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ABSTRACT
Item-based approaches based on SLIM (Sparse LInear Meth-
ods) have demonstrated very good performance for top-N
recommendation; however they only estimate a single model
for all the users. This work is based on the intuition that not
all users behave in the same way – instead there exist subsets
of like-minded users. By using different item-item models for
these user subsets, we can capture differences in their prefer-
ences and this can lead to improved performance for top-N
recommendations. In this work, we extend SLIM by com-
bining global and local SLIM models. We present a method
that computes the prediction scores as a user-specific combi-
nation of the predictions derived by a global and local item-
item models. We present an approach in which the global
model, the local models, their user-specific combination, and
the assignment of users to the local models are jointly opti-
mized to improve the top-N recommendation performance.
Our experiments show that the proposed method improves
upon the standard SLIM model and outperforms competing
top-N recommendation approaches.

1. INTRODUCTION
Top-N recommender systems [3] are everywhere from on-

line shopping websites to video portals. They provide users
with a ranked list of N items they will likely be interested
in, in order to encourage views and purchases.

Several algorithms for the top-N recommendation prob-
lem have been developed [18], including approaches that use
latent-space models and approaches that rely on neighbor-
hoods. The latent space methods [7] factorize the user-item
matrix into lower rank user factor and item factor matrices,
which represent both the users and the items in a common
latent space. The neighborhood-based methods [8] (user-
based or item-based) identify similar users or items. The
latent-based methods have been shown to be superior for
solving the rating prediction problem, whereas the neigbor-
hood methods are shown to be better for the top-N rec-
ommendation problem [4,8, 13,16]. Among them, the item-
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based methods, which include item k-NN [8] and Sparse LIn-
ear Methods (SLIM) [16] have been shown to outperform the
user-based schemes for the top-N recommendation task.

However, item-based methods have the drawback of esti-
mating only a single model for all users. In many cases, there
are differences in users’ behavior, which cannot be captured
by a single model. For example, there could be a pair of
items that are extremely similar for a specific user subset,
while they have low similarity for another user subset. By
using a global model, the similarity between these items will
tend to be towards some average value; thus, losing the high
correlation of the pair for the first user subset.

In this paper we present a top-N recommendation method
that extends the SLIM model in order to capture the differ-
ences in the preferences between different user subsets. Our
method, which we call GLSLIM (Global and Local SLIM),
combines global and local SLIM models in a personalized
way and automatically identifies the appropriate user sub-
sets. This is done by solving a joint optimization problem
that estimates the different item-item models (global and
local), their user-specific combination, and the assignment
of the users to these models. Our experimental evaluation
shows that GLSLIM outperforms competing top-N recom-
mendation methods, reaching up to 17% improvement in
recommendation quality.

The rest of the paper is organized as follows. Section
2 introduces the notation. Section 3 presents the related
work. Section 4 presents the proposed model. Section 5
presents the evaluation methodology and the datasets. Sec-
tion 6 presents the performance of the method. Finally,
Section 7 provides some concluding remarks.

2. NOTATION
All vectors are represented by bold lower case letters and

are column vectors (e.g., p, q). All matrices are represented
by upper case letters (e.g., R, W ). For a given matrix A, its
ith row is represented by aTi and its jth column by aj . A
predicted value is denoted by having a ∼ over it (e.g., r̃).

The number of users is denoted by n and the number
of items is denoted by m. Matrix R is used to represent
the user-item implicit feedback matrix of size n × m. It
shows which items the users have purchased/viewed/rated.
Symbols u and i are used to denote individual users and
items, respectively. If user u provided feedback for item i,
the rui entry of R is 1, otherwise it is 0. We will use the
term rating to refer to the non-zero entries of R, even though
these entries can represent implicit feedback. We also refer
to the items that the user has purchased/viewed/rated as



rated items and to the rest as unrated items. The set of items
that the user u has rated will be denoted by Ru. We will
use the symbol � to denote the Hadamart product (element-
wise multiplication).

3. RELATED WORK

3.1 Top-N Recommendation Methods
There has been extensive work in the area of top-N rec-

ommendation. Here we present a few notable works in the
area that have advanced the state-of-the-art. Deshpande et.
al. [8] developed a nearest neighbor item-based approach,
which showed that item-based models lead to better top-N
recommendation than user-based. Cremonesi et. al. [7] de-
veloped the pureSVD method, which uses a truncated SVD
decomposition of matrix R to generate the top-N recommen-
dations. Their work demonstrated that treating the missing
entries as zero leads to better results than the matrix com-
pletion approaches. There is also the point of view of the
learning-to-rank formulation [17].

3.1.1 Sparse LInear Method for top-N Recommen-
dation (SLIM)

Ning et. al. [16] introduced SLIM, which was the first
method to compute the item-item relations using statistical
learning and has been shown to be one of the best approaches
for top-N recommendation. SLIM estimates a sparse m ×
m aggregation coefficient matrix S. The recommendation
score on an urated item i for user u is computed as a sparse
aggregation of all the user’s past rated items:

r̃ui = rTu si, (1)

where rTu is the row-vector of R corresponding to user u and
si is the ith column vector of matrix S, that is estimated by
solving the following optimization problem:

minimize
si

1
2
||ri −Rsi||22 + β

2
||si||22 + λ||si||1,

subject to si ≥ 0, and
sii = 0.

(2)

The constants β and λ are regularization parameters. The
non-negativity constraint is used so that the vector esti-
mated contains positive coefficients. The sii = 0 constraint
makes sure that when computing the weights of an item,
that item itself is not used as this would lead to trivial so-
lutions.

3.2 Local Models for Recommendation
The idea of estimating multiple local models has been pro-

posed in the work by O’connor et. al. [6], who performed
rating prediction by clustering the rating matrix item-wise
and estimating a separate local model for each cluster with
nearest neighbor collaborative filtering.

Xu et al. [19] developed a method that co-clusters users
and items and estimates a separate local model on each clus-
ter, by applying different collaborative filtering methods;
including the item-based neighborhood method. The pre-
dicted rating for a user-item pair is the prediction from the
subgroup with the largest weight for the user.

Lee et al. [14,15] proposed a method that relies on the idea
that the rating matrix is locally low-rank. First, neighbor-
hoods are identified surrounding different anchor points of
user-item pairs, based on a function that measures distances

between pairs of users and items and then a local low-rank
model is estimated for every neighborhood. The estimation
is done in an iterative way where first the latent factors rep-
resenting the anchor points are estimated and then based on
the similarities of the observed entries to the anchor points,
the latent factors are re-estimated, until convergence. A pre-
diction is computed as a convex combination of local models,
weighted by the similarity of the corresponding local anchor
point to the user–item pair whose rating needs to be pre-
dicted.

GLSLIM differs from the earlier work in the following
ways: (i) In all of the above-mentioned works, only local
models are considered; while GLSLIM also computes a global
model and has a personalization factor for each user deter-
mining the interplay between the global and the local infor-
mation. (ii) GLSLIM updates the assignment of the users
to subsets, allowing better local models to be estimated.
(iii) Lee et. al. [14, 15] use user and item latent factors,
while GLSLIM focuses on item-item models. (iv) In [6] the
authors use item clusters, in [19] the authors use co-clusters
and in [14, 15] they use user-item anchor points. Instead,
GLSLIM uses user subsets.

4. PROPOSED APPROACH

4.1 Motivation
A global item-item model may not be sufficient to cap-

ture the preferences of a set of users, especially when there
are user subsets with diverse and sometimes opposing pref-
erences. An example of when local item-item models (item-
item models capturing similarities in user subsets) will be
beneficial and outperform the item-item model capturing
the global similarities is shown in Figure 1. It portrays the
training matrix R of two different datasets that both con-
tain two distinct user subsets. Item i is the target item for
which we will try to compute predictions. The predictions
are computed by using an item-item cosine similarity-based
method, in this motivation example.

In the left dataset, (Figure 1a) there exist some items
which have been rated only by the users of one subset, but
there is also a set of items which have been rated by users
in both subsets. Items c and i will have different similarities
when estimated for user-subset A, than when estimated for
user-subset B, than for the overall matrix. Specifically, their
similarity will be zero for the users of subset B (as item i is
not rated by the users of that subset), but it will be non-
zero for the users of subset A – and we can further assume
without loss of generality that in this example it is high.
Then, the similarity between i and c will be of average value
when computed in the global case. So, estimating the local
item-item similarities for the user subsets of this dataset will
help capture the diverse preferences of user-subsets A and
B, which would otherwise be missed if we only computed
them globally.

However, when using item j to make predictions for item i,
their similarity will be the same, either globally estimated,
either locally for subset A, as they both have been rated
only by users of subset A. The same holds for the dataset
pictured in Figure 1b, as this dataset consists of user subsets
who have no common rated items between them.

Although datasets like the one in Figure 1b cannot benefit
from using local item-item similarity models, datasets such
as the one pictured in Figure 1a can greatly benefit as they



can capture item-item similarities, which could be missed in
the case of just having a global model.
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Figure 1: (a) Local item-item models improve upon
global item-item model. (b) Global item-item model
and local models yield the same results.

4.2 Overview
In this work, we present our method GLSLIM, which com-

putes top-N recommendations that utilize user–subset spe-
cific models and a global model. These models are jointly
optimized along with computing the user assignments for
them. We use SLIM for estimating the models. Thus, we
estimate a global item-item coefficient matrix S and also
k local item-item coefficient matrices Spu , where k is the
number of user subsets and pu ∈ {1, . . . , k} is the index of
the user subset, for which we estimate the local matrix Spu .
Every user can belong to one user subset.

The predicted rating of user u, who belongs to subset pu,
for item i will be estimated by:

r̃ui =
∑
l∈Ru

gusli + (1− gu)spuli . (3)

The meanings of the various terms are as follows: The term
sli shows the global item-item similarity between the lth
item rated by u and the target item i. The term spuli depicts
the item-item similarity between the lth item rated by u
and target item i, corresponding to the local model of the
user-subset pu, to which target user u belongs. Finally, the
term gu is the personalized weight per user, which controls
the interplay between the global and the local part. It lies in
the interval [0, 1], with 0 showing that the recommendation
is affected only by the local model and 1 showing that the
user u will use only the global model.

In order to perform top-N recommendation for user u, we
compute the estimated rating r̃ui for every unrated item i
with Equation 3. Then, we sort these values and we rec-
ommend the top-N items with the highest ratings to the
user.

The estimation of the item-item coefficient matrices, the
user assignments and the personalized weight is done with
alternating minimization, which will be further explained in
the following subsections.

4.3 Estimating the item-item models
We first separate the users into subsets with either a clus-

tering algorithm (we used CLUTO [1]) or randomly. We
initially set gu to be 0.5 for all users, in order to have equal
contribution of the global and the local part and we estimate
the coefficient matrices S and Spu , with pu ∈ {1, . . . , k}. We
use two vectors g and g′ each of size n, where the vector g
contains the personalized weight gu for every user u and

the vector g′ contains the complement of the personalized
weight (1 − gu) for every user u. When assigning the users
into k subsets, we split the training matrix R into k training
matrices Rpu of size n×m, with pu ∈ {1, . . . , k}. Every row
u of Rpu will be the uth row of R, if the user u who corre-
sponds to this row belongs in the puth subset. If the user u
does not belong to the puth subset, then the corresponding
row of Rpu will be empty, without any ratings. When esti-
mating the local model Spu , only the corresponding Rpu will
be used. Following SLIM, the item–item coefficient matrices
can be calculated per column, which allows for the different
columns (of both the global and the local coefficient matri-
ces) to be estimated in parallel. In order to estimate the
ith column of S (si) and Spu (spui ) where pu ∈ {1, . . . , k},
GLSLIM solves the following optimization problem:

minimize
si,{s1i ,...,s

k
i }

1
2
||ri − g �Rsi − g′ �

∑k
pu=1R

puspui ||
2
2+

1
2
βg||si||22 + λg||si||1+∑k
pu=1

1
2
βl||spui ||

2
2 + λl||spui ||1,

subject to si ≥ 0,
spui ≥ 0, ∀pu ∈ {1, . . . , k},
sii = 0,
spu ii = 0, ∀pu ∈ {1, . . . , k},

(4)
where ri is the ith column of R. βg and βl are the l2
regularization weights corresponding to S and Spu ∀pu ∈
{1, . . . , k} respectively. Finally λg and λl are the l1 reg-
ularization weights controlling the sparsity of S and Spu

∀pu ∈ {1, . . . , k}, respectively.
By having different regularization parameters for the global

and the local sparse coefficient matrices, we allow flexibility
in the model. In this way, we can control through regular-
ization which of the two components will play a more major
part in the recommendation.

The constraint sii = 0 makes sure that when comput-
ing rui, the element rui is not used. If this constraint was
not enforced, then an item would recommend itself. For
the exact same reason, we enforce the constraint spu ii = 0,
∀pu ∈ {1, . . . , k} for the local sparse coefficient matrices too.

The optimization problem of Equation 4 can be solved
using coordinate descent and soft thresholding [9].

4.4 Finding the optimal assignment of users
to subsets

After estimating the local models (and the global model),
GLSLIM fixes them and proceeds with the second part of the
optimization: updating the user subsets. While doing that,
GLSLIM also determines the personalized weight gu. We
will use the term refinement to refer to finding the optimal
user assignment to subsets.

Specifically, GLSLIM tries to assign each user u to every
possible cluster, while computing the weight gu that the
user would have if assigned to that cluster. Then, for every
cluster pu and user u, the training error is computed. The
cluster for which this error is the smallest is the cluster to
which the user is assigned. If there is no difference in the
training error, or if there is no cluster for which the training
error is smaller, the user u remains at the initial cluster.
The training error is computed for both the user’s rated and
unrated items.



Algorithm 1 GLSLIM

1: Assign gu = 0.5, to every user u.
2: Compute the initial clustering of users with CLUTO [1].
3: while number of users who switched clusters > 1% of

the total number of users do
4: Estimate S and Spu , ∀pu ∈ {1, . . . , k} with Equa-

tion 4.
5: for all user u do
6: for all cluster pu do
7: Compute gu for cluster pu with Equation 5.
8: Compute the training error.
9: end for

10: Assign user u to the cluster pu that has the smallest
training error and update gu to the corresponding
one for cluster pu.

11: end for
12: end while

Table 1: Dataset characteristics.

Name #Users #Items #Transactions Density
groceries 63,034 15,846 2,060,719 0.21%
ml 69,878 10,677 10,000,054 1.34%
jester 57,732 150 1,760,039 20.32%
flixster 29,828 10,085 7,356,146 2.45%
netflix 274,036 17,770 31,756,784 0.65%

Columns corresponding to #users, #items and #trans-
actions show the number of users, number of
items and number of transactions, respectively,
in each dataset. The column corresponding to
density shows the density of each dataset (i.e.,
density=#transactions/(#users×#items)).

In order to compute the personalized weight gu, we mini-
mize the squared error of Equation 3 for user u who belongs
to subset pu, over all items i. By setting the derivative of
the squared error to 0, we get:

gu =

∑m
i=1 (

∑
l∈Ru

sli −
∑
l∈Ru

spuli )(rui −
∑
l∈Ru

spuli )∑m
i=1 (

∑
l∈Ru

sli −
∑
l∈Ru

spuli )2
.

(5)
The overview of GLSLIM as well as the stopping criterion

are shown in Algorithm 1.

5. EXPERIMENTAL EVALUATION

5.1 Datasets
We evaluated the performance of our method on different

datasets, whose characteristics are shown in Table 1.
The groceries dataset corresponds to transactions of a

local grocery store. Each user corresponds to a customer
and the items correspond to the distinct products purchased
over a period of one year. The ml dataset corresponds to
MovieLens 10M dataset [12], which represents movie rat-
ings. The jester dataset [10] corresponds to an online joke
recommender system. The flixster dataset is a subset of the
original Flixster dataset [2], which consists of movie ratings
taken from the corresponding social movie site that allows
users to share movie ratings and meet friends. The subset
was created by keeping the users who have rated more than
thirty items and the items that have been rated by at least
twenty-five users. The netflix dataset is a subset of the orig-

Algorithm 2 LSLIM

1: Compute the initial clustering of users with CLUTO.
2: while number of users who switched clusters > 1% of

the total number of users do
3: Estimate Spu , ∀pu ∈ {1, . . . , k} with Equation 8.
4: for all user u do
5: for all cluster pu do
6: Compute the training error.
7: end for
8: Assign user u to the cluster pu that has the smallest

training error.
9: end for

10: end while

Algorithm 3 GLSLIMr0

1: Assign gu = 0.5, to every user u.
2: Compute the initial clustering of users with CLUTO.
3: while diff > 0.01% do
4: Estimate S and Spu , ∀pu ∈ {1, . . . , k} with Equa-

tion 4.
5: ∀ user u compute gu with Equation 5.
6: Compute difference in the objective function (diff)

between subsequent iterations.
7: end while

inal Netflix dataset [5], which contains anonymous movie
ratings. The subset was created by keeping the users who
have rated between thirty and five hundred items. All the
ratings were converted to binary ratings, showing whether a
user purchased/rated an item or not.

5.2 Evaluation Methodology
We employed leave-one-out cross-validation to evaluate

the performance of the proposed model. For each user, we
randomly selected an item, which we placed in the test set.
The rest of the data comprised the training set.

We measure the performance by computing the number of
times the single left-out item was in the top-N recommended
items for this user and its position in that list. The quality
measures used are the hit-rate (HR) and average-reciprocal
hit rank (ARHR). HR is defined as

HR =
#hits

#users
, (6)

and ARHR is defined as

ARHR =
1

#users

#hits∑
i=1

1

pi
, (7)

where “#users” is the total number of users (n), p is the
position of the item in the list, where p = 1 specifies the top
of the list, and “#hits” is the number of users whose item in
the test set is present in the size-N recommendation list.

5.3 Proposed Methods
As our method contains multiple elements, we want to

investigate how each of them impacts the recommendation
performance. Thus, beyond GLSLIM, we also investigate
the following methods:

• LSLIMr0, which stands for Local SLIM without re-
finement. In LSLIMr0, a separate item-item model is



estimated for each of the k user subsets. No global
model is estimated; so there is no personalized weight
gu either. Specifically, the ith column of the puth local
model Spu (spui ) is estimated by solving the optimiza-
tion problem:

minimize
{s1i ,...,s

k
i }

1
2
||ri −

∑k
pu=1R

puspui ||
2
2+∑k

pu=1
1
2
βl||spui ||

2
2 + λl||spui ||1,

subject to
spui ≥ 0,∀pu ∈ {1, . . . , k},
spu ii = 0,∀pu ∈ {1, . . . , k},

(8)

where the meanings of the different terms are identical
to those used in Equation 4.

In LSLIMr0, the initial assignment of users to subsets
using CLUTO is the one used and never gets updated.
The predicted rating for user u, who belongs to subset
pu, and item i is estimated by:

r̃ui =
∑
l∈Ru

spuli . (9)

The overall recommendation quality is computed as
the weighted average of the item-item model perfor-
mance in every subset.

• LSLIM, which stands for Local SLIM with refinement.
In LSLIM, the predicted rating for user u and item i is
also estimated by Equation 9 and the local models are
estimated in the same way as in LSLIMr0. However,
the users switch subsets and the local models get up-
dated accordingly, until convergence. The algorithm
for LSLIM is shown in Algorithm 2.

• GLSLIMr0, which stands for Global and Local SLIM
without refinement. In GLSLIMr0, both a global model
and separate item-item local models are estimated along
with the per user weight gu. However the assignment
of users to subsets remains fixed. The algorithm for
this method is shown in Algorithm 3.

5.4 Comparison Algorithms
The top-N recommendation algorithms that we compare

against are: PureSVD [7], BPR-MF [17] and SLIM (de-
scribed in Section 3.1.1).

PureSVD [7] is a popular top-N recommendation algo-
rithm, which estimates the user–item matrix R by the fac-
torization:

R̃ = UΣQT , (10)

where U is an n × f orthonormal matrix, Q is an m × f
orthonormal matrix and Σ is an f × f diagonal matrix con-
taining the first f singular values.

BPR-MF [17] (Bayesian Personalized Ranking – Matrix
Factorization) is a well-known top-N recommendation method,
which uses the bayesian personalized ranking optimization
criterion on matrix factorization. The BPR criterion focuses
on finding the correct personalized ranking for all items to
maximize the posterior probability.

For PureSVD, we used the SVDLIBC package1, for BPR-
MF, we used the LibRec package [11] and for SLIM, we used
the SLIM package2.
1https://tedlab.mit.edu/˜dr/SVDLIBC/
2www-users.cs.umn.edu/˜xning/slim/html

5.5 Model Selection
We performed an extensive search over the parameter

space of the various methods, in order to find the set of pa-
rameters that gives us the best performance for each method.

We only report the performance corresponding to the pa-
rameters that lead to the best results. The l1 and l2 reg-
ularization parameters were chosen from the set of values:
{0.1, 1, 3, 5, 7, 10}. The number of clusters examined took
on the values: {2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60,
70, 80, 90, 100 and 150}.

For PureSVD, the number of singular values f tried lie in
the interval [10, 5000]. For BPR-MF, the number of factors
we used in order to get the best results lie in the interval
[1, 10000]. The values of the learning rate that we tried are:
{0.0001, 0.001, 0.01, 0.1}. The values of the regularization
we tried are: {0.0001, 0.001, 0.01, 0.1}.

6. EXPERIMENTAL RESULTS
In this section we present the results of our experiments.

The following questions will be answered: (i) How do the
proposed methods compare between them? (ii) How does
our method compare against competing top-N recommen-
dation methods? (iii) What is the time complexity of our
method?

6.1 Performance of the proposed methods
The comparison of our proposed approaches (LSLIMr0,

LSLIM, GLSLIMr0 and GLSLIM) in terms of HR and ARHR
is shown in Table 2. Overall, we can see that the general
pattern is that GLSLIM is the best-performing method, fol-
lowed by GLSLIMr0 and LSLIM, while LSLIMr0 is the ap-
proach with the lowest performance.

By comparing these methods, we can see the relative ben-
efits provided by the different components of GLSLIM. The
comparisons of LSLIMr0 with GLSLIMr0 and also of LSLIM
with GLSLIM show the benefit of adding a global model
with a personalized weight gu. The comparisons of LSLIMr0
with LSLIM, and also between GLSLIMr0 and GLSLIM
demonstrate the benefit of allowing users to switch subsets.
We can see that both these components improve the perfor-
mance. However, in all of the datasets but ml, the relative
gain of considering a global model beyond the local item-
item models and also computing a personalized weight gu
is higher than the gain of allowing users to switch subsets.
When all of the components are combined, as in the case of
GLSLIM, we get the best performance, both in terms of HR
and ARHR.
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Figure 2: The effect of the number of clusters on
the performance



Table 2: Comparison between our proposed approaches.

Comparison in terms of Hit Rate (HR)
LSLIMr0 LSLIM GLSLIMr0 GLSLIM

Dataset Cls βl λl HR Cls βl λl HR Cls βg βl λg λl HR Cls βg βl λg λl HR
groceries 15 5 0.1 0.263 15 5 1 0.268 3 5 5 1 1 0.280 100 5 5 1 1 0.304
ml 20 5 1 0.329 15 5 3 0.339 15 7 3 1 5 0.335 10 10 7 1 1 0.345
jester 5 5 0.1 0.898 10 0.1 0.1 0.916 20 7 1 10 1 0.929 10 10 10 10 0.1 0.940
flixster 3 1 2 0.248 3 0.1 3 0.250 3 1 1 5 5 0.254 3 1 1 1 5 0.255
netflix 10 1 5 0.238 10 1 5 0.241 20 1 1 5 5 0.243 5 1 1 5 5 0.245

Comparison in terms of Average Reciprocal Hit Rate (ARHR)
LSLIMr0 LSLIM GLSLIMr0 GLSLIM

Dataset Cls βl λl ARHR Cls βl λl ARHR Cls βg βl λg λl ARHR Cls βg βl λg λl ARHR
groceries 3 3 0.1 0.133 15 3 3 0.135 3 5 5 1 1 0.144 100 5 5 1 1 0.155
ml 25 7 2 0.163 15 7 3 0.167 15 7 7 1 3 0.166 10 10 7 1 1 0.170
jester 10 0.1 0.1 0.775 10 10 5 0.804 150 1 1 1 1 0.820 100 1 1 1 1 0.835
flixster 3 0.1 2 0.121 3 1 3 0.122 3 5 5 1 1 0.125 3 1 1 1 5 0.126
netflix 20 0.1 5 0.113 10 3 10 0.114 20 1 1 5 5 0.115 5 1 1 5 5 0.116

For each method, the columns correspond to the best HR and ARHR and the parameters for which they are achieved. The
parameters are: the number of clusters, the global l2 regularization parameter βg, the local l2 regularization parameter βl,
the global l1 regularization parameter λg and the local l1 regularization parameter λl. The bold numbers show the best
HR/ARHR achieved, per dataset.

6.1.1 Sensitivity on the number of Clusters
Figure 2 shows how the number of clusters affects the

HR for GLSLIM and its variants in the groceries and ml
datasets. The trends are the same for the rest of the datasets
and for the metric ARHR. We can see that GLSLIM out-
performs the rest of the methods for all clusters. Also, we
should note that for all datasets GLSLIM can achieve at
least 95% of its best performance for only ten clusters, out-
performing its closest competing method. This is the case
even for the datasets where the best performance occured at
a much bigger number of clusters.

6.1.2 Initializing with random user subsets
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Figure 3: Comparing CLUTO initialization with
random initialization of user subsets

The results presented up to this point have been obtained
by initializing the user subsets with a user clustering algo-
rithm (we used CLUTO3 [1]). In order to show that the
good performance of GLSLIM is not dependent on the clus-

3We used the clustering program vcluster. The similarity
function considered was the cosine similarity. All the other
parameters were the default ones.

tering algorithm used, we present the performance when the
initialization of the user subsets is random.

In Figure 3, we can see for the ml and flixster datasets, the
HR achieved across iterations with the two different ways of
initialization, for the same regularization and for ten clus-
ters. The same trends hold for ARHR and for different reg-
ularizations, clusters and the rest of the datasets.

We can see that the HR of the first iteration with random
initialization is lower than the HR of the first iteration when
initializing with CLUTO. This is expected, as in the first
iteration, only the global and local models are estimated;
no personalization nor cluster refinement has been done yet.
Thus, the local models estimated from CLUTO are more
meaningful than the local models on random user subsets.

As the iterations progress and cluster refinement is done,
we see that the HR increases. In the converged state, the
final HR achieved is very similar with both initializations.
However, when starting from random user subsets, more it-
erations are needed until convergence. We can then con-
clude that our method is able to estimate the local models
and reach convergence, even with random initialization.

6.1.3 The interplay between the global and the local
part of the model

In order to see how the local models affect the recommen-
dation performance, we look at the l1 norm of the global
model S and the local models Spu in the beginning of the
algorithm and when the algorithm has converged.

Figure 4 shows these l1 norms for 5, 50 and 100 clusters,
for the groceries and ml datasets. We can see that the l1
norm of the global model S is small and it remains small
for all possible clusters and throughout the iterations of the
algorithm. For the local models Spu , their l1 norm is larger
than the l1 norm of the global model. As the number of
clusters increases, the l1 norm of the local models increases.
In addition, the l1 norm of the local models in the converged
state is larger than the l1 norm of the local models in the



beginning. This shows that the effect of local information on
the models is major and it becomes greater as the iterations
progress and as the number of clusters increases.
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Figure 4: How the l1 norm of the global model S
and local models Spu changes from the beginning of
the algorithm until convergence.

6.1.4 Top-N
The results presented throughout the paper show the per-

formance of our algorithms for a list of size 10. The recom-
mendation list can be of different sizes. In this section, we
describe how the performance of our method is affected by
using lists of sizes 5, 15 and 20 as well. We choose N to
be quite small because users do not look past the very top
presented recommendations in a list, anyway.

In Figure 5, we can see the HR of GLSLIM, while using
the parameters with the best results as presented in Table 2
for the different sizes of top-N list. We can see that as N
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Figure 5: Varying the size of the top-N list.

increases, the performance of our method increases as well,
which is expected, as there is higher probability that the
hidden item of our test set will be in the top-N list. The
impact of the size of the recommendation list N on ARHR
is similar to the one shown in Figure 5.

6.2 Performance against Competing Approaches
Table 3 presents the performance of the competing al-

gorithms PureSVD, BPR-MF and SLIM versus the perfor-
mance of our best method, which is GLSLIM. The above-
mentioned table presents the best HR and ARHR achieved,
along with the set of parameters for which they were achieved.

We can see that GLSLIM outperforms all competing ap-
proaches for all datasets, as seen in Table 3. By comparing
Tables 2 with 3, we can also see that LSLIMr0, which is our
simplest method, still outperforms the best competing ap-
proach, which shows that using multiple item-item models
helps top-N recommendation quality.

6.3 Time Complexity
We will use O(SLIMi(R)) to denote the computational

cost of estimating the ith column of S. Then, the com-
plexity of estimating the ith column of S and S1, . . . , Sk,
is O(SLIMi(R)) + O(SLIMi(R

1)) + . . .+ O(SLIMi(R
k)),

whereR1, . . . , Rk are non-overlapping submatrices ofR. Since
in order to estimate the ith column of S, we need to touch ev-
ery non-zero in the input matrixR, the complexityO(SLIMi(R))
is at least linear in the number of non-zeros (nnz). We can
then say that the complexity of estimating the ith column
for the submatrices R1, . . . , Rk is less than or equal to the
complexity of solving it on the matrix R: O(SLIMi(R)) ≥
O(SLIMi(R

1))+. . .+O(SLIMi(R
k)). As a result, the com-

plexity of Equation 4 is the dominant term O(SLIMi(R)).
Since the regression problem of Equation 4 needs to be
solved for all m columns (items), the complexity of esti-
mating the global and local models is O(m × SLIMi(R)).
The complexity of updating the cluster assignment for each
of the n users, after trying to assign them to each of the k
clusters (lines 5−11 of Algorithm 1), is O(nmk), since both
the computation of the training error and gu is O(m). Thus,
the per iteration cost of GLSLIM is O(m(SLIMi(R)+nk)).
The number of iterations until GLSLIM converges is typi-
cally small, as can be seen in Section 6.1.2.

7. CONCLUSION
In this paper, we proposed a method to improve upon top-

N recommendation item-based schemes, by capturing the
differences in the preferences between different user subsets,
which cannot be captured by a single model. For this pur-
pose, we estimate a separate local item-item model for every
user subset, in addition to the global item-item model. The
proposed method allows cluster refinement, in the context of
users being able to switch the subset they belong to, which
leads to updating the local model estimated for this subset,
as well as the global model. The method is personalized, as
we compute for all users their own personal weight, defining
the degree to which their top-N recommendation list will
be affected from global or local information. We performed
different experiments, which show that our method outper-
forms competing top-N recommender methods, indicating
the value of using multiple item-item models.
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