding it at that level. To wit, we wish to program
a function trans :: Prog -> [Instr] so that, for instance, we have

trans example = [Enter 0 2, Ref (0,0), Ref (0,1),
Enter 1 1, Ref (1,0), Ref (0,0), Exit 1,
Ref (0,0), Exit 0]

4 A traditional compiler

We now proceed to write a program for trans, in the traditional attribute gram-
mar style, especially as suggested in [4,11,19, 26, 28]. This means that we will
not be concerned with slicing the computations into a minimal number of passes
over the abstract syntax; such a division into passes comes for free by virtue of
lazy evaluation. While this section only reviews existing techniques for writing
attribute grammars, we write trans using the extensible record notation to set
the stage for Section 5, where extensible records are a key component of our new
modular approach to defining attribute grammars.
First we provide the context—free grammar for the source language:

Program: Prog -> Block List: Block -> SList Use: Stat -> String
SList0: SList —> Local: Stat -> Block Dec: Stat -> String
SListl: SList -> Stat SList

This context—free grammar is close to the type definitions we stated earlier.
Roughly speaking, types correspond to nonterminals, and constructors corre-
spond to production rules. Note, however, that we have explicitly written out
productions for statement lists, although these productions are not explicit in
the type definitions.

The standard strategy for writing an attribute grammar consists of three
steps, namely the definition of semantic domains, semantic functions, and trans-
lators.

4.1 Semantic domains

For each nonterminal symbol S we define a corresponding semantic domain S’.
The compiler will map values of type S to values of type S’. These types will
likely include the generated code, as in type Prog’ = Rec (code :: [Imnstr]),
and will be defined via record types where the fields represent various aspects of
the semantics. For other grammar symbols, however, a mere record type will not
suffice, because their semantics depends on the context in which they occur. That
motivates semantic domains that are functions between record types: the input
record describes attributes of the context — these are called inherited attributes,
and the output record describes resulting attributes of the grammar symbol itself
— these are called synthesized attributes. For example, we have

>type SList’ = Rec (level :: Int, env :: Envir) ->
> Rec (code :: [Instr], locs :: [String])

That is, given the lexical level and environment (which maps identifiers to
(level,displacement) pairs), a statement list will yield code, which is a list of
instructions and a list of local variable names, called locs.

It remains to define a semantic domain for blocks and for statements them-
selves, which happens to be the same as for statement lists:

>type Block’ = Rec (level::Int, env::Envir) -> Rec (code::[Instr])
>type Stat’ = SList’

4.2 Semantic functions

Before we can define the semantic functions that make up the compiler, we first
need some primitive operations for manipulating environments. An environment,
is an association list from identifiers to (level,displacement) pairs, and we shall
write Envir for the type of environments. The two operations apply and add
are defined on environments and have the types apply :: Envir -> String ->
(Int,Int) and add :: Int -> [String]l -> Envir -> Envir. The function
apply e x finds the first occurrence of x in e, and returns the corresponding
(level,displacement) pair. We shall build up the environment by adding all local
definitions at a given lexical level. This is the purpose of the function add: it
takes a level, a list of local definitions, and an environment, and it adds the local
definitions to the environment.

We are now in a position to define the semantic functions. For each pro-
duction P: X -> Y Z, we define a semantic function p: Y’ -> Z’ -> X’ that
combines semantic values of the appropriate type. For example, we define the
binary semantic function slistl :: Stat’ -> SList’ -> SList’ that takes
the translations of a statement and a statement list, and produces the transla-
tion of the composite statement list. The two arguments, and the result appear
in reverse order, when compared to the production SList1. The type of list is
also obtained by reversing sides of the corresponding production rule to yield

>list :: SList’ -> Block’
>list slist blockIn
= (code = [Enter (#level blockIn) (length (#locs slistOut))]
++ #code slistOut ++ [Exit (#level blockIn)])
where slistIn = (level = #level blockIn,
env = add (#level blockIn) (#locs slistOut)
(#env blockIn))
slistOut = slist slistIn

V V V V Vv V

It is worthwhile to note the seeming circularity in the argument and result of
slist. Such definitions are only acceptable because of lazy evaluation. If we
programmed the same computation in a strict language, we would have to remove
such pseudo-circularities by introducing multiple passes over the abstract syntax.

The above definition of 1ist illustrates how in the traditional approach to
writing attribute grammars, different aspects must all be defined in a single
location. The aspects cannot be split apart, forcing the compiler writer to con-
sider all the semantic aspects simultaneously. It is this deficiency that we aim to
remedy below.

The definitions of the other semantic functions are similar and we omit de-
tails. To avoid confusion, we mention that our notion of ‘semantic function’ is
different from that in the attribute grammar literature. There, a semantic func-
tion is understood to be the right-hand side of the definition of a single attribute,
and what we call a semantic function is simply termed a ‘production’.

4.3 Translators

For each nonterminal S, we define a translator of type transS :: S -> S’ that
maps values of type S to the corresponding semantic domain S’. For example, the
function that translates programs has type transProg :: Prog -> Prog’ and
the translator for statement lists has type transSList :: SList -> SList’.
Assuming the existence of a semantic function for each production, we can define
a translator for each type in the abstract syntax by:

>transProg p = program (transBlock p)

>transBlock b = list (transSList b)

>transSList [] = slist0

>transSList (s:ss) = slistl (transStat s) (transSList ss)
>transStat (Use x) = use X

>transStat (Dec x) = dec x

>transStat (Local b) = local (tramsBlock b)

5 An aspect-oriented compiler

We now aim to embed the attribute definition language as a combinator library
into Haskell. To some extent, we already did that in the previous section, but

to obtain a truly modular design, we propose making nonterminals, attribute
definition rules, semantic functions and aspects first-class objects. We then use
polymorphic operations on extensible records to give types to these objects and
the combining forms for these objects. As we shall see below, the trickiest prob-
lem is to find an appropriate type of attribute definition rules.

As in the traditional approach above, we define a translator trans’ with
type trans’ :: Prog -> [Instr] so that trans’ example evaluates to the
same result as trans example above. As in Section 4.3, trans’ is defined using
a collection of translators, one for each production in the abstract syntax. The
semantic functions used in these translators are not the named semantic func-
tions program, list, etc. used in the traditional approach, but are extracted
from the fields of an attribute grammar named ag (). For example, the trans-
lator function transProg’ for production program is defined as transProg’ p
= #program (ag ()) (transBlock’ p). Thus, ag () is a record with a field
for each abstract syntax production which contains its semantic function. The
fields of this record have the same names and types used for the semantic func-
tions in the traditional approach. The important distinction is that the semantic
functions in ag () are built using an aspect-oriented approach. That is, they are
constructed by grouping attribute definitions by aspect instead of by production.
(The dummy argument () to ag and other constructs is required because of a
technicality in Haskell’s type system, known as the monomorphism restriction.)

5.1 Combining aspects

In our example, the aspects are named levels, envs, locss and codes and
define, respectively, the attributes lexical level, environment, local variables, and
target code. Given these aspects, we combine them into an attribute grammar
ag () in the following way:

>ag () = knit (levels() ‘cat‘ envs() ‘cat‘ locss() ‘cat‘ codes())

Here, knit and cat are functions for combining aspects into attribute grammars
and are defined below. Given this framework, it is clear that we can write new
aspects and add them into our attribute grammar using these combinators.

5.2 Aspect definitions

The semantic function of a production P must define each of the synthesised
attributes of the parent of P, and each of the inherited attributes of P’s children
(Section 4.2). Together we refer to these attributes as P’s output attributes. To
produce the output attributes, the semantic function takes as arguments all of
P’s input attributes, that is the synthesised attributes of P’s children, and the
inherited attributes of P’s parent. The trouble with the traditional approach is
that we are forced to define all P’s output attributes simultaneously — just look
at the definition of 1ist in Section 4.2. Our new, modular approach is to express

each semantic function as a composition of one or more rules. Each rule for a
production P defines a subset of P’s output attributes and is implemented as a
function which takes the input attributes from the parent and children of P.

Given a context—free grammar, a rule grammar is a record whose fields con-
sist of rules, one for each production. Because of the monomorphism restriction
mentioned above, we define an aspect as a function taking the dummy argument
() and returning a rule grammar. Many aspects involve only a tiny subset of
the productions. Think, for example, of operator priorities: these only affect pro-
ductions for expressions. A rule grammar involves all productions, by definition.
Therefore, definitions of aspects are written so that only the rules being defined
by an aspect are explicitly written and default rules are provided for the rest.

Our first concrete example of an aspect is lexical level. The level attribute
is inherited, and it is explicitly defined in two productions, namely program and
local:

>levels ()=(program=(\b p -> ((level = 0 | #i b), #s p)),

> local=(\b p -> ((level = #level (#i p) +1 | (nolevel(#i b))),
> #s p)) | grammar)

> where nolevel (level=_ | r) =r

> (program=_, local=_ | grammar) = none ()

As we will see, the default behaviour for rules for inherited attributes is to
copy the parent’s attribute value to the children. Thus, we don’t write explicit
rules for the other productions. This is accomplished by the phrase (program=_,
local=_ | grammar) = none() which first fills the fields in grammar (all those
except program and local) with the default copy rules pulled from the identity
rule grammar, named none (). These defaults are added to the definitions of rules
for program and local to create a complete rule grammar. The given rules are
written using lambda expressions (the \ above can be read as \); these functions
take the input attributes, held in the child argument b and parent argument p,
and return a tuple which adds the attribute level to the inherited attributes
of the child b, and adds no new synthesized attributes to the parent p. These
parameters pair up the inherited and synthesized attributes of each symbol in
a type of nonterminal: >type NT ai as = Rec (i :: Rec ai, s :: Rec as)
Note that both arguments to this type definition, ai and as, are row variables.
The fields in these rows are the attributes themselves.

The record generated by a rule keeps track of the attribute definitions made
so far; above, we are adding the level attribute definition to the attribute
definitions already made to the block b. In the definition of the rule for local
we override the default definition of level, by removing it with the function
nolevel, and then adding a fresh level field. Apart from the fact that the
above definition of levels is re-usable, we also find it easier to read: the flow of
the level computation over the abstract syntax tree is clear at a glance, especially
because the default copy rules allow us to leave out all irrelevant detail.

The local variables aspect of the compiler records the local variables declared
at each lexical level. The locs attribute is synthesised, and it is adjoined to

five rules. Because locs is synthesised, we cannot rely on default copy rules, so
this aspect is somewhat more complex than the previous one, which dealt with
inherited attributes.

>locss ()=(slist0 = (\p ->(locs= [1 | #s p)),

> slistl = (\a as p ->(#i a, #i as,

> (locs= #locs (#s a) ‘union‘ #locs (#s as) | #s p))),
> use = \a -> (\p—>(locs= [1 | #s p)),

> dec = \a -> (\p->(locs= [a] | #s p)),

> local = (\b p ->(#i b, (locs= [1 | #s p))) | grammar)

> where (slistO=_,slistl=_,use=_,dec=_,local=_|grammar) = none()

Here we see that use and dec are special: they are functions that take a string
and yield a rule of arity 0. This is the usual way of dealing with grammar symbols
(such as identifiers) that fall outside an attribute grammar.

5.3 Attribute definition rules

We now show the development of the rules used to compose semantic functions.
The type of a rule has been alluded to above as a function which maps a subset
of a productions input attributes to a subset of its output attributes. In this
section we provide a precise definition of rules. We build a semantic function
by composing rules. When we compose rules, the type system will ensure that
no attribute is defined twice; when we assert that a composition of rules defines
a complete semantic function, the type system will ensure that every attribute
that is used is also defined.

For example, we will be able to construct the list semantic function of
Section 4.2 thus:

list=knit1(list_level ‘catl‘ list_env ‘catl‘ list_locs ‘catl‘ list_code)

Here 1ist_level etc. are rules, catl composes rules, and knit1 transforms a
composed rule into a semantic function. The “1” suffixes refer to the fact that
the List production has just one child; we have to define variants of knit and
cat for productions with a different number of children.

We seek a mechanism of composing rules into semantic functions which allows
the use of default rules, since we have seen that they shorten and clarify aspect
definitions. Also, there is no record concatenation operator in type systems for
polymorphic extensible records. For these two reasons, we do not concatenate
the records generated by rules, but rather use a solution suggested by Rémy [23,
24] to compose the functions that build up those records.

To apply Rémy’s technique in the particular example of attribution rules, a
rule also takes as input the existing output attributes which are passed to the
rule in the nonterminal symbols. A rule does not return fixed records of defined
attributes; instead it transforms existing definitions by adding new fields for new
attribute definitions or by replacing field values with new values. The latter is
done to overwrite the default rules. For example, consider the rule list_level:

list_level = \c p -> ((level = level p | (nolevel (#i c))), #s p)

This rule overwrites the definition of level of the inherited attributes of the
child and leave the synthesised attributes of the parent unchanged. The type of
such a unary rule is

>type Rulel child parent childInh parentSyn
> = child -> parent -> (Rec childInh, Rec parentSyn)

Here child and parent are understood to be nonterminals, whereas childInh
and parentSyn are row variables. The type of list_level is thus

list_level :: (childInh\level,parentInh\level) =>
Rulel (NT (level :: Int | childInh) childSyn)
(NT (level :: Int | parentInh) parentSyn)
(level :: Int | childInh) parentSyn

With this definition of rules, it is straightforward to define the concatenation
operator as suggested by Rémy’s work:

>catl :: Rulel (NT ci c¢s) (NT pi ps) ci’ ps’ ->

> Rulel (NT ci’ cs) (NT pi ps’) «ci’’ ps’’ ->

> Rulel (NT ci c¢s) (NT pi ps) ci’’ ps’’

>catl f g c p =g (i=ci’, s= #s c) (i= #i p, s=ps’) where (ci’,ps’)=f c p

This definition encodes the sequential composition of rule £ followed by g. The
lifted version of this combinator, named cat takes two rule grammars (records
with a rule for each production), and it concatenates their corresponding fields.
The concatenation operator does of course have an identity element, namely the
rule that leaves all attribute definitions unchanged:

>nonel :: Rulel (NT ci cs) (NT pi ps) ci ps
>nonel ¢ p = (#i c, #s p)

The lifted version, none (), is similar to cat and is a record with fields for each
production which contains the identity rule of the appropriate arity.

5.4 Semantic functions

Once we have defined all the requisite attribute values by composing rules, we
can turn the composite rule into a semantic function. In effect, this conversion
involves connecting attribute definitions to attribute applications. We shall call
the conversion knitting. The type of semantic functions of arity 1 is

>type Semfunl childInh childSyn parentInh parentSyn
> = (Rec childInh -> Rec childSyn) -> (Rec parentInh -> Rec parentSyn)

10

The operation knit1 takes a rule, and it yields a semantic function. The function
that results from knit1 takes the semantics of child ¢ (which is of type Rec ci
-> Rec cs) as well as the inherited attributes for parent p (a value of type
Rec pi). It has to produce the synthesised attributes of p. This is achieved by
applying the rule, which builds up the synthesised attributes of p starting from
the empty record and builds up the inherited attributes of c starting from the
inherited attributes of p. This implies that inherited attributes of p are copied
to ¢, unless otherwise specified. There is no such default behaviour, however, for
synthesised attributes.

>knitl :: Rulel (NT pi cs) (NT pi EmptyRow) ci ps -> Semfunl ci cs pi ps
>knitl rule ¢ pi = ps where (ci,ps) = rule (i=pi,s=cs) (i=pi,s=EmptyRec)
> cs =cci

The type of knit1 shows that the rule is required to yield the synthesised
attributes ps, starting from the empty record. Furthermore, the rule must trans-
form the inherited attributes pi into the inherited attributes ci of the child. It
also shows that the child’s and parent’s inherited attributes given as input to
the rule have the same type, namely pi. The definition shows that the parent’s
inherited attributes, pi, are given as the default values of the child’s inherited
attributes in the application of rule. Thus, if a rule does not redefine a child’s
inherited attributes, the default behavior is to copy them from the parent. When
the resulting semantic function is applied to the semantics of the child ¢, and to
the inherited attributes of the parent, pi, it returns the synthesised attributes
ps. The inherited attributes ci of the child, and the synthesised attributes ps
are the joint result of applying rule.

This completes the set of basic combinators for manipulating rules and se-
mantic functions of arity 1. There are similar combinators for other arities, and
we omit the details.

6 Discussion

6.1 Aspect-oriented programming (AOP)

The inability to separate aspects is not exclusive to the area of compiler writing,
and it has received considerable attention in other areas of programming. Gre-
gor Kiczales and his team at Xerox have initiated the study of aspect-oriented
programming in general terms [17], and the notion of adaptive object-oriented
programming of Karl Lieberherr et al. shares many of these goals [21]. Don Ba-
tory and his team at UTA have studied ways to describe aspects in software
generators that cut across traditional object class boundaries [3]. The present
paper is a modest contribution to these developments, by showing how compilers
can be structured in an aspect-oriented style. We are hopeful that the techniques
we have employed here can be applied to writing aspect-oriented programs in
other problem domains as well.

11

It is worthwhile to point out some deviations from Kiczales’ original notion
of AOP. The notion of aspect in this paper is highly restrictive, and only cov-
ers those examples where the “weaving” of aspects into existing code is purely
name-based, and not dependent on sophisticated program analyses. For example,
in Kiczales’ framework, one might have an aspect that maintains an invariant
relationship between variables and y. Whenever either of these is updated,
the invariant must be restored by making an appropriate change to the other
variable. To weave the aspect into existing code, we have to find places where
either = or y is changed: the techniques in this paper have nothing to say about
such sophisticated aspects. In fact, to avoid all forms of program analysis, we
require that the original attribute grammar is written as a rule grammar, and
not in its knitted form.

Another seeming difference is one of style. In AOP, the traditional method of
composing programs is not replaced, but is complemented by the introduction
of aspects. The example we used in this paper is misleading, because we took
an extreme approach, and sliced up the original attribute grammar completely
in terms of aspects, thus abandoning the primary composition method. That
was done purely for expository purposes, and there is no reason why one could
not write a rule grammar in the traditional style, and then add one or two as-
pects later. Indeed, that is likely to be the norm when writing larger attribute
grammars. Therefore, we do not suggest that the ‘production” method of com-
position be replaced by the aspect, but simply augmented by it. Aspects are a
useful tool for creating attribute grammars that in many instances is superior
to composition by production.

In summary, we expect that the techniques of this paper are relevant to other
applications of aspect-oriented programming, in other problem domains, but only
those where the weaving is purely name-based. Because our definitions are in a
simple functional programming language, one could also view our contribution
as a first step towards a semantics of aspects.

6.2 Attribute grammar systems

An obvious objection to the work presented here is that many attribute gram-
mar based compiler generators offer the factorisation we seek, but at a purely
syntactic level [7,25,28]. The programmer can present attribution rules in any
order, and a preprocessor rearranges them to group the rules by production. The
situation is akin to the dichotomy between macros and procedures: while many
applications of procedures can be coded using macros, the concept of a proce-
dure is still useful and important. In contrast to macros, procedures offer sound
type checking, and they are independent entities that can be stored, compiled
and manipulated by a program. The benefits deriving from having aspects as
explicit, first-class entities in a programming language are the same. Adams [1]
proposes a similar decomposition method, but lacks the type checking of aspects
possible here.

Ganzinger and Giegerich [8] also modularize attribute grammars but by de-
composing the translation process into phases. This is a coarser decomposition

12

than our proposed method, which could be used to decompose the specifications
of their phases by aspect instead of by production.

The type system guarantees that all attributes are defined, and that they
are defined only once. These guarantees are of course also ensured in specialised
attribute grammar systems. Such systems usually also test for cycles in attribute
definitions [12,18]. In moving from a dedicated attribute definition language to
a general programming language, this analysis is a feature one has to give up.
Cycle checks are only an approximation, however, so they inevitably rule out
attribute grammars that can be evaluated without problems.

Although we are still investigating if additional advanced features found in
other systems [10, 13,15, 25, 20] can be mimicked in our setting, a companion [6]
to this paper presents a substantial case study that shows how our technique
admits concepts such as local attributes and higher-order attribute grammars in a
natural manner. An attribute grammar for a production language’s complete se-
mantics has not been completed; however, we are confident (but not yet certain)
that this method will scale to handle these larger attribute grammars.

The ultimate aim of this work is to provide a suitable meta-language for
rapid prototyping of domain-specific languages in the Intentional Programming
system under development at Microsoft Research [27] which, although different
from attribute grammar systems, faces many of the same issues of modularity,
evaluation schemes, and specification language choice.

References

1. S. R. Adams. Modular Grammars for Programming Language Prototyping. PhD
thesis, Department of Electronics and Computer Science, University of Southamp-
ton, UK, 1993.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

3. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. The
GenVoca model of software-system generators. IEEE Software, 11(5):89-94, 1994.

4. R.S. Bird. A formal development of an efficient supercombinator compiler. Science
of Computer Programming, 8(2):113-137, 1987.

5. R. S Bird. Introduction to Functional Programming in Haskell. International Series
in Computer Science. Prentice Hall, 1998.

6. O. De Moor. First-class attribute grammars. 1999. Draft paper available from
URL http://wuw.comlab.ox.ac.uk/oucl/users/oege.demoor/homepage.htm

7. P. Deransart, M. Jourdan, and B. Lorho. Attribute grammars — Definitions,
systems and bibliography, volume 322 of LCNS. Springer Verlag, 1988.

8. H. Ganzinger and R. Giegerich. Attribute Coupled Grammars. In Proceedings
of the ACM Symposium on Compiler Construction, 157-170, 1984. Published as
ACM SIGPLAN Notices, 19(6).

9. B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records
and variants. Technical report NOTTCS-TR-96-3, Department of Computer Sci-
ence, University of Nottingham, UK, 1996. Available from URL
http://www.cs.nott.ac.uk/Department/Staff/mpj/polyrec.html.

10. R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli: A
complete, flexible compiler construction system. CACM, 35:121-131, 1992.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

13

T. Johnsson. Attribute grammars as a functional programming paradigm. In
G. Kahn, editor, Functional Programming Languages and Computer Architecture,
volume 274 of LNCS, pages 154-173. Springer-Verlag, 1987.

M. Jourdan. Strongly non-circular attribute grammars and their recursive evalu-
ation. SIGPLAN Notices, 19:81-93, 1984.

M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le Bellec. Design, implemen-
tation and evaluation of the FNC-2 attribute grammar system. In Conference on
Programming Languages Design and Implementation, pages 209-222, 1990. Pub-
lished as ACM SIGPLAN Notices, 25(6).

U. Kastens. Attribute grammars in a compiler construction environment. In Pro-
ceedings of the International Summer School on Attribute Grammars, Applications
and Systems, volume 545 of LNCS, pages 380400, 1991.

U. Kastens, B. Hutt, and E. Zimmermann. GAG: A Practical Compiler Generator,
volume 141 of LNCS. Springer Verlag, 1982.

U. Kastens and W. M. Waite. Modularity and reusability in attribute grammars.
Acta Informatica, 31:601-627, 1994.

G. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28A(4),
1996. See also: http://www.parc.xerox.com/spl/projects/aop.

D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2:127-146, 1968.

M. Kuiper and S. D. Swierstra. Using attribute grammars to derive efficient func-
tional programs. In Computing Science in the Netherlands CSN 87, 1987. See:
ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1986/1986-16.ps.gz.

M. Kuiper and J. Saraiva. LRC — A Generator for Incremental Language-Oriented
Tools. In K. Koskimies, editor, 7th International Conference on Compiler Con-
struction, pages 298-301. volume 1383 of LNCS. Springer Verlag, 1998.

K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, 1996.

A. Ohori. A polymorphic record calculus and its compilation. ACM Transactions
on Programming Languages and Systems, 17(6):844-895, 1995.

D. Rémy. Typechecking records and variants in a natural extension of ML. In Pro-
ceedings of the ACM Symposium on Principles of Programming Languages (POPL
’89), pages 77-88. ACM Press, 1989.

D. Rémy. Typing record concatenation for free. In C. A. Gunter and J. C. Mitchell,
editors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics
and Language Design, Foundations of Computing Series. MIT Press, 1994.

T. W. Reps and T. Teitelbaum. The Synthesizer Generator: A system for con-
structing language-based editors. Springer-Verlag, 1989.

D. Rushall. An attribute evaluator in Haskell. Technical report, Manchester Uni-
versity, 1992. See URL: http://www-rocq.inria.fr/oscar/www/fnc2/AG.html.
C. Simonyi. Intentional programming: Innovation in the legacy age. Presented at
IFIP Working group 2.1, 1996. Available from URL
http://www.research.microsoft.com/research/ip/.

S.D. Swierstra, P. Azero and J. Saraiva. Designing and implementing combina-
tor languages. In S. D. Swierstra, editor, 3rd International Summer School on
Advanced Functional Programming, volume 1608 of LNCS. Springer Verlag, 1999.
See also URL http://www.cs.uu.nl/groups/ST/Software/index.html.

M. Wand. Type inference for record concatenation and multiple inheritance. In-
formation and Computation, 93:1-15, 1991.

