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Abstract

In this paper, we explore the tradeoffs and opportunities in porting a high-throughput Grid comput-
ing middleware to a high-performance service oriented environment. We present the limitations of the
Grid computing middleware when operating in such a performance sensitive environment and suggest
ways of overcoming these limitations. We focus on exploiting the computation and communication het-
erogeneity of the Grid resources to meet the performance requirements of services, and present several
approaches of work distribution that deal with this heterogeneity. We also present a heuristic for finding
the best decomposition of work and present algorithms for each of the approaches which we evaluate on
a PlanetLab testbed. The results validate the heuristic and indicate that a significant improvement in per-
formance can be achieved by making the Grid computing middleware aware of the heterogeneity in the
underlying infrastructure. The results also provide some useful insights into selecting a work distribution
policy based on the dynamic status of the Grid computing environment.

1 Introduction

Grids that employ donated resources have become an effective means of performing large-scale computa-
tions. One of the first projects that made use of a donation-based Grid was the SETI@home project [19].
Donation-based Grids have now found application in a diverse set of domains such as Physics [14], Weather
Forecasting [17] and Medical Research [22]. These are primarily compute-oriented Grids where the amount
of computation per data element is relatively high. In compute-oriented Grids the tasks can be widely dis-
persed irrespective of the location of the data source. The tasks in such a Grid computing environment
execute independently with communication only between the server and the worker entities. The metric of
interest in such a compute-oriented Grid is throughput, which is the total number of tasks completed in a
unit of time.

Another model of Grid computation is the use of service-oriented architectures similar to Web services.
The union of service oriented architectures with donation-based Grids provides a powerful platform for
performing large-scale computations, one such example being the Lattice project [18]. In a service-oriented
environment, a service request defines an explicit boundary between separate invocations of a service. Each
request is composed of individual tasks all of which need to be completed within a certain time bound. The
performance of the service is measured by its response time for individual service requests.

Since requests for large Grid-based services would typically consist of multiple tasks, the service perfor-
mance for each request becomes inherently dependent on the relative performance of individual tasks. A
request finishes only when its last task finishes, the so-called makespan of the request. Thus, a request’s
performance can be improved mainly by reducing its makespan, i.e., by minimizing the completion time
of the last task. This raises an important challenge when hosting such a service on a heterogeneous set of
resources. If the tasks are not distributed properly, it is possible for a slow node to become the bottleneck
for the entire request even if the other tasks finish quickly. This observation suggests that any workload



allocation strategy that distributes tasks to Grid resources must incorporate heterogeneity information into
its decisions.

In this paper, we explore several workload distribution strategies that exploit the Grid resource hetero-
geneity to make better scheduling decisions.The aim of these workload distribution strategies is to distribute
the workload in proportion to the capabilities of the nodes in the Grid. We focus on the computation and
communication capabilities of the worker nodes. We first propose a workload distribution strategy that does
proportional allocation of work by decomposing each task into finer sub-tasks such that the faster nodes
in the Grid perform more work. We then propose strategies that make use of observed performance to
estimate the capabilities of worker nodes for the creation and assignment of matching tasks to them. We
evaluate these workload distribution strategies by implementing them in the BOINC [2] middleware running
on PlanetLab [7], a planetary-scale distributed testbed. We have used BLAST [10], an exemplar service in
the domain of bioinformatics, as a test case since it represents emerging large-scale data-rich services.

The rest of this paper is organized as follows. In Section 2, we present experimental results that motivate
the problem. In Section 3, we propose different workload distribution strategies to exploit the heterogeneity
of the resources. Section 4 presents a performance evaluation and comparison of the different strategies. We
presented related work in Section 5 and summarize our results in Section 6.

2 Donation-based Grids and Heterogeneity

We begin by describing the typical donation-based Grid model represented by BOINC: a popular middle-
ware used for hosting projects such as SETI@home [19] and Climate prediction [17]. We then describe
our experimental framework and present experimental results illustrating the challenge of significant het-
erogeneity in such an environment. These results provide a motivation for the problem we address in this

paper.

2.1 System Model and Experimental Framework

The BOINC system consists of single centralized scheduler which consists of two major components. A
scheduling server which hands out tasks to the worker nodes and a data server which manages the transfer
of the input and output files from the server to the worker nodes. The scheduling server and the data server
are co-located on the same server node. The BOINC system uses a pull-based scheduling model where the
worker nodes poll the BOINC server periodically, requesting work. The worker nodes send back the output
files to the server after completing the computation. All tasks are independent and require no interaction
between the worker nodes. Hence the only communication is between the server and the worker nodes. We
use BOINC as the middleware for implementing our workload allocation

In our experimental framework, we executed BOINC on the PlanetLab infrastructure: a shared distributed
infrastructure consisting of donated machines. In our testbed, the BOINC worker nodes were a set of 16
randomly selected PlanetLab nodes, each running the Fedora Core 2 Linux kernel 2.6.8. The nodes had
varying hardware capabilities and were geographically distributed. Most of the worker nodes were Pentium
I11 or Pentium 4 machines with CPU speeds ranging from 1.2 GHz to 3.0 GHz, memory ranging from 1GB
to 2GB, and each having about 5GB of disk space. The BOINC Grid server ran on a dedicated machine that
is outside the PlanetLab infrastructure. We used the BOINC development version 4.72 to set up our Grid
prototype on the PlanetLab testbed.

We modified a standalone bioinformatics application called BLAST (Basic Local Alignment Search Tool)
to run as a Grid service on BOINC. BLAST is an algorithm for rapid searching of DNA and protein
databases. The BLAST algorithm compares novel DNA sequences with previously characterized genes,
and is used to identify the function of the newly discovered proteins. BLAST takes an input sequence and



compares it to a formatted database file and generates an output file containing a similarity score and simi-
larity matches with the database. The BLAST application serves as a good representative for a Grid service
as it is both computationally intensive and data-rich, requiring the transfer of a large amount of data to per-
form the computation. In our experiments, we used a 119 MB (drosoph.nt) and a 284 MB (sts) formatted
file of sequences as the BLAST databases of gene sequences. The input sequence used for comparison was
a randomly-selected sequence from the database; the sequence was of length 569 bytes.

Next, we present results from a set of experiments in our testbed that demonstrate the presence of signif-
icant heterogeneity in a donation-based Grid environment.

2.2 Demonstration of Grid Heterogeneity

In our first set of experiments, we used the 119 MB BLAST database for gene comparison. Each of the 16
worker nodes was given an equal share of the work by splitting the database into 16 equal-sized chunks.
In each run, the database chunks were transferred from the BOINC server to the worker nodes, and the
results returned to the server after the computations. For each run of our experiments, we measured the total
request execution times along with the component costs such as computation and communication times at
each worker node. The communication time is largely dominated by the transfer of the database chunk as
the input sequence file and the resultant output files are comparatively much smaller in size.

Figures 1(a) and (b) plot the average per-node computation and communication time over multiple runs
along with the standard deviation. Figure 1(a) clearly shows the wide diversity in the computational capa-
bility of different nodes with the slowest node being almost 10 times slower than the fastest node in the grid.
For instance, while node 12 only takes about 10 seconds on average for its computation, node 1 takes about
107 seconds to do the same amount of computation. Figure 1(b) shows similar results for the communication
time, indicating the disparity in the bandwidths or the link speeds of the different nodes from the BOINC
server. The degree of heterogeneity observed for communication does not appear to be as pronounced as
that for computation. We conjecture that this observation is due to the generally strong connectivity of Plan-
etLab nodes (most of which are on Internet2), and expect communication heterogeneity to be much more
pronounced for typical Grids where many nodes may be behind slow “last-mile” connections.
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Figure 1: Per-node average computation and communication time. The error bars represent standard devia-
tion

Another interesting observation we make from Figure 1(a) is the difference between the inter-node vs. the
intra-node variation in computation time. The values of the bars in the figure indicate the presence of large
inter-node variation in computation time, while the tight standard deviations imply small intra-node variation
even across multiple runs. A similar observation can be made about communication times from Figure 1(b).
These observations suggest that there are consistent differences in the capabilities of different nodes, which
are distinguishable across time. Moreover, the per-node variations are small enough that they would not



impact the inter-node differences significantly. This makes it possible to exploit Grid heterogeneity without
having to worry about dynamic intra-node variations.

Having demonstrated the presence of significant heterogeneity across Grid resource, we now present
work allocation techniques that can exploit such differences to improve the performance of Grid services.

3 Workload Distribution Strategies

As described in Section 2, we observed that the nodes in a typical donation-based Grid exhibit substantial
heterogeneity due to their difference in compute capabilities and network bandwidth. The default BOINC
scheduling policy ignores the heterogeneity of the nodes when handing out tasks to the worker nodes. In our
BOINC Grid setup the tasks are subdivided at the server. We now describe workload distribution strategies
that could be applied to the BOINC Grid infrastructure.

3.1 Homogeneous Workunit Allocation

Homogeneous workunit allocation strategies create workunits of equal size which can therefore be allocated
to any worker. We first define a simple heuristic that creates a number of coarse-grain workunits equal to the
number of nodes in the grid. This is the scheme used in Section 2, and it serves as a point of comparison.
For this reason, it is our baseline. It is easy to implement since it is clear how to create workunits. The other
approach is a fine-grained equal-size workload allocation, FG-ES, that creates a larger number of smaller
workunits.

3.1.1 FG-ES

FG-ES addresses the heterogeneity of worker nodes by subdividing the workunits into finer chunks. This
strategy leads to a better workload distribution because faster nodes pick up more work and better load
balance is achieved. The main idea behind FG-ES is to load balance the Grid by creating finer units of work.
However, there is a point of diminishing returns, beyond which the overheads of server-worker interactions
would outweigh the benefits of load balancing. The question is how many workunits should a given amount
of work be decomposed into in order to achieve the “best”* decomposition for a given problem.

We present a heuristic to determine the best decomposition of work for a given problem size (Algorithm
1). It is guided by the observation that as the work is decomposed into finer units of work, an improvement
will be observed only while the difference between the granularity of work from one step to the next is
above some constant §. The value of this constant ¢ is specific to the problem or the application, and would
depend upon the relative cost of computation and communication for the application. The point where the
difference in the granularity drops below this constant ¢ is the best decomposition for the current problem.

We illustrate the heuristic by applying it to the BLAST application used in our experiments, given a
particular database and Grid size. In particular, for BLAST, we have: Problemg;,. = Databaseg;,. and
Initgecomp = Gridsize. The decomposition is the number of workunits Num,,,,s which is initially set to the
Grid size. The granularity of work is the size of the fine-grained database chunk:

Datab ;
Granularity = ——0235Csize
Numys
The granularity of the workunits is decreased in each iteration by increasing the number of workunits in

orders of step.

!By best, we mean it achieves the best results experimentally over the range of confi gurations we explored



Algorithm 1 Workload-Decomposition(Problem;.., INitgecomp, St€P, 6)

1 Currentgecomp — MNitgecomp
Problemg;e
Initdecomp

2 Oldg’/‘anularity —
3. while TRUE do
4 Currentgecomp < CUIrent gecom,, + step

Problemg;ze

5 NeWgranularity - Currentgecomp

6: if Oldgranularity - Newgranularity <=0 then
T Bestsize — Oldgranularity

8: Return Besty; .

9 dse

10: Oldgranularity — Newgranularity

11:  endif

12: end while

13: End

The value of ¢ depends on the step size, which we denote as ¢.,. When the difference in the size of the
database chunk is less than d, a further improvement in the total time will not be observed.

step | Ostep
. - . | 4 104MB
For BLAST, the relation between step and ¢, Was empirically determined to be: s | 08MB
16 | 1.6 MB

The step value was chosen to be 4 due to the nature of the BLAST databases. The database file consists of
a list of gene sequences and it is not possible to arbitrarily split the database since the database chunks have
to be aligned to the start and end of complete sequences. A minimum step size of 4 is chosen to account
for this alignment error. The choice of this step value in general would depend on the application, Grid
environment, and efficiency considerations (a smaller step leads to a greater number of decompositions to
be explored at runtime).

3.2 Heterogeneous Workunit Allocation

The FG-ES strategy requires that the worker nodes interact with the server frequently to acquire additional
workunits. Heterogeneous workunit allocation strategies attempt to eliminate this overhead by creating a
smaller number of variable sized workunits by matching the size of a workunit to the relative capability of the
node. The server does selective scheduling by having a worker node pick up a specific workunit according
to its capability. This workunit allocation strategy requires a method of estimating the capabilities of nodes
in order to create these different-sized workunits. We have developed three approaches for variable-size
allocation:

e VS-benchmark: this uses benchmark information collected by BOINC

e VS-dynamic: this uses prior runs of the baseline to determine computation and communication rates
of each node

e VS-history: this uses the historical information of workunit distribution observed in prior runs of
FG-ES



3.2.1 VS-benchmark

The BOINC core client collects benchmark information when it is executed for the first time on the worker
node. This information is updated at periodic intervals and is reported back to the BOINC server on every
work request. The BOINC server maintains this information in the server database for each of the worker
nodes. In this section we try to estimate the compute capability of a node as a function of two of the
benchmark parameters, Fpops (Floating point operations per second) and CPU-efficiency. The Fpops value
is calculated using the Whetstone benchmarks. CPU-efficiency estimates the amount of CPU time a BOINC
application gets for each wall-clock second that it is run. This indirectly is a measure of the load on a worker
node. The communication capability information of a worker node does not need to be estimated as it is
available on the BOINC server as a measure of its download/upload bandwidth.
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Figure 2: Compute Capability as a function of Fpops and CPU-efficiency

In Figure 2, we plot the observed compute capability of 16 Grid nodes as a function of their Fpops and
CPU-efficiency values. The compute capability is expressed in units of KB/s to capture the rate of con-
sumption of BLAST data. We observe from the figure that the data points are widely scattered. Standard
interpolation techniques for surface plotting when applied to the observed data fail to provide an estimate,
within reasonable error, of the compute capability of a new node as a function of these two parameters.
These results suggest that the BOINC-collected benchmark information is insufficient to estimate the capa-
bility of a Grid node. Also these benchmarks do not capture the nature of the BLAST application which is
data oriented and hence depends on the amount of available memory and I/O capability of the node. This
difference in the nodes make the BOINC benchmarks unsuitable for estimating a node’s capability in exe-
cuting a BLAST request. Next, we explore two approaches to heterogeneous workload allocation that make
use of observed performance of Grid nodes to better estimate the node capabilities.

3.2.2 VS-dynamic

VS-dynamic uses the observed node computation and communication rates to decide the size of the worku-
nits to be allocated to nodes in the Grid. This strategy collects the computation and communication rates for
each node (CNC[node]) from prior runs of the baseline strategy, coarse-grained homogeneous workunit al-
location. This value is used to get an estimate of the node capability. The Proportion ;4. gives an estimate
of the amount of time the Grid should take to compute a request with respect to the entire database, based
on the total capability of the Grid. The capabilities of all Grid nodes are then used to compute the propor-
tional share of the database to be assigned to each node such that the Grid nodes finish their computation at
approximately the same time (Algorithm 2).



Algorithm 2 Var-size-Dynamic (DB .., Grids;.., Nodeg[], CNC[])

FixedChunky;.. — Zroyie
for all node in Nodes[] do
Capability[node] «— %{fﬂ?ﬁ
end for
Total capabitity — ngld size Clapability[n]
Proportion facsor < #pzb”y
for all node in Nodes[] do
VariableChunk;..[node] < Capability[node]-Proportion ¢,.¢or
end for

Return

=

=
i

3.2.3 VS-history

VS-history uses information obtained from prior runs of FG-ES to compute the size of the variable size
workunits. The FG-ES strategy subdivides the workunits into finer chunks based on the heuristic method
described in section 3.1.1 that finds the best number of workunits for a particular database size and grid
size. Instead of having the worker nodes fetch additional workunits from the server, the entire workload
for a node (a chunk of the database) is assigned to it once. The function Group-Database-Chunks() groups
as many database chunks as computed by the node in the FG-ES case into a single chunk which forms the
variable size chunk for that node (Algorithm 3) .

Algorithm 3 Var-size-Historical (DBg; e, Grids; .., Nodes[])

1 Bestyorkunits—FG-ES(DBsize, Grids;.e)

2: Obtain Response jmes[] with FG-ES for Best,, o kunits

3 WU g5 [Gridg; .o ]«—Workunit-Distribution(MIN (Responses;mes[])) /* Get the workunit distribution for
the best response time*/
/*Use the workunit distribution to obtain the variable size chunk for each node*/
for all node in Nodes[] do

VariableChunk;..[node]<Group-Database-Chunks(WU g; .- [Nnode])

end for
Return

N o gk

4 Evaluation

In this section, we validate the heuristic presented in Section 3.1.1 and evaluate the performance of the
different workload distribution strategies presented in the previous section. Our experimental setup is as
described in Section 2.1.

4.1 Baselinevs. FG-ES

In this section, we compare the baseline allocation strategy against FG-ES. From Figure 3, it is clear that a
significant improvement in the total response time is possible by creating finer-grained workunits. One other
point to note is that the performance improvement is greater when the total size of the database is larger.
The reason is that for a larger database size the baseline creates a greater disparity among the worker nodes.



450
400
350
300
250

2 C ]

DB-Size 284MB -

Time (seconds)

200 DB-Size 119MB =
150 I P
100 P = J
50 m
o H HI L HH
Baseline FG-ES Baseline FG-ES

Equal Size Workload Distribution Strategy

Figure 3: Comparison of Equal-Size Workunit Allocation Strategies for databases of size 119 MB and 284
MB
4.2 FG-ES: Detailed Evaluation

FG-ES achieves better workload distribution by creating finer-grained workunits. Figure 4 illustrates how
accurately the worker capabilities correspond to their workunit allocations. Node capability is the combined
computation and communication capability of the node expressed in units of KB/s.
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Figure 4: Ratio of node capability to workunit distribution for DB of size 119 MB

From Figure 4 we observe that the ratio of node capability to the number of workunits executed by that
node has relatively little variation across nodes when compared with the variance seen for the baseline case
(Figure 1(a)). This shows that the fine-grained workunit allocation better load-balances the Grid nodes.

4.2.1 Heuristic Validation

In section 3.1.1 we presented a heuristic which determines the best number of workunits for a given database
and Grid size. In this section, we validate this heuristic under different configurations. We also present a
breakdown of the total time into computation, communication and overhead component times, to give insight
into the heuristics. The total time is represented as follows-

Total, = MAX(YGu(P,+ Ohy+ Y (Cmy+ Cpy)))

Workunits

where,

Total, - Total Time,

G,, - Grid Nodes,

Cm; - Communication Time,
Cp; - Computation Time,



P; - The preamble time is the time taken to create the workunits at the server,
Oh; - Overhead Time - the amount of time that the worker node sits idle while the result of one workunit is
uploaded to the server and the download of the next workunit begins.

The total time for a node is the sum of the communication and computation times for all the workunits
executed by that node plus the overhead and the preamble time. The total time taken for that request is the
time taken by the slowest node, which is the maximum of all the node times. The overhead time will rise
as the number of workunits are increased. The miscellaneous time is the preamble time for creating the
workunits at the server, and the amount of time the first set of workunits wait at the server before being
picked up by a worker node.
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Figure 5: Effect of varying the number of workunits

Figures 5(a) and (b) show the performance of the service for varying number of workunits for databases
of size 119 MB and 284 MB. We also show the component costs in each of the configurations. These
breakdown times are for the slowest node in the Grid, the bottleneck node. From the component costs we
see that the dominant cost is the computation time. As the number of workunits are increased we get a better
load distribution among the Grid nodes, hence the computation time is reduced.

For the database of size 119 MB the best number of workunits is 40 as obtained from the heuristic. We
see that the beyond 40, the total response time flattens out and then rises gently. The heuristic stops at the
point where the curve starts flattening out indicating no further improvement is possible. The gentle rise in
the total time as the number of workunits increases is due to the overhead of dispatching more workunits.
Figure 5(b) shows the effect of varying number of workunits for a database of size 284 MB. For this database
size the best number of workunits is 56, which is again returned by our heuristic.

4.2.2 Effect of Increasing Grid Size

In this section, we study the effect of increasing the Grid size. Figures 6(a) and (b) show the effect of varying
the number of workunits for a database of size 119 MB and 284 MB for a larger Grid of size 32.

For the database of size 119 MB, the best number of workunits is 40 and for the database of size 284 MB,
the best number is 56. The first point to observe is that a larger Grid reduces the benefit of FG-ES vs. the
baseline. The reason is that with a larger Grid size, the size of each database chunk for the baseline is small.
Hence the heterogeneity of the nodes is less pronounced. Comparing Figures 5(b) and 6(b), we see that for
the database of size 284 MB the performance gain with 16 Grid nodes was about 230 seconds while that
with 32 Grid nodes it is about 77 seconds.

We also observe that as we increase the number of workunits, the overheads rise more sharply with a
larger Grid. The reason is that there are more worker node requests coming into the server which increases
this component cost. Variation in this component cost is observed because this cost depends on which
workunit is picked up by the bottleneck node in the Grid.
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Figure 6: Effect of varying the number of workunits for Grid size 32

Homogeneous (secs) Heterogeneous (secs)

DB-size \ Grid-size | Baseline \

FG-ES | VS-history | VS-dynamic

119MB 16 153
284MB 16 428
119MB 32 100
284MB 32 223

102 102 96
198 227 244

78 84 90
133 168 146

Table 1: Comparison of the homogeneous and heterogeneous workload allocation strategies

4.3 Comparison of Homogeneous and Heterogeneous Strategies

In this section, we compare the homogeneous (Baseline and FG-ES) workload allocation strategies with the
heterogeneous (VS-history and VS-dynamic) strategies. As we have seen, there is an overhead associated
with a worker node interacting with the server. The intuition behind the variable-size workunit allocation
strategies is to reduce the overhead by grouping workunits based on node capability.

Table 1 compares the workload distribution strategies for different database sizes and Grid sizes. We
observe that the results obtained are counter-intuitive as for 3 out of the 4 cases, FG-ES does better than the
variable-size allocation strategies. The only case in which the variable-size allocation strategy performs the
same as or better than the FG-ES allocation strategy is for the database of size 119 MB and Grid size of 16.
This is because the effect of contention at the server is smallest and the VS-* strategies do better.
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Figure 7: Effect of contention at the server for Grid size 16

The effect of contention can be observed from Figure 7(a) which shows the complete distribution of 40
workunits among the 16 worker nodes for a DB size of 119 MB. We see that the first workunit at each node

10



takes more time to download than the subsequent workunits. This is because contention at the server is

highest for the first workunit as all the worker nodes download the input files at the same time. Figure 7(b)
shows the complete distribution of 52 workunits among the 16 worker nodes for DB of total size 284 MB.

Here too we observe that the first workunit takes longer time than subsequent workunits. For all other cases,
increasing the DB size to 284 MB or increasing the Grid size to 32 increases the contention at the server

which increases total time, and therefore FG-ES performs better than VS-* strategies.

4.4 Effect of Placing the Server on the Donation Grid

In the results presented thus far, the BOINC server was placed on a dedicated machine that was outside the
PlanetLab infrastructure. Here we evaluate the effect of placing the BOINC server on one of the PlanetLab
donation Grid nodes. We evaluate this setup for a database of size 119 MB and Grid of 16 nodes.

Figure 8 shows the effect of varying the number of workunits on the total response time along with the
breakdown costs. The best number of workunits for this configuration is still 40 as predicted by the heuristic.
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Figure 8: Server on PlanetLab - Effect of varying number of workunits - DB size 119 MB, Grid size 16

Figure 9 gives a comparison of FG-ES and VS-* workload distribution strategies. Here too we observe
that the FG-ES does better than the VS-* strategies. However, VS-* does far worse for the same database
and Grid size compared with the server on an outside machine. The reason for this can be explained from
Figures 10 and 11.
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Figure 9: Server on PlanetLab - FG-ES vs. VS-* - DB size 119 MB, Grid size 16

Figure 10 shows the distribution of all 32 workunits with the server on PlanetLab. We see from this figure
that the first workunit takes considerably longer to download than subsequent workunits. In Figure 11 we
observe that the cumulative communication time is smaller for FG-ES as compared to VS-*. This is because
the PlanetLab server shares its bandwidth with different services running on that node.
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In summary, we observe that FG-ES outperforms VS-* when contention at the data server is large. When
the data server is placed on a dedicated node or where the data contention is not a bottleneck, VS-* is almost
as good and in some cases better than FG-ES. The best workload distribution strategy depends on the current
dynamics of the Grid and server placement. Another scenario where FG-ES would be preferred is when the
node churn in the Grid is high since a smaller investment is made if a node executing a smaller workunit
leaves. Also FG-ES handles dynamicity in load better: if a node gets heavily loaded during the execution
of a request, it would effectively compute fewer workunits. In contrast, the VS-dynamic and the VS-history
strategies are interleaved with the baseline and the FG-ES strategies respectively, and hence assume the load
to be constant during the execution of a request.

We are also looking at ways of improving these workload distribution strategies. The issue of contention
at the server can be managed by staggering workunits at the data server such that there is minimum down-
load overlap. The FG-ES strategy can be improved by overlapping computation of a workunit with the
communication for the next workunit. This would help further reduce the total makespan.

5 Related Work

A substantial body of work on load-balancing has focused on cluster based distributed systems. Systems
such as Condor [15] and Mosix [6] rely on checkpointing and process migration to load balance a cluster of
workstations. The heterogeneity of the cluster of workstations is managed by dynamically collecting load
information and migrating actively running processes between cluster nodes to balance the load. Such load-
balancing techniques can be complimentary to our work allocation techniques that focus on initial allocation
of tasks according to node capabilities.

Clusters of workstations have also been employed to host Web and Internet servers. A large body of
work on such cluster-based network servers has focused on request distribution as a means for handling

12



the load imbalance in the cluster. Load-aware request distribution [16] and [4] use content-based request
distribution which take into account the locality of data and the load on the cluster nodes. Aron et al. [3]
focus on request isolation and resource management on cluster based network servers while [20] proposes
cluster load balancing policies for fine grain network services.

Load sharing in heterogeneous systems has been widely researched. [5] evaluates different load sharing
algorithms for heterogeneous multicomputer systems. Goswami et al. [11] propose dynamic load shar-
ing heuristics which manage workload in a distributed system by predicting the resource requirements
of processes. Concert [1] uses a proactive load sharing scheme for loosely coupled distributed systems
which avoids the occurrence of load imbalance by collecting load and task behavior information in advance.
Karatza et al. [12] investigate load sharing policies for heterogeneous distributed systems to study the effect
of load sharing on different classes of jobs. Berman et al. [9] describe an application specific scheduling
approach for scheduling data parallel applications on a heterogeneous distributed system. Nieuwpoort et
al. [21] describe load balancing strategies specifically for divide and conquer applications on a hierarchi-
cal wide-area distributed system. Kondo et al. [13] consider a similar system model as ours and propose
techniques for resource selection for short-lived applications on enterprise desktop Grids with the aim of
minimizing the overall execution elapsed time of a single parallel application. We consider a similar sce-
nario but propose algorithms and heuristics for deciding the decomposition of tasks in order to load balance
a heterogeneous set of Grid resources. Such scheduling algorithms have also been an active area of research
in the field of divisible load scheduling. [8] provides an overview of the research done in this field for
master/worker architectures.

6 Conclusions and Future Work

The presence of computation and communication resource heterogeneity in a donation-based Grid is an ob-
stacle for performance-sensitive services-oriented applications. We proposed various workload distribution
strategies to handle the Grid heterogeneity that improve the performance of request-oriented Grid services.
Our evaluation, conducted on the BOINC middleware running on the PlanetLab infrastructure, showed that
a fine-grained work allocation strategy that allows nodes to execute multiple tasks according to their capac-
ity, performs well in large number of scenarios. We also evaluated variable-size strategies, one of which
used historical information from the fine-grained strategy, and another used dynamic node capability infor-
mation. Our results demonstrated that these strategies performed better than the baseline strategy, however,
they suffered from increased contention at the data server, though this contention may be reduced in the
presence of a high-bandwidth server. Using BLAST as an example service, we demonstrated how the fine-
grained workunit allocation strategy is more suitable for data-rich services due to the issue of contention
at the data server. In order to extend our work to other data-rich services we would only need to find the
appropriate threshold for “best” decomposition. We intent to model this as a function of the computation
and communication time taken for a service request. Overall our results demonstrated that incorporating
heterogeneity information into workload allocation decisions can substantially improve the performance of
services on donation-based Grid environments.

As part of future work, we intent to extend our work to an environment with multiple services and con-
current requests. We will explore the impact of the workload allocation choices on the performance of
concurrent requests and investigate the feasibility of providing service differentiation across requests, re-
quest classes, or services.
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