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ABSTRACT
Sales professionals help organizations win clients for prod-
ucts and services. Generating new clients starts with iden-
tifying the right decision makers at the target organization.
For the past decade, online professional networks have col-
lected tremendous amount of data on people’s identity, their
network and behavior data of buyers and sellers building re-
lationships with each other for a variety of use-cases. Sales
professionals are increasingly relying on these networks to
research, identify and reach out to potential prospects, but
it is often hard to find the right people effectively and effi-
ciently. In this paper we present LDMS, the LinkedIn Deci-
sion Maker Score, to quantify the ability of making a sales
decision for each of the 400M+ LinkedIn members. It is
the key data-driven technology underlying Sales Navigator,
a proprietary LinkedIn product that is designed for sales
professionals. We will specifically discuss the modeling chal-
lenges of LDMS, and present two graph-based approaches to
tackle this problem by leveraging the professional network
data at LinkedIn. Both approaches are able to leverage both
the graph information and the contextual information on the
vertices, deal with small amount of labels on the graph, and
handle heterogeneous graphs among different types of ver-
tices. We will show some offline evaluations of LDMS on
historical data, and also discuss its online usage in multiple
applications in live production systems as well as future use
cases within the LinkedIn ecosystem.
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1. INTRODUCTION
As a crucial part of any for-profit organizations, sales pro-

fessionals help to win customers for products and services.
For B2B selling,1 their job typically starts from identifying

1Business to Business Selling, https://en.wikipedia.org/
wiki/Business-to-business
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the right decision makers at the client organizations. This
process is often called prospecting or lead generation. The
ability to do this well is arguably the most important skill
set that any successful sales professional need to have [6, 10,
12].

As we have entered into the social era, sales profession-
als started to pay more attention to developing relationships
with potential clients as part of the sales process. This is
often referred to as social selling, and includes components
such as social prospecting, personal branding, employee ad-
vocacy, and social relationship management.2 Among these
components, social prospecting involves monitoring and search-
ing social networks for signs of customer interest, immediate
buying intent, or qualified prospect status based on indus-
try, role, geography, etc. It’s the entry point of identifying
potential clients in the modern sales process.

Nowadays, social prospecting often takes place via social
networks such as LinkedIn, Twitter and Facebook. Sales
professionals are increasingly checking on member’s profile,
social connections, and blogs/updates on these social net-
works. However, they often find it hard to identify prospects
they are interested in, despite the large amount of data avail-
able in various sources. They need intelligent data tools to
help them find the target clients effectively and efficiently.

In this paper we present LDMS, the LinkedIn Decision
Maker Score, to capture the fundamental notion of decision
makers in the sales context by leveraging the professional
members data on LinkedIn. The goal of LDMS is to consol-
idate all member’s profile data with social graphs data and
calculate a score for each of the 400M+ LinkedIn members,
quantifying his or her ability of make or influence a sales de-
cision. We will specifically discuss the modeling challenges
of developing LDMS, and present two approaches to tackle
the problem, a graph summarization approach and a bipar-
tite graph learning approach. Both approaches are able to
leverage both the graph information and the contextual in-
formation on the vertices, deal with small amount of labels
on the graph, and handle heterogeneous graphs among dif-
ferent types of vertices. These methods are discussed in the
LDMS context, but they can be applied to many other rank-
ing or influence extraction problems on social networks or
graphs in general. We will show performance of both ap-
proaches on LinkedIn data, and also discuss how LDMS is
currently used in LinkedIn production systems.

The rest of the paper is organized as follows. In Section 2
we cover the related work on graph-based learning methods
for influential node discovery, and in Section 3 we present

2https://en.wikipedia.org/wiki/Social selling



the overview of the problem and the general setup. Then
in Section 4 we present two learning approaches to tackle
this challenging problem, and in Section 5 we show some
experimental results on some offline data. Finally we dis-
cuss applications of LDMS within the LinkedIn ecosystem
in Section 6, and conclude the paper in Section 7.

2. RELATED WORK
There has been a rich literature on identifying important

or influential nodes in a network, both in an unsupervised
setting and a semi-supervised setting. We briefly describe
some of the work in this section, and also discuss the impor-
tance of decision maker identification for sales use cases.

2.1 Unsupervised graph-based ranking
The identification of decision makers can be viewed as

finding the most important nodes in a graph. If treated as
an unlabeled problem, the most popular graph-based algo-
rithms are PageRank [2] and HITS [11], both in the context
of web page ranking. PageRank is an iterative algorithm be-
hind Google search engine, in which the rank of a web page
is the probability that a random surfer would visit that page
starting from a random page. HITS, on the other hand, tries
to answer the question of how authoritative a given web page
is. The model assumes that there exist authority pages and
pages that link to many related authorities, referred to as
hubs, interconnected by a mutually reinforcing relationship.

Several algorithms have been proposed to enhance PageR-
ank and HITS. Haveliwala et al. [8] presented different ap-
proaches to personalize PageRank. TrustRank [7] was pro-
posed for spam detection using a seed of expert-verified
trusted pages. BrowseRank [14] also incorporates the time
component by taking into account how much time users
spend on a web site. It uses continuous time Markov process
instead of the discrete time Markov process that PageRank
uses. An application of PageRank-based algorithm for iden-
tifying trendsetters was presented by Trumper et al. [18].
They identify the trendsetters in information networks by
using temporal attributes of nodes and edges, and rank users
based on their ability to promote new ideas which will be
adopted by many other users later.

2.2 Context-aware graph algorithms
Instead of only considering the link structure of the net-

work, several papers also investigated how to incorporate
contextual attributes of the nodes into learning and ranking.
Topic-sensitive PageRank [9] pre-computes a set of biased
PageRank vectors using a set of representative topics. It
then uses these to generate query-specific importance scores
at query time. Richardson et al. [17] proposed an intel-
ligent surfer which is a query-dependent, content-sensitive
version of PageRank. The surfer probabilistically hops from
page to page, depending on the content of the page and
the query terms the user is searching. TwitterRank [19]
ranks users by taking into account the topical similarity be-
tween users based on their tweets besides the graph infor-
mation. The random surfer performs a topic-specific walk
and then the overall influence is measured by aggregating
the topic-specific TwitterRank over all the topics. Pal et
al. [16] identified authorities in Twitter by performing prob-
abilistic clustering over the feature space and then rank the
users inside the cluster, under the assumption that features
follow a Gaussian distribution.

2.3 Bipartite graph mining
Several work explored the bipartite graphical structure

to identify important nodes. The majority of them have
been developed in the context of co-authorship and cita-
tion networks. Zhou et al. [23] proposed an approach to
combine two random walks, one as intra-class walk between
same-type entities (authors or documents) and the other as
inter-class walk across the two sides of the bipartite graph.
The random surfer has a certain probability of taking intra-
or inter-class steps at any vertex. Meng et al. [15] devel-
oped a rule-based method which iteratively ranks authors
and publications following a mutual-reinforcement strategy
until convergence. There has also been work on influence
mining on a heterogeneous graph by Liu et al. [13], using
both the link information and the textual content. They
proposed a generative graphical model to find the topic-level
direct influence and subsequently the indirect influence be-
tween nodes.

2.4 Semi-supervised label propagation
Another work stream on graphs is to start from a small

set of labeled vertices, and leverage the graphical structure
to propagate the labels to other unlabeled vertices. The
main assumption is that similar vertices are more likely to
have the same label. Following these principles, approaches
for undirected graphs have been developed [24, 20], as well
as a HITS-inspired algorithm for directed graphs [21] and
a method motivated by PageRank to identify the unknown
labels in a directed graph [22].

2.5 Application to sales use case
Many books and articles have discussed the specific skills a

sales professional should have. A crucial one among them is
to identify real decision makers and to present their products
or services to them [4, 6, 10, 12]. However there has not been
many work in the data mining community that aims to help
sales professionals tackle this problem (see a recent paper in
[5]).

For the decision maker identification problem in our con-
text, we cannot simply run a PageRank or HITS type algo-
rithm to identify the important nodes. Such algorithms typ-
ically find influential or popular people on our network (such
as celebrities), not necessarily the people who can make sales
decisions. We require some labels to guide the algorithms,
hence need to combine the labels with the graph structure.
Also we will need to deal with heterogeneous graphs within
our professional network. With this in mind, the approaches
we propose in this paper are able to leverage both the graph
information and the contextual information, deal with small
amount of labels on the graph, and handle heterogeneous
graphs among different types of vertices. We believe they
will have positive impact in many sales use cases and other
application areas beyond the context we discuss in this pa-
per.

3. PROBLEM SETTING
In this section we give a high-level overview of the so-

cial network environment in our context, and discuss mech-
anisms to obtain ground truth and features for developing
LDMS. Although the context is within LinkedIn ecosystem,
many of the attributes and insights apply to other social
network settings.



(a) Sales-focused search page (b) Company page with lead recommendation

Figure 1: Screen shots of LinkedIn Sales Navigator, both leveraging LDMS in live production system. (a) shows the refined
search page for sales use case, with sales-focused re-ranking of results and other advanced features (spotlight highlights,
advanced filters, “save as lead” option for future follow-up). (b) shows the refined company page, with recommended leads on
top that are tailored to the specific sales professional user.

3.1 Social network environment
LinkedIn is the largest professional social network in the

world with more than 400M members to date. Most sales
professionals have already started using LinkedIn to research,
identify, and reach out to potential clients. With a premium
subscription, they can view members’ profiles, follow them,
get introduced to connect to them, send private messages
(called inMails) to them, etc.

LinkedIn also has a proprietary product called Sales Nav-
igator, which is designed specifically for sales professionals.
It combines LinkedIn’s network data, relevant news sources,
and the accounts, leads, and preferences set by the sales
professionals to produce customized recommendations and
insights. See Figure 1 for two screen shots of Sales Navigator
on sales-focused search and lead recommendation on com-
pany page. Both of them are currently leveraging LDMS
in live production systems. We will discuss these specific
applications in more detail in Section 6.

3.2 Goal
In this work, we focus on identifying decision makers in the

professional social networks within the LinkedIn ecosystem.
The decision makers in our context are people who can make
or influence a sales decision. Note that we are not interested
in influence within the social graph, but rather within the
sales context. That’s why we are leveraging social data from
both the LinkedIn.com and LinkedIn Sales Navigator. Both
platforms share certain data elements (e.g., member profiles,
connections), but Sales Navigator has its own characteristics
(see Figure 1(a)):

• Most users are sales professionals

• On top of LinkedIn.com actions (e.g., view profile, send

connection request, send inMails), users can save po-
tential prospects as leads for future follow-up

• Users have sales-focused member and company search
functionalities

Our goal is to learn a scoring function to assign a LinkedIn
Decision Maker Score to each of the 400M+ LinkedIn mem-
bers. We intentionally make the score global, in that every
member has one score regardless of what his or her indus-
try, company, or function is. In other words, we do not aim
to develop a specialized score for members within each in-
dustry, each company, or each function. This has broader
usage for our context, and can be used within a special set-
ting if needed. One can, for instance, use the score to refine
search ranking such that higher-scored members are shown
at the top. We can also sort members by this score for
a given company to measure decision-making power within
the company. Both use cases will be discussed further in
Section 6.

3.3 Ground truth
One challenge in the LDMS offline training is the unavail-

ability of the actual ground truth. In other words, we do not
have definitive answer on who is and who is not a decision
maker. We also do not have access to our customer’s CRM
(i.e., customer relationship management) data to know ex-
actly who made or influenced a buying decision. Therefore,
we seek to use a surrogate ground truth from LinkedIn data.
In this section we describe the definition details and the ra-
tionale behind it.

3.3.1 The key signal
When a sales professional is interested in a particular indi-

vidual on LinkedIn, here are the major signals we can collect



depending on how he or she expresses interest:

• Profile View : view the individual’s profile to find out
more about the individual,

• Save as Lead : within Sales Navigator, save this indi-
vidual as a lead for future follow-up,

• Connection Request : reach out to the individual with
a connection request,

• inMail : send a direct, private message to the individ-
ual.

Going from Profile View to inMail, the sales professional is
getting more serious about this individual. He or she also
needs to do more work with the interaction - from simply
viewing a LinkedIn profile to carefully drafting a message.
Since the inMail signal is the most effective way of reach-
ing out through the LinkedIn and Sales Navigator platform,
in the LDMS training pipeline we chose the number of in-
Mails from distinct sales professionals within a specified time
frame, denoted as Nin(x, T ) for member x in time frame T ,
to be the signal for ground truth definition. The higher this
number, the more likely the recipient is truly a prospect.
Note that we only count inMails from one sales professional
once for each recipient.

3.3.2 Discount factors
Inbound inMails alone is not sufficient to identify key de-

cision makers for sales use-case as this leads to a lot of false
positives. For example, on LinkedIn platform, recruiters also
receive high number of inbound inmails. Not surprisingly,
they also send out a lot of inMails to prospective candi-
dates. On the contrary, decision makers tend to receive
disproportionately more inbound inMails when compared
to the amount of inMails that they send out themselves.
Additionally, since our motivation is to compute Decision
Maker Score across organizations so in our ground truth
we discount for organization’s popularity amongst sales pro-
fessionals. Therefore we considered the following discount
factors:

• High-outgoing-inMail discount :

D1(x, T ) =
Nin(x, T )

Nin(x, T ) +Nout(x, T ) + 1
,

to penalize members who send many inMails out (re-
gardless to whom). Here Nout(x, T ) denotes the num-
ber of inMails sent out by member x in time frame
T .

• Peer-comparison discount :

D2(x, T ) =
Nin(x, T )

maxy∼xNin(y, T ) + 1
,

to discount members who have some of their peers get-
ting more sales inMails than themselves. Here y ∼ x
denotes the co-worker relationship (within the same
company). The rationale is that the absolute number
of sales inMails only makes complete sense within the
context of the same company. In other words, if there
are peers from the same company getting more sales
inMails, the decision-makerness of the current mem-
ber is lower compared to the situation where no one
within the same company gets more sales inMails.

(a) sales inMail signal

(b) sales Profile View signal

Figure 2: Sparsity of different graph signals. At the per-
company level, we show the number of (a) inMail signals
and (b) Profile View signals the top-ranked people (from
100th to 2000th) received from sales professionals within the
calendar year of 2015. The box plots averaged all companies
with more than 5000 employees based on LinkedIn data.
On the y-axis we highlight the scale difference of the two
box plots instead of the actual number. It can be seen that
Profile View signals are ∼50 folds larger than inMail signals.

Furthermore, across various time-window we see large changes
in the absolute number of inMails that individuals get. There-
fore to add robustness to our ground-truth, we consider per-
centiles within the company for these two discount factors
instead of the actual discount values. The final ground truth
definition for member x in time frame T is:

GT (x, T ) = Nin(x, T ) ∗ Perc(D1(x, T )) ∗ Perc(D2(x, T )),

where Perc denotes the percentile which takes value between
0 (0%) and 1 (100%).



3.3.3 Sparsity
One may wonder why not simply use this ground truth

definition as the LDMS score (hence no need for supervised
learning!). The reason is data sparsity. Very few LinkedIn
members have ever received an inMail from a sales profes-
sional. Figure 2 also shows, at a per-company level, how
many inMails and Profile Views top-ranked people received
within a 12-month period. It can be seen that other signals,
Profile Views in this case, do not suffer as much from spar-
sity problem. Therefore, to robustly rank a broader set of
member base, we need to identify other non-sparse signals
that correlate with the ground truth.

3.4 Features
In the LDMS offline training pipeline we considered var-

ious information about the member and the social graphs
from LinkedIn.com and Sales Navigator. The following are
the high-level categories:

• Member Profile: title, position, seniority, and related
working experience of the member

• Connection Graph: an undirected member graph in
which each edge is a first-degree connection between
two members

• Invitation Graph: a directed member graph in which
each edge is a connection invite action

• Profile View Graph: a directed member graph in which
each edge is a profile view action

• Lead Save Graph: a directed bipartite graph between
members and sales professionals in which each edge is
a lead save action in Sales Navigator

• inMail Graph: a directed member graph in which each
edge means an inMail was sent

All graph edges have a time stamp associated with it, and
for some graphs there might be multiple edges between two
nodes (e.g. Profile View Graph). There are other social
graphs within the LinkedIn ecosystem, such as the Follower
Graph, Endorsement Graph, etc. We currently do not use
them but the framework is easy to extend to these addi-
tional graphs. Also note that we make an explicit distinc-
tion among various graphs on LinkedIn instead of blending
all the actions into one graph. In Section 5.3 we will ex-
plore why this is helpful. We also want to emphasize that
these heterogeneous graphs cover different types of graphs
we normally see in social networks and include undirected,
uni-directional and bipartitie graphs.

4. LEARNING APPROACH
Given the aforementioned ground truth and feature groups,

in this section we introduce two algorithms for LDMS train-
ing, mainly based on how we encode the graph information
into the learning process. The graph summarization ap-
proach summarizes each graph into specific features, and
then adapts state-of-the-art supervised learning algorithms.
The bipartite graph learning approach leverages the graph-
ical structure explicitly and presents a novel graph prop-
agation algorithm. Though we focus our algorithmic de-
scriptions within the LinkedIn context, the approaches are
general and should be applicable to other applications.

4.1 Learning with Graph Summarization
In this approach we cast the problem to a classification

problem, i.e., we are training a classifier to categorize each
member to be a decision maker (+1) or not (-1). The key
here is how to leverage various social graphs for classifier
training on top of the member-profile-based features. In
the following we discuss the details for three different types
of graphs. Since all the graphs evolve with time, we fix a
specific time frame for each graph.

For undirected graphs (e.g., Connection Graph), we ex-
tract the following information from the graph for each mem-
ber:

• All-Degree: Degree of the member in the graph,

• Sales-Degree: Degree of the member considering only
neighbors who are sales professionals,

• Ratio-Sales-All : The ratio of Sales-Degree and All-
Degree.

For non-bipartite, directed graphs (e.g., Profile View Graph,
Invitation Graph, inMail Graph), we compute the following
information from the graph for each member:

• All-In: Indegree from all members,

• All-Out : Outdegree to all members,

• Sales-In: Indegree from sales professionals,

• Ratio-Sales-In: The ratio of Sales-In and All-In,

• Ratio-In-Out : The ratio of All-In and All-Out.

For the bipartite directed graph (e.g., Lead Saves) between
members and sales professionals, we only compute the Sales-
In feature.

One key insight from this graph summarization approach
is that the ratio features are more relevant to distinguish
good and not-so-good decision makers, as good decision mak-
ers tend to have more in-bound interest (which can be profile
views, lead saves, inMails, etc.) and less out-bound signals.

For supervised learning, we created binary labels based on
the ground truth values, and combined all the graph-based
features with the member-profile-based features. We can
use any classification algorithm for training – for compari-
son in this paper we used elastic net classifier [25], which is
a combination of L2 and L1 regularization. From our expe-
rience it was shown to be more flexible and can strike the
right balance between goodness-of-fit and sparsity. One may
also adapt Learning-To-Rank methods to learn the overall
ranking of the members based on LDMS ground truth.

4.2 Bipartite Graph Learning
One issue the graph summarization approach does not

take into account is the quality or competency of sales pro-
fessionals. In the graph features computed from each of the
graphs, we effectively weigh each sales professional equally.
This may not be ideal as the signal, say a Profile View, from
a novice sales professional should carry much less weight
compared to that from an experienced and active sales pro-
fessional. In this subsection we formulate this as a bipartite
graph learning problem which explicitly takes into account
the LDMS for a member and the competency assessment
for a sales professional, which we call the LinkedIn Sales



Competency Score (LSCS). The motivation is that when we
compute the LDMS score for a member, the incoming sig-
nals from the sales professionals should be weighted by their
respective LSCS score. Likewise we can also take into ac-
count members’ LDMS score when updating the LSCS score
for a sales professional.

Formally, let X = {xi} and Z = {zj} be two disjoint sets
of nodes in the network. With a slight abuse of notation
we use xi and zj to denote both the nodes in the network
as well as the contextual feature vectors they represent. We
assume there are K bipartite graphs between nodes X and
Z. For the k-th graph Gk = (Vk, Ek), we have vertices
Vk = X ∪ Z, and edges Ek = {ek(ij) : xi ∈ X , zj ∈ Z}.
We allow the edges to be undirected (ek(ij)), uni-directional
(ek(i→j)), or bi-directional (ek(i↔j)). In the following we use
the uni-directional edges to describe the approach but it can
take all three types of edges.

For the bipartite graph construction we assume X ∩ Z =
∅. In our context X can be the members, and Z the sales
professionals. Since sales professionals are also members, in
our context they have a representation on both sides.

Let pi be the p-score for xi, and qj be the q-score for zj .
These, in our context, can be LDMS for members and LSCS
for sales professionals. We define the following models for pi
and qj :

pi = f

wpcxi +

K∑
k=1

wpk

∑
j:ek(j→i)∈Ek

qj · t(j, i)

 , (1)

qj = g

wqczj +

K∑
k=1

wqk

∑
i:ek(i→j)∈Ek

pi · t(i, j)

 . (2)

Here f(·) and g(·) denote non-linear transformation func-
tions from the continuous space to [0, 1]. We assume they
are both sigmoid functions in this paper. wpc and wqc are the
weight vectors for all constant (individual) features of xi and
zj that are not based on the bipartite graphs. In our context
these features include profile-based features such as title, po-
sition and seniority. Note that they are multi-dimensional
and can be of different length for x and z. wpk and wqk

are the weights for graph Gk and they measure how graph
Gk contributes to the overall model regardless of index i or
j. t(j, i) is a pre-defined transformation function for pairs
(zj , xi). In the simplest case it can be the count of signals
zj sent to xi in the given time frame.

This model can be seen as a generalization of many ex-
isting supervised learning and graph-based methods. With
qj ≡ 1, the model goes back to standard supervised learning
with summarization features from the bipartite graphs, as
we discussed in Section 4.1. If K = 1 and we have no con-
stant features, i.e., xi ≡ zj ≡ 0, the model is an extension of
the label propagation approach [24], where any label (of pi)
is first propagated to the other side of the bipartite graph
(to qj ’s), and then propagated back (to update all pi’s). If
we remove the ground truth labels and make this an un-
supervised learning problem, the model is an extension of
the well-known HITS algorithm [11] to bipartite graphs, in
which pi and qj can be thought of as the authority and hub
scores, respectively.

For learning, we are given ground truth labels for the p-
score, and need to estimate W = {wpc, {wpk}, wqc, {wqk}}
(with parameter regularizations). Instead of directly opti-

mizing the problem which is non-convex, in this paper we
present an iterative approach and introduce an intertwined
elastic net solver to solve the problem. The iterative al-
gorithm is shown in Algorithm 1. As a starting point we
initialize the q-score by fixing wqc ≡ wqk ≡ 1. Then we
solve an optimization problem for wpc and wpk by fixing qj
scores. This can be done exactly the same way as what we
discussed in Section 4.1. After that we propagate pi and qj
scores throughout the entire network by iterating equations
(2) and (1), with fixed model parameters W. Note that the
unlabeled xi’s within X will also get propagated pi scores.
We iterate until we reach a stable state of pi and qj scores
across the entire network. Then we repeat the process of
optimizing pi and qj separately for the respective parame-
ters, and propagating the labels through the network with
the learned parameters. In Step 6 where we optimize the qj
scores, since we do not have ground truth labels for qj ’s, we
take a heuristic approach and label the top 20% percentile as
+1 and bottom 20% percentile as −1. From our experiments
we see the results and convergence rate are not sensitive to
the specific percentile choice. The algorithm typically con-
verges within 20 iterations from our experience.

Algorithm 1 The Bipartite Graph Learning algorithm

1: Initialization: wpc = wqc = 1, wpk = wqk = 1, ∀k.
2: Compute qj using (2), ∀j.
3: (Optimization) Solve elastic net problem in (1) for wpc

and wpk, ∀k.
4: (Propagation) Iterate (2) and (1) till convergence with

fixed W, obtaining pi and qj , ∀i, j.
5: repeat
6: (Optimization) Solve (2) for wqc and wqk, ∀k.
7: (Optimization) Solve (1) for wpc and wpk, ∀k.
8: (Propagation) Iterate (2) and (1) till convergence

with fixed W, obtaining pi and qj , ∀i, j.
9: until convergence

5. METHODOLOGY AND RESULTS
For the results we show in this paper, we collected all

LinkedIn network data over the calendar year of 2015. The
ground truth was defined based on Section 3.3 with this
time frame, and all the feature groups defined in Section 3.4
were captured for this time frame. There were around 400M
members in the pipeline, and the total number of signals
(e.g., profile views) for most of the graphs is in the hun-
dreds of millions. For learning and parameter estimation,
we leveraged our internal Hadoop infrastructure at LinkedIn
for distributed learning.

5.1 Offline Training Methodology
For offline evaluation we randomly split the LinkedIn mem-

ber base into training (70%) and testing (30%). Based on the
ground truth definition in Section 3.3, we assign a (+1/0/-1)
label to each member based on two pre-selected thresholds
T+ and T−:

L(x, T ) =


+1, if GT (x, T ) ≥ T+,

−1, if GT (x, T ) < T−,

0, otherwise.

For the graph summarization approach, we ignored the mem-
bers who have label 0 to remove noisy data. For bipartite



Table 1: NDCG results for graph summarization (Summarization) and bipartite graph learning (Bipartite)

NDCG@K 10 20 50 100 500 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000
Summarization 1 0.963 0.9084 0.8593 0.9039 0.8684 0.8682 0.7987 0.8339 0.8701 0.9336 0.9344
Bipartite 1 0.9664 0.9665 0.9063 0.9183 0.878 0.871 0.8043 0.8412 0.8778 0.9367 0.9373

Table 2: Kendall’s τ results for graph summarization (Summarization) and bipartite graph learning (Bipartite)

Kendall’s τ@K 10 20 50 100 500 1,000 5,000 10,000
Summarization 0.5394 0.5769 0.5185 0.6365 0.5681 0.4829 0.4717 0.4956
Bipartite 0.4045 0.4476 0.5135 0.6253 0.5605 0.4855 0.4746 0.5043

graph learning approach, we only used members with labels
(+1/ − 1) in each round of elastic net training for LDMS
(Step 7 in Algorithm 1), but let the labels propagate to the
other members throughout the iterations (in all propagation
steps).

5.1.1 Metrics
For offline evaluation we need to compare the ranked list

of decision makers from the algorithm with that from the
ground truth definition. We are more interested in the rela-
tive ranking of members rather than the absolute predictive
scores. Therefore we chose NDCG (normalized discounted
cumulative gain) and Kendall’s τ with our own adaptions.

NDCG is widely used in the Learning-To-Rank literature
[1, 3] to measure ranking performance. For a ranked list
and position k, NDCG@k is the ratio of DCG@k to the
ideal DCG@k, where the latter is obtained had the list been
sorted by the ground truth label. DCG@k is formally given
by:

DCG@k =

k∑
r=1

2rel(r) − 1

log2(r + 1)
, (3)

which captures the importance of finding the correct order-
ing among the top ranked decision makers. Since the ranked
list is very long in our case, we chose various k position from
10 all the way to 1, 000, 000. Note that we have only one very
long ranked list to evaluate, unlike the typical search sce-
nario that multiple search sessions contribute to the NDCG
metric. The gain function rel(r) is defined by binning the
ground truth label into different buckets.

Kendall’s τ is a standard way of measuring correlation,
which has also been extensively used in the literature of
identifying the most influential people [15, 16, 19] in order to
compare the ranking lists of different algorithms. Formally,
it is defined as:

τ(k) =
(#concordant pairs)− (#discordant pairs)

1
2
k(k − 1)

at position k, where #pairs represents the number of pairs.
A pair of members are concordant if they are ranked the
same way in the predictive algorithm and the ground truth,
and are discordant if they are not. Note that unlike NDCG
which is between 0 and 1, τ(k) is between -1 (i.e., perfect
disagreement) and 1 (i.e., perfect agreement). One key dif-
ference of Kendall’s τ from NDCG is that in Kendall’s τ
each member pair has the same weight as opposed to a dis-
counted weighting scheme in NDCG. In our experiments we
compute τ(k) for k between 10 and 10,000 to measure the
metrics at different scales.

5.2 Overall Results
The performance of the two approaches described in Sec-

tions 4.1 and 4.2 is shown in Table 1 and Table 2. First of all,
both approaches performed very well for the LDMS ranking
problem. Between these two methods, we can see that the
bipartite graph learning approach outperformed the graph
summarization approach in terms of NDCG for all list sizes.
For Kendall’s τ , the results show that the graph summa-
rization approach had better Kendall’s τ than the bipartite
graph learning method for small list sizes (10 − 500), but
was inferior to bipartite graph learning method for large list
sizes (1, 000 − 10, 000). As we are more interested in how
the model would perform with a reasonably large amount of
member base for the decision maker ranking, the bipartite
graph learning approach is superior overall. Also keep in
mind that even a small improvement in these two metrics
will typically lead to significant improvement in downstream
applications. We will cover one such case in Section 6.

One reason why the improvement tended to be small is
that the inMail graph features are more important from
both approaches due to the fact that the ground truth defi-
nition also leveraged the inMail information. The additional
improvements over the graph summarization approach from
the bipartite graph learning approach is significant in that it
shows a bootstrap from the basic graph summaries with the
help of the LSCS score for the sales professionals will lead to
a better ranking result overall. We also get the side-benefit
of having a ranking among the sales professionals, which by
itself has many downstream applications. The details of this
are beyond the scope of this paper.

5.3 Leveraging Different Social Graphs
In Tables 1 and 2, we used all the social graphs we have

introduced in Section 3.4. In this subsection we evaluate
how much each social graph contributes to the overall per-
formance on top of the inMail graph. In Figure 3, we com-
pare NDCG and Kendall’s τ results for the following graph
configurations:

• using only the inMail graph

• using the inMail and Profile View graph

• using all social graphs

We can see that in the majority of the cases the addition
of more graphs helps improve the performance when K is
reasonably large. This agrees with our intuition that consid-
ering more social graphs leads to a better ranking of LDMS
among decision makers, and also stronger signal for the
strength of the relationship between a decision maker and
a sales professional. The additional social graphs not only
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Figure 3: NDCG and Kendall τ results for bipartite graph learning approach using different graphs

resolved the sparsity problem we mentioned in Section 3.3.3,
but also improved the overall performance.

5.4 Score Distributions
Last but certainly not the least, we plot the histograms

of the LDMS score for members and LSCS scores for sales
professionals in Figures 4 for the bipartite graph learning
approach. The LDMS score for the graph summarization
approach follow a similar pattern. We want to highlight
that the two scores behave in a totally different way. LDMS
scores follow a power law distribution, where the majority of
people have scores close to 0. This agrees with our intuition
that decision makers are a small percentages of the member
base. On the other hand, LSCS scores follow a normal distri-
bution, with the majority of sales professionals around 0.5.
This indicates that the majority of sales professionals per-
form neutrally, with some distinguished and some not very
experienced. This is also intuitive and can be supported by
various reports [4, 6].

6. APPLICATIONS
One key component of social prospecting is to identify

people with influence in the sales process. This is one of
the core components of the LinkedIn Sales Navigator prod-
uct. We discuss some of the applications of LDMS in this
section, all of which are currently running live on the Sales
Navigator product. On the offline side, the aforementioned
offline training algorithms are computed weekly on our in-
ternal Hadoop infrastructure. Once it is completed, both
versions of the LDMS scores are pushed to a key-value store
for online consumption.

6.1 Sales Navigator Search
Search is one of the key building blocks of Sales Naviga-

tor. We have integrated the LDMS score into Sales Nav-
igator Search to allow the users to find decision makers
faster, which differentiates Sales Navigator search to the
LinkedIn.com search (see Figure 1(a)). We first investi-
gated the integration performance offline using the NDCG
metric, for which we wanted to test whether the LDMS-
enabled search ranking is better than the baseline model
(which was already fine-tuned with years of effort). Note

this is the NDCG metric on search rankings, not on LDMS
ranking as we presented in Section 5. The baseline NDCG
performance was 67.3%, LDMS score from the graph sum-
marization approach yielded 68.6%, and the LDMS from the
bipartite graph learning approach yielded 69.8%. This seem-
ingly small improvement on offline NDCG turns out to have
a significant impact on online search metrics. Compared to
the baseline search metrics, the A/B test for the graph sum-
marization approach has shown 4.5% improvement on lead
saves from search, which is the key metric for Sales Navi-
gator search. The A/B test for the bipartite graph learning
over the graph summarization approach has shown an addi-
tional 10.6% improvement on lead saves from search. These
metric improvements are the key drivers of improving the
Sales Navigator ecosystem.

6.2 Lead Recommendation
Lead recommendation module in Sales Navigator recom-

mends potential leads to the user based on the decision
making power those individuals have and the user’s past
activities on LinkedIn and Sales Navigator, such as profile
views, lead saves, and the specified sales preferences. See
Figure 1(b) for lead recommendation module on the com-
pany page. In the simplest implementation, it is extracted
from the top decision makers for the specific company and
then filtered by the users activities and their sales prefer-
ences. This is a new module that was recently launched,
and was made available because of the LDMS score. This is
also one of the differentiating factors of the Sales Navigator
company page compared to LinkedIn.com. So far we are
seeing that this module has the largest user engagement on
the company page.

6.3 Decision Maker Insights
Another LDMS application is on the Sales Navigator In-

sights module, which is a feed system that aims to keep
the users informed about latest updates on leads and com-
panies they care about. This includs job changes, article
shares, mentions in the news, company updates, etc. LDMS
is leveraged to boost rankings of those updates from key
decision makers.
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Figure 4: Histogram of the (a) LDMS scores for members and (b) LSCS scores for sales professionals

7. CONCLUSION
In this paper we presented LDMS, the LinkedIn Decision

Maker Score, to capture the ability to make or influence
a buying decision for each of the 400M+ LinkedIn member.
We proposed two learning approaches to tackle this problem,
which are able to leverage both the graph information and
the contextual information on the vertices, deal with small
amount of labels on the graph, and handle heterogeneous
graphs among different types of vertices. Although the ap-
proaches were presented in the LinkedIn context, they are
general methods and can be applied to other social network
settings.

Within LinkedIn Sales Navigator, this score is used in re-
fining search ranking, improving lead recommendations and
providing additional insights about decision maker activity
on LinkedIn. More broadly for LinkedIn, we are building
upon this work to do more holistic optimization to improve
overall LinkedIn experience for key decision makers across
all enterprise products.
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