Exploring MapReduc
Highly-Distrib

e Efficiency with
uted Data -

Michael Cardosa, Chenyu Wang, Anshuman Nangia, Abhishek Chandra, Jon Weissman
University of Minnesota

Minneapolis,

MN, USA

{cardosa,chwang,nangia,chandra,jon}@cs.umn.edu

ABSTRACT

MapReduce is a highly-popular paradigm for high-perforagarom-
puting over large data sets in large-scale platforms. Hewavhen
the source data is widely distributed and the computingqmat is
also distributed, e.g. data is collected in separate datcoca-
tions, the most efficient architecture for running Hadodpsjover
the entire data set becomes non-trivial. In this paper, wa/ghe
traditional single-cluster MapReduce setup may not bebklatfor
situations when data and compute resources are widelybdited.
Further, we provide recommendations for alternative (aseah di-
erarchical) distributed MapReduce setup configuratioepedding
on the workload and data set.

Categories and Subject Descriptors
D.4.7 [Organization and Desigr: Distributed Systems

General Terms
Management, Performance

1. INTRODUCTION

MapReduce, and specifically Hadoop, has emerged as a dom
nant paradigm for high-performance computing over larda sets
in large-scale platforms. Fueling this growth is the empegeof
cloud computing and services such as Amazon EC2 [2] and Ama
zon Elastic MapReduce [1]. Traditionally, MapReduce hasnbe
deployed over local clusters or tightly-coupled cloud rteses with
one centralized data source.

However, this traditional MapReduce deployment becomes in
efficient when source data along with the computing platfism
widely (or even partially) distributed. Applications suah scien-
tific applications, weather forecasting, click-streamligsia, web
crawling, and social networking applications could haveesa
distributed data sources, i.e., large-scale data couldobected
in separate data center locations or even across the Ihtdfoe

these applications, usually there also exist distributathputing
resources, e.g. multiple data centers. In these cases,dabteetii-
cient architecture for running MapReduce jobs over theeitita
set becomes non-trivial.

One possible “local” approach is to collect the distributieda
into a centralized location from which the MapReduce clustaild
be based. This would revert into a tightly-coupled envirenitrfor
which MapReduce was originally intended. However, largales
wide-area data transfer costs can be high, so it may not lz ide
to move all the source data to one location, especially if ot
resources are also distributed.

Another approach would be a “global” MapReduce cluster de-
ployed over all wide-area resources to process the dataadeege
pool of global resources. However, in a loosely-coupledesys
runtime costs could be large in the MapReduce shuffle ancdceedu
phases where potentially large amounts of intermediate caild
be moved around the wide-area system.

A third potential distributed solution is to set up multipliepRe-
duce clusters in different locales and then combine thepeetive
results in a second-level MapReduce (or reduce-only) johis T
would potentially avoid the drawbacks of the first two appioes
by distributing the computation such that the required davae-

. ment would be minimized through the coupling of computadion
resources with nearby data in the wide-area system. Onerimpo
tant issue with this setup, however, is that the final sedewvel
MapReduce job can only complete after all first-level Mapied
jobs have completed, so a single straggling MapReduceeclomety
delay the entire computation an undesirable amount.

Important considerations in the above approaches to canstr
an appropriate MapReduce architecture are the workloadiarad
flow patterns. Workloads that have a high level of aggregdeay.,
Word Count on English text) may benefit largely from a disttéul
approach to avoid shuffling large amounts of input data atdha
system when the output will be much smaller. However, waéto
with low aggregation (e.g., sort) may perform better undeal or
global architectures.

In this paper, we show the traditional single-cluster MaghiRe

*This work was supported by NSF Grant 11S-0916425 and NSF S€tup may not suitable for situations when data and comute r

Grant CNS-0643505.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MapReduce' 11, June 8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0700-0/11/06 ...$10.00.

sources are widely distributed. We examine three main Mdp&e
architectures given the distributed data and resourcesmgm®on,
and evaluate their performance over several workloads. t¥e u
lize two platforms: PlanetLab, for Internet-scale enviremts, and
Amazon EC2 for datacenter-scale infrastructures. Furihepro-
vide recommendations for alternative (and even hieraathatis-
tributed MapReduce setup configurations, depending on tk-w
load and data set.

Merge

Reducer

Result

Result
i . idely-distri Sort
Figure 1: Data and compute resources are widely-distribute
and have varying interconnection link speeds.
Reducer

2. SYSTEM MODEL AND ENVIRONMENT

2.1 Resource and Workload Assumptions

In our system, we assume we have a number of widely-disatbut
compute resources (i.e. compute clusters) and data souvdes
also have a MapReduce job which must be executed over all the If a node becomes idle during the Map phase, it may be assigned
combined data. The following are the assumptions we makarin o a Map task for which it does not have the data block locallyestp
system model: it would then need to download that block from another HDF& da
location, which could be costly depending on which data seitr
chooses for the download.

Finally, and most importantly, is the Reduce phase. The Bedu
operation is an all-to-all transmission of intermediateadzetween
the Map task output data and Reduce tasks. If there is a signifi
amount of intermediate data, this all-to-all communicatould be
costly depending on the bandwidth of each end-to-end link.

In the next section, we will propose architectures in oraer t
e Data sources: There exist data sources from various loca- avoid these potential performance bottlenecks when paify MapRe-

tions, where large-scale data is either collected or géexbra duce jobs in distributed environments.

In our example in Figure 1, data sources are shown along

with their connection speeds with the compute resources. 3. FACTORS IMPACTING MAPREDUCE PER-

The bandwidth available between the data sources and com- FORMANCE

pute resources is a function of network proximity/topology . . .

In our experiments, we locate data sources within the same In this sectl_on, we study factors_ the_u could |m_pact MapReduc

clusters as the compute resources. performance in Ioosely-goupleq distributed enwronmerfsrst,

we suggest some potential architectures for deploying MdpRe

e Workload: A MapReduce job is to be executed whose in- clusters, and then later discuss how different workloadg atso

put is all the data sources. We explicitly use Hadoop, and impact the performance.

assume a Hadoop Distributed File System (HDFS) instanti- .

ation must be used to complete the job. Therefore the data 3-1 Architectural Approaches

must be moved from the data sources into HDFS before the Intuitively, there are three ways to tackle MapReduce jalvs r

job can begin. ning on widely-distributed data. We now describe theseetlare
chitectures, showing examples of these respective acthigs in
Figure 3.

Figure 2: In the traditional MapReduce workflow, Map tasks
operate on local blocks, but intermediate data transfer dumg
the Reduce phase is an all-to-all operation.

e Compute resources Multiple clusters exist where a cluster
is defined as a local grouping of one or more physical ma-
chines. where the machines within the cluster are tightly-
coupled. Machines belonging to different clusters are as-
sumed to be loosely-coupled. For example, as seen in Fig-
ure 1, there could be a compute cluster in the US, one in
Europe, and one in Asia.

2.2 MapReduce Dataflow in Distributed En-

vironments e Local MapReduce (LMR): Move all the data into one cen-

As previous work in MapReduce has not included performance
analysis over wide-area distributed systems, it is imparta un-
derstand where performance bottlenecks may reside in théaa
of a MapReduce job in such environments.

Figure 2 shows the general dataflow of a MapReduce job. Prior
to the job starting, the delay in starting the job is in thesfar of all
data into HDFS (with a given replication factor). If the sceidata
is replicated to distant locations, this could introduogngicant
delays.

After the job starts, the individual Map tasks are usuallycered
on machines which have already stored the HDFS data bloek cor
responding to the Map task; these are normal, “block-lotzgks.
This stage does not rely on network bandwidth or latency.

tralized cluster and perform the computation as a local MapR
duce job in that single cluster itself. (Figure 3(a))

Global MapReduce (GMR): Build a global MapReduce clus-
ter using nodes from all locations. We must push data into
a global HDFS from different locations and run the MapRe-
duce job over these global compute resources. (Figure 3(b))

Distributed MapReduce (DMR): Construct multiple MapRe-
duce clusters using a partitioning heuristic (e.g., naddata
proximity), partitioning the source data appropriatelynr
MapReduce jobs in each cluster and then combine the re-
sults with a final MapReduce job. This can also be thought
of as a hierarchical MapReduce overlay. (Figure 3(c))

MAPREDUCE FINAL
JOB RESULT

I HDFS-US

=}

DATA US+ASIA

FINAL RESULT
MAPREDUCE .
JoBUS
HDFS-GLOBAL
TAUS \ DATAASIA

/ FINAL RESULT

RESULT ASIA

MAPREDUCE
JOB ASIA

HDFS-ASIA
DATAASIA|

MAPREDUCE
JOB FINAL

SULT US

IATAUS

DATA
ASIA

DATA CENTER DATA CENTER
us ASIA

—_— — 3
DATA DATA
us ASIA

(a) Local MapReduce (LMR)

DATA CENTER
us

——
DATA
us

(b) Global MapReduce (GMR)

HDFS-US
q
I

DATA CENTER
ASIA

<
DATA
ASIA

DATA CENTER LATA CENTER
us ASIA

< —3
DATA DATA
us ASIA

(c) Distributed MapReduce (DMR)

Figure 3: Architectural approaches for constructing MapReduce clusters to process highly-distributed data. This exaple assumes
there are two widely-separated data centers (US and Asia) hitightly-coupled nodes inside the respective data centers

The choice of architecture is paramount in ultimately deter
ing the performance of the MapReduce job. Such a choice depen
on the network topology of the system, inter-node bandwéitt
latency, the workload type, and the amount of data aggr&agat-
curring within the workload. Our goal in this paper is to poey
recommendations for which architecture to use, given thease
ables as inputs.

Next, we examine three different levels of data aggregation
curring in different example workloads, from which we witrive
our experimental setup for evaluation.

3.2 Impact of Data Aggregation

The amount of data that flows through the system in order for th
MapReduce job to complete successfully is a key parametairin
evaluations. We will use three different workload data aggtion
schemes in our evaluation, described as follows:

e High Aggregation: The MapReduce output is multiple or-
ders of magnitude smaller than the input, e.g. Wordcount on
English plain-text.

e Zero Aggregation: The MapReduce output is the same size
as the input, e.g. the Sort workload.

e Ballooning Data: The MapReduce output is larger than the
input, e.g. document format conversion from LaTeX to PDF.

The size of output data is important because during the eeduc
phase, the all-to-all intermediate data shuffle may resutbnsid-
erable overhead in cases where the compute facilities have-b
width bottlenecks. In our evaluation we will analyze the pleefor-
mance of each of the three architectures in combination tivéke
workload data aggregation schemes in order to reach a hetter
derstanding of which architecture should be recommendeiérun
varying circumstances.

4. EXPERIMENTAL SETUP

In this section we describe our specific experimental satups
two platforms:

e Amazon EC2 The Amazon Elastic Compute Cloud is a
large pool of resources with strong resource guarantees in
a large virtualized data center environment. We run exper-
iments across multiple EC2 data centers to model environ-
ments where data is generated at multiple data center loca-
tions and where clusters are tightly coupled.

We use Hadoop 0.20.1 over these platforms for our expersnent
In our experimental setups, due to the relatively low ovadef the
master processes (i.e., JobTracker and NameNode) givevooky
loads, we also couple a slave node with a master node. Inll ou
experiments, source data must first be pushed into an ajxepr
HDFS before the MapReduce job starts.

We have three main experiments we use in both of our plat-
forms for evaluation, involving Wordcount and Sort, and tive
different source data types. The experimental setups caadein
Tables 3 and 5. These experiments are meant to model the high-
aggregation, zero-aggregation, and ballooning workloatdftbw
models as mentioned in Section 3.2.

4.1 PlanetLab

In PlanetLab we used a total of 8 nodes in two widely-sepdrate
clusters — 4 nodes in the US, 4 nodes in Europe. In addition, we
used one node in both clusters as our data sources. For eatércl
we chose tightly-coupled machines with high inter-nodedvadth
(i.e., they were either co-located at the same site or stare s
network infrastructure). In the presence of bandwidth titions
in PlanetLab and workload interference with other slicks,ihter-
site bandwidth we experienced was between 1.5-2.5 MB/s. On
the other hand, the inter-continental bandwidth betweegnpair
of nodes (between US and EU) is relatively low, around 300-50
KB/s. The exact configuration is shown in Tables 1 and 2.

Due to the limited compute resources available to our slice a
each node, we were limited to a relatively small input data $br
our experiments to finish in a timely manner, and also to nosea
an overload. At each of the two data sources, we placed 400 MB
plain-text data (English text from some random Internetkes)
and 125 MB random binary data generated by RandomWriter in
Hadoop. In total, there was 800 MB plain-text data and 250 MB
random binary data used in our PlanetLab experiments.

The number of Map tasks by default is the number of input data

e PlanetLab: A planetary-scale highly-heterogeneous distributedblocks. However, since we were using a relatively small irgata

shared virtualized environment where slices are guardntee
only % of machine resources whereis the number of ac-
tive slices on the machine. This environment models highly-
distributed loosely-coupled systems in general for oudystu

size, the default block size of 64 MB would result in a highly
coarse-grained load for distribution across our clustdrer&fore
we set the number of Map tasks to 12 for the 250 MB data set (spli
size approximately 20.8 MB).

Table 1: PlanetLab US inter-cluster and intra-cluster transmission speed

Node Location from Data Source US from Data Source EU from/to MasterUS
MasterUS/SlaveUS(Harvard University 5.8MB/s 297KB/s -
SlaveUS1 Harvard University 6.0MB/s 358KB/s 9.6MB/s
SlaveUS2 University of Minnesota| 1.3MB/s 272KB/s 1.6MB/s
SlaveUS3 University of Minnesota| 1.3MB/s 274KB/s 1.7MB/s
DataSourceUS Princeton University - - 5.8MB/s
Table 2: PlanetLab EU inter-cluster and intra-cluster tran smission speed
Node Location from Data Source US from Data Source EU from/to MasterUS
MasterEU/SlaveEUQ Imperial University| 600KB/s 1.1MB/s -
SlaveEU1 Imperial University| 600KB/s 1.2MB/s 1.3MB/S
SlaveEU2 Imperial University | 580KB/s 1.2MB/s 1.2MB/S
SlaveEU3 Imperial University | 580KB/s 1.1MB/s 1.2MB/S
DataSourceEU UCL - - 1.1MB/S

Table 3: PlanetLab workload and data configurations

Table 4: EC2 inter-cluster and intra-cluster transmissionspeed

Workload | Data source | Aggregation| Input Size From/To | US EU
Wordcount | Plain-text High 800MB (400MB x 2) us 14.3MB/s | 9.9MB/s
Wordcount| Random datg Ballooning | 250MB (125MB x 2) EU 5.8MB/s | 10.2MB/s
Sort Random datg Zero 250MB (125MB x 2)

We set the number of Reduce tasks to 2 for each workload. |
the case where we separate the job into two disjoint MapReduc

jobs, we give each of the two clusters a single Reduce task.

We implemented the MapReduce architectures as described in

Section 3.1 with the two disjoint clusters being the nodesftJS
and EU, respectively. The specific architectural resouticea
tions are as follows:

e Local MapReduce (LMR): 4 compute nodes in the US are

used along with the US and EU data sources.

Table 5: Amazon EC2 workload and data configurations

Workload | Data source | Aggregation| Input Size
Wordcount | Plain-text High 3.2GB (1.6GB x 2)
Wordcount| Random datg Ballooning | 1GB (500MB x 2)
Sort Random datg Zero 1GB (500MB x 2)

e Distributed MapReduce (DMR): 3 compute nodes from the

US data center, 3 compute nodes from the EU data center,

and both US and EU data sources are used.

e Global MapReduce (GMR): 2 compute nodes from the US,
2 compute nodes from EU, and both US and EU data sources
are used.

e Distributed MapReduce (DMR): 2 compute nodes from the

US, 2 compute nodes from EU, and both US and EU data

sources are used.

4.2 Amazon EC2

In our Amazon EC2 environment we used mi.small nodes, each
of which was allocated 1 EC2 32-bit compute unit, 1.7 GB of RAM

and 160 GB instance storage. We used nodes from EC2 datasente

4.3 Measuring Job Completion Time

We enumerate the steps needed for the MapReduce job to be
completed under the selected architectures:

e Local MapReduce (LMR): Job completion time is mea-

sured from the time taken to insert data from both data ssurce
into HDFS located in the main cluster plus the MapReduce
runtime in the main cluster.

e Global MapReduce (GMR): Job completion time is mea-

sured from global HDFS data insertion from both data sources
time plus global MapReduce runtime.

located in the US and Europe. The data transmission speeds we ®

experienced between these data centers are shown in Takser!.

Distributed MapReduce (DMR): Job completion time is

the PlanetLab setup, the number of reducers was fixed at 2 R LM
and 1 per cluster in DMR. Our workload configurations can lemse
in Table 5. We used data input sizes between 1-3.2 GB. Our EC2

taken from the max time of both individual MapReduce jobs
(plus HDFS push times) in the respective clusters (both must
finish before the results can be combined), plus the result-
combination step to combine the sub-results into the firal re

experiment architectures were limited to LMR and Diéd are
allocated as follows:

e Local MapReduce (LMR): 6 compute nodes in the US data

center are used along with the US and EU data sources.

'Due to an IP addressing bug between public and private asldres

sult at a single data location.

5. EVALUATION
5.1 PlanetLab

We ran 4 trials of each of the three main experiments over the

usage on EC2, we were unable to get GMR to run across multiple three architectures on PlanetLab. We measured and pladtgu e

EC2 data center locations.

component of the job completion times:

1400

800

LMR LMR
IGMR zzz2a GMR zzz2

PMR — 700 |PMR =

1200 V

600
1000

I

<

\NNNANANANANANANNNNANN

500
800 |

400
600 |

Time (in seconds)
Time (in seconds)

300

400 |
200

200 | 100

A
G772
AN AN NN NN

=z

o LA
Push Push
EU

us
(a) Wordcount on 800MB

Map Reduce Result Total
Combine

plain-text data

Map

Figure 4: PlanetLab results. In the case of high-aggregatioin (a),

us
(b) Wordcount on 250MB

500

LMR
IGMR r=zz2a

450 DMR m— B

400 -

]

NNNANAANNNNNNNNANNNNNNNNNY

OSSN

350 |

\

300 |

|

\

250 |

200 |

Time (in seconds)

150 |
100 |

\|
50

777777
NN

A

h Map Reduce Result Total
Combine

us
(c) Sort on 250MB random data

0

4
9

Reduce Result
Combine

random data

tal

o
c
@
>
o

u
E

co

DMR finishes the fastest due to avoiding the transfeof input

data over slow links. But in zero-aggregation and balloonig-data conditions, LMR finishes faster since it minimizes itermediate

and output data transfer costs.

1000

900
LMR LMR
DMR \Y DMR
900 | B 800 |-

800 | 700 -

700 |

600 |

500 |

400

Time (in seconds)
Time (in seconds)

300 |

200 |

100 |

Map Reduce Result Total
Combine

Push Push
us EU

Push
EU

(a) Wordcount on 3.2GB of plain-text data (b) Wordcount on 1GB of random data

Map Reduce Result Total

300

LMR
DMR

Time (in seconds)

Push
us

(c) Sort on 1GB of random data

Reduce Result Total

Combine Combine

Figure 5: Amazon EC2 results. In the case of high aggregatiom (a), DMR still outperforms LMR but at a smaller relative ma rgin
than PlanetLab due to higher inter-cluster bandwidth. LMR again outperforms DMR in zero-aggregation and ballooning-dita
scenarios where it is advantageous to centralize the inputada immediately instead of waiting until the intermediate o output

phases.

1. Push USis the time taken to insert the data from the US data
source into the proper HDFS given the architecture,

2. Push EU, similar to Push US, is the time taken to insert the
data from the EU data source into the proper HDFS,

3. Map is the Map-phase runtime,

4. Reduceis the residual Reduce-phase runtime after the Map
progress has reached 100%,

5. Result-Combineis the combine phase for the DMR archi-
tecture only, comprised of the data transmission plus combi
nation costs, assuming those could be done in parallel, and

6. Total is the total runtime of the entire MapReduce job.

We have plotted the averages as well as the 95th percentife co
dence intervals.

High-Aggregation Experiment: We ran Wordcount on 800 MB
plain text. As seen in Figure 4(a), DMR completed 53% fastant
the other architectural approaches. First of all, DMR bénéfom
parallelism by saving time from the initial HDFS data pusins-
mission costs from both data sources. Since the data is ashyed

to its local HDFS cluster, and this is done in parallel in bolths-
ters, we avoid a major bottleneck. LMR and GMR both transmit
input data across clusters, which is costly in this envirenm

Secondly, note that the Map and Reduce phase times are almost
identical across the three architectures, since the M&p e run
with local data, and the intermediate data is small due tdipe
aggregation factor.

Last, the result combine step for DMR is low since the output
data is small. Therefore we see a statistically significdmtiatage
in using the DMR architecture under our high-aggregatiqueex
ment.

Ballooning-data Experiment: We ran Wordcount on 250 MB
random binary data which resulted in an output size 1.8 tiarger
than the input size, since each “word” in the random dataiiguen
and textual annotations to each word occurrence adds tizénefs
the output data.

As seen in Figure 4(b), DMR still benefits from faster HDFS
push times from the data sources. However, since the intkatee
and output data sizes are quite large, the result-combstgmadds
a large overhead to the total runtime. Even though the reploase
appears to be much faster, this is because the final resulbioing
step is acting as a final reduce operation as well.

LMR is the statistically-significant best finisher in thispexi-
ment due to its avoidance of transmitting large intermedatd
output data across the wide-area system (as in both GMR ariR)DM
instead, by just transmitting the input data across the twsters,

data to a centralized cluster, incurring an unavoidabla ttansfer
cost at the beginning instead of at later stages, which alline
compute resources to operate more efficiently over local. dat

it comes out ahead, 16% and 30% faster than DMR and GMR, re- 6 RECOMMENDATIONS

spectively.

Zero-Aggregation Experiment: We ran Sort on 250 MB ran-
dom binary data. As seen in Figure 4(c), this experiment ésits
similar to the ballooning-data experiment. However sifwré is
less intermediate and output data than the previous expatjrhe
three architectures finish much closer to each other. LMRHgs
only 9% faster than DMR and 17% faster than GMR.

Since there is zero aggregation occurring in this experipzem
it is merely shuffling the same amount of data around, onlifat d
ferent steps, it makes sense that the results are very simigach
other. LMR transmits half the input data between clusteferee
the single MapReduce job begins; DMR transmits half the atutp
data between the clusters after the half-size MapRedusehate
been completed, only to encounter a similar-size resuttbioe
step. DMR is also at a disadvantage if its workload partitignis
unequal, in which case one cluster would be waiting idle far t
other to complete its half of the work.

GMR has a statistically worse performance than LMR primparil
because some data blocks may travel between clusters tiiee (
to the location-unaware HDFS replication) instead of justen

5.2 Amazon EC2

Our experiments in Amazon EC2 further confirmed our intu-
itions behind our PlanetLab results, and provided evemgao
statistically-significant results. We ran 4 trials of eaétthe three
main experiments over the three architectures, plottingtierages
and the 95th percentile confidence intervals.

High-aggregation Experiment: As seen in Figure 5(a), DMR
still outperforms LMR but by only 9%, a smaller relative miarg
than PlanetLab due to higher inter-cluster bandwidth. Al
cause of the high inter-cluster bandwidth, LMR incurs lebs o
penalty from transferring half the input data across dataters,
which makes it a close contender to DMR.

Ballooning-data Experiment: As seen in Figure 5(b), LMR
outperforms DMR but at a slightly higher relative margin ¥4
compared to our PlanetLab results (16%). LMR again avoids th
cost of moving large intermediate and output data betwagsteals
and instead saves on transfer costs by moving the input eéfdeeb
the job begins.

Zero-Aggregation Experiment: From Figure 5(c), our results
are quite similar to those from PlanetLab. LMR and DMR are al-
most in a statistical tie, but DMR finishes in second placeby)
most likely due to the equal-partitioning problem whereneoof
the two clusters falls slightly behind in the computatidme tther
cluster finishes slightly early and then half the data cecenpute
resources sit idle while waiting for the other half to finishstead
with LMR, no compute resources would remain idle if there aver
straggling tasks.

5.3 Summary

In our evaluation we measured the performance of three a&par
MapReduce architectures over three benchmarks in twoophasf,

In this paper we analyzed the performance of MapReduce when
operating over highly-distributed data. Our aim was to gttree
performance of MapReduce in three distinct architectuves\ary-
ing workloads. Our goal was to provide recommendations dnhwh
architecture should be used for different combinations ofka
loads, data sources and network topologies.

We make the following recommendations from the lessons we
have learned:

e For high-aggregation workloads, distributed computation
is preferred. This is true especially with high inter-cluster
transfer costs. In this case, avoiding the unnecessargfénan
of input data around the wide-area system is a key perfor-
mance optimization.

e For workloads with zero-aggregation or ballooning data,
centralizing the data (LMR) is preferred. This assumes
that an equal amount of compute resources could be allocated
in an LMR architecture as a DMR or GMR setting.

e For distributed computation, equal partitioning of the
workload is crucial to the architecture being beneficial.
As seen with the sort benchmark on random data, DMR fell
slightly behind LMR in both PlanetLab and EC2 results. Even
a slightly unequal partitioning has noticeable effectacsi
compute resources sit idle while waiting for other sub-jobs
to finish. If unsure about input partitioning, LMR or GMR
should be preferred over DMR.

o If the data distribution and/or compute resource distri-
bution is asymmetric, GMR may be preferred. If we are
unable to decide where the local cluster should be located in
consideration of LMR, and we are not able to equally-divide
the computation in consideration of DMR where each sub-
cluster should have a similar runtime over the disjoint data
sets, then GMR is probably the most conservative decision.

e The Hadoop Namenode, by being made location-aware
or topology-aware, could make more efficient block repli-
cation decisions. If we could insert data into HDFS such
that the storage locations are in close proximity to the data
sources, this would in fact emulate DMR in a GMR-type
architecture. The default block replication scheme assume
tightly-coupled nodes, either across racks (even with-rack
awareness) in the same datacenter, or in a single cluster. In
stead, the goals change in a distributed environment where
data transfer costs are much higher.

7. RELATED WORK

Traditionally, the MapReduce [7] programming paradignuassd
the operating cluster was composed of tightly-coupled hgeno
neous compute resources that are generally reliable.duawiork

PlanetLab and Amazon EC2. In the case of a high-aggregation has shown that if this assumption is broken, that MapReé&iaggop

workload, we found that DMR significantly outperformed botviR
and GMR architectures since it avoids data transfer ovelhea
the input data.

However, in the case of zero-aggregation or ballooning-dee-
narios, LMR outperforms DMR and GMR since it moves the input

performance suffers.

Work in [11] showed that in heterogeneous environments, the
Hadoop performance greatly suffered from stragglers, lsifinpm
machines that were slower than others. When applying a needst
ing algorithm, these drawbacks were resolved. In our work, w

assume that nodes can be heterogeneous since they beloifig to d References

ferent data centers or locales. However, the loosely-ealphture
of the systems we address adds an additional bandwidthraorist
problem, along with the problem of having widely-dispersiada
sources.

Mantri [3] proposed strategies for detecting straggleidapRe-
duce in a pro-active fashion to improve performance of thpR
duce job. Such improvements are complementary to our tqaBsj
our work is less concerned with node-level slowdowns ancerfmr
cused on high-level architectures for higher-level peni@nce is-
sues with resource allocation and data movement.

MOON [9] explored MapReduce performance in volatile, vol-
unteer computing environments and extended Hadoop tog®ovi
improved performance under situations where slave nodearar
reliable. In our work, we do not focus on solving reliabiligsues;
instead we are concerned with performance issues of alhgcat
compute resources to MapReduce clusters and relocatirrgesou
data. Moreover, MOON does not consider WAN, which is a main
concern in this paper. [

Other work has focused on fine-tuning MapReduce parameters
or offering scheduling optimizations to provide betterfpemnance.
Sandholm et. al. [10] present a dynamic priorities systenino
proved MapReduce run-times in the context of multiple joDsr
work is concerned with optimizing single jobs relative taéadsource
and compute resource locations. Work by Shivnath [4] predidl-
gorithms for automatically fine-tuning MapReduce paramsete
optimize job performance. This is complimentary to our work
since these same strategies could be applied in our system af
we determine the best MapReduce architecture, in each akeur
spective MapReduce clusters. MapReduce pipelining [6]eas
used to modify the Hadoop workflow for improved responsigsne
and performance. This would be a complimentary optimizetmd
our techniques since they are concerned with the packagidg a
moving of intermediate data without storing it to disk in erdo
speed up computation time. This could be implemented on top o
our architecture recommendations to improve performance.

Work in wide-area data transfer and dissemination incl@ed=TP [8]
and BitTorrent [5]. GridFTP is a protocol for high-perfornta
data transfer over high-bandwidth wide-area networks.h3uicl-
dleware would further complement our work by reducing datag-
fer costs in our architectures and would further optimizepRle-
duce performance. BitTorrentis a peer-to-peer file shasingpcol
for wide-area distributed systems. Both of these could achil-
dleware services in our high-level architectures to maldevarea
data more accessible to wide-area compute resources.

8. CONCLUSION

In this paper, we have shown the traditional single-clugiapRe-
duce architecture may not suitable for situations when dath
compute resources are widely distributed. We examinec thre
chitectural approaches to performing MapReduce jobs dgihyh
distributed data and compute resources, and evaluatedpibei
formance over several workloads in two platforms, Planethad
Amazon EC2. As a result of the lessons learned from our experi
mental evaluations, we have provided recommendations fienw
to apply the various MapReduce architectures, as a funofisav-
eral key parameters: workloads and aggregation levelsyaniet
topology and data transfer costs, and data partitioningléammed
that a local architecture (LMR) is preferred in zero-aggtem
conditions, and distributed architectures (DMR) are prefi in
high-aggregation and equal-partitioning conditions.

10] T. Sandholm and K. Lai.

[11]

[1] Amazon EMR. http://aws.amazon.com/elasticmapretuce

[2] Amazon EC2. http://aws.amazon.com/ec?2.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, |. Stoic
Y. Lu, and B. Saha. Reining in the outliers in map-reduce
clusters. InProceedings of OSDI, 2010.

[4] S. Babu. Towards automatic optimization of mapreduae pr
grams. INnACM SOCC, 2010.

[5] Bittorrent. http://www.bittorrent.com/.

[6] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce onlinePloceed-
ings of NSDI, 2010.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Rroc. of OSDI, 2004.

[8] Gridftp. http://globus.org/toolkit/docs/3.2/grigif .

[9] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and
Z. Zhang. Moon: Mapreduce on opportunistic environments.
In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC 10, 2010.

Mapreduce optimization us-

ing dynamic regulated prioritization. IACM S GMET-

RICS/Performance, 2009.

M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and

I. Stoica. Improving mapreduce performance in heteroge-

neous environments. Proceedings of OSDI, 2008.

