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Abstract

Resource discovery is an important process for finding léitmodes that satisfy application
requirements in large loosely-coupled distributed systeBesides inter-node heterogeneity, many of
these systems also show a high degree of intra-node dynareisthat selecting nodes based only on
their recently observed resource capacities can lead todemaioyment decisions resulting in application
failures or migration overheads. However, most existirgpuece discovery mechanisms rely mainly on
recent observations to achieve scalability in large systeim this paper, we propose the notion of
a resource bundle - a representative resource usage ulismitfor a group of nodes with similar
resource usage patterns - that employs two complementayitpies to overcome the limitations of
existing techniques: resource usage histograms to pretatestical guarantees for resource capacities,
and clustering-based resource aggregation to achievabdlitgl Using trace-driven simulations and
data analysis of a month-long PlanetLab trace, we show #saturce bundles are able to provide high
accuracy for statistical resource discovery, while adhigwhigh scalability. We also show that resource
bundles are ideally suited for identifying group-level dteristics (e.g. hot spots, total group capacity).
To automatically parameterize the bundling algorithm, wespnt an adaptive algorithm that can detect

online fluctuations in resource heterogeneity.

Index Terms

resource discovery, aggregation, resource managemeahimeaearning

I. INTRODUCTION

Recent years have seen increasing use of loosely-couplethatied platforms for scientific
computation [1]-[3], data sharing and dissemination [@]-fand experimental testbeds [7].
Examples of such large-scale platforms include voluntearputation grids such as SETI@home
(over 3.6 million participant machines), P2P systems sucKazaa (over 30 million users) and
Kad networks (over 2 million users). While such platforms laighly attractive due to their low
deployment cost and inherent scalability, they are alsbilhibeterogeneous and dynamic [8].
The nodes participating in such platforms differ widely heit resource capabilities such as
CPU speeds, bandwidth, and memory capacity. As a resglburce discoveris often used in
such large-scale systems to find suitable nodes that safgfljcation requirements.

Many existing resource discovery systems [8]—-[11] rely ba tecently observed resource

capacities of individual nodes to make their deploymenigiaas. However, resource allocation
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decisions based on current status of nodes have severationg in these systems, because of
the presence of intra-node dynamism in addition to the-intele heterogeneity. Individual nodes
can have widely varying resource capabilities due to varyaads, network connectivity, churn,
or user behavior. For instance, a resource usage study oétRkb [12] has shown that node
resource capabilities fluctuate on the order of about 30 remuSuch dynamism in node-level
resource capacities makes it difficult to deploy long-ragnservices and applications that need
consistent resource availability to ensure desired perdoce and avoid disruptions or migration
overheads.

To handle the inherent heterogeneity and dynamism in sustersyg, the resource discovery
process employed in such systems must be able to pretadistical guaranteesn application
resource requirements. While incorporating long-term was® availability information is likely
to improve the resource discovery decisions substanfiafly, most existing resource discovery
systems use only the recent node usage information fortskland simplicity reasons. It helps
in reducing the amount of monitoring data that needs to béaged between nodes in the
system, and enables easy location of desirable nodeslfg.mapping resource requirements to
node IDs in case of DHT-based resource discovery systemEL[g). We argue in this paper that
for providing statistical resource guarantees in a scalatdnner, the resource usage information
from nodes can be approximated both in temporal (long-tesage pattern) and spatial (number
of nodes with similar usage patterns) dimensions.

In this paper, we propose the notion ofresource bundle-a representative resource usage
distribution for a group of nodes with similar resource wespgtterns. A resource bundle employs
two complementary techniques to capture the long-termuresaisage behavior of a set of nodes:
(i) resource usage histograme provide statistical guarantees for resource capaciied (ii)
clustering-based resource aggregatitm achieve compact representation of a set of similarly-
behaving nodes for scalability. To handle the parametigoizaf the clustering algorithm, we
present an adaptive algorithm to detect the amount of hgtemity in the system and show its
ability to adjust to fluctuations in an online fashion.

Besides providing a scalable resource discovery mecharusichieve stable application
deployment, resource bundles can also be used for sevéel ptirposes in a large distributed
system. Resource bundles can be used to easily figtbap of nodessatisfying a common

requirement. Resource bundles can also be used to findHotadpots geographical regions
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in the distributed system with several nodes experiencwvgrloads due to reasons such as
heavy demand for a popular resource in that region or lgechbsed application stresses. The
identification of such hot spots can be used to inform decgsebout application deployment or
load balancing. Finally, resource bundles can also be wusealifliting and accountingurposes,
e.g., to determine the resource assignment of a distritagptication running on multiple nodes,
or to determine the spare capacity in an administrative doma

We evaluate the performance of resource bundle-basedroesdiscovery using trace-driven
simulations and data analysis of a month-long PlanetLadetr®ur results show that resource
bundles are able to provide high accuracy for resource dsgathrough the use of resource
usage histograms (up to 56% better precision than an digotiiased on current usage values),
while achieving high scalability through aggregation (@p55% fewer messages than a non-
aggregation algorithm). We also show that resource burallesideally suited for identifying
group-level characteristics such as finding load hot spots estimating total group capacity

(within 8% of actual values).

[1. STATISTICAL NODE BEHAVIOR

In this section, we present our system model, define a notiostatistical resource usage
guarantees, and discuss how historical resource usagernzattan be used to provide these

statistical guarantees.

A. System Model

We assume our system is a large-scale wide-area distrilaytt@m. Participant nodes are
geographically distributed and could span multiple adstrative domains. We assume the nodes
are interconnected by an interconnection overlay, usingHd Dr a flooding-based approach,
which allows nodes to communicate with other nearby nodesle monitor their own resource
capacities over time and can exchange messages as reduirdter, we assume a hierarchical

structure can be constructed on top of the overlay, e.gagusiethods provided in SDIMS [13].

B. Statistical Resource Requirements

During the resource discovery process, applications &figicseek nodes meeting certain

resource requirements, e.g., minimum CPU spare capacityGbfzl memory capacity of 512
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MB, etc. Such resource requirements can be expressed ased Rip}, where R is a resource
type, and c is the desired minimum capacity of the resourcsvender, the resource capacities
of nodes in loosely-coupled distributed systems often zalgt over time, which could result in
application performance degradation, failures, or needréguent migrations [12] resulting in
large overhead. It would be desirable to provide statikte&source guarantees so that applications
can be deployed on nodes that are likely to satisfy the mimrdasired requirement for a certain
period of time. The desired length of time could depend onofacsuch as the overheads of
application component migration and restart, or the copediormance degradation or disruption.
We formalize this notion of statistical resource requiraimgs follows:

Definition 1: Statistical Requirement: We define a statistical requirement r as a tuffk c,
p, t}, where, R is a resource type, c refers to a capacity levelgopercentile value, and t is a
time duration.
Intuitively, based on this definition, an application caredfy that it needs a resource R to
meet a minimum capacity levelfor at leastp percent of time (corresponding to its tolerance to
overload) over a time duratian(which could depend on its length of execution and overheads
disruption and migration, etc.). The goal is to avoid sesisarvice disruptions (e.g. overloads)
or reallocation penalties (e.g. migration overheads) dwee t. Thus, using this definition of
statistical requirements, a compute-intensive appbicatan specify a requiremef€PU, 1GHz,

95, 24hrg, which would mean it requires a 95 percentile CPU capacity GHE over 24 hours.

C. Resource Usage Representation

Since different applications can specify different valoég, p, and t, maintaining only a few
values such as the capacity corresponding to a fixed peeéaty., 95th percentile) of resource
usage on each node, or the percentile corresponding to adagartity level (e.g., 1 GHz) may
not provide enough information to satisfy different resgudiscovery queries. Similarly, we may
need to capture the resource usage behavior over diffareatdurations (such as an hour, day,
week, etc.) to incorporate requirements over differenetignanularities and capture long-term
vs. short-term trends.

To provide a general way to handle different resource requént specifications, we propose
the use of resource usage histograms with an associatedvatise time period7’, which

represent the resource capacity distributions from olasens over the pasi’ time units.
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Figure 1 shows how a statistical requirement can be mappedrésource capacity histogram
(with p% of the capacity observations to the right of the vertiaae Icorresponding to capacity.
A separate histogram would need to be maintained for eadures type (e.g., CPU, memory,
etc.) and for each time granularity (e.g., hour, day, weék);eintermediate time granularities
can be interpolated from these histograms.

Using histograms to represent resource usage

data has two primary advantages. First, require-

o %ot ment percentiles (corresponding # for a par-
2‘ ticular resource capacity are now straightforward
% computations from the given histograms. Second,
B ;'_F histograms help us preserve all usage data, so

¢ Resource Capacity that even if different applications specify differ-
ent resource capacity requirements with different
Fig. 1. Mapping a statistical requirement to a reSOUIrCteolerances, these can be easily captured using the
capacity distribution. same histogram representation.

Each node can maintain its own histogram by
monitoring its own resource capacities over time. Given doitrary time periodl’, nodes can
construct histograms from their own historical observaiolo reduce storage overhead at each
node, instead of maintaining the entire historical reseuisage trace, one could choose to
preserve only the histograms themselves (along with a dégagtion), thereby reducing the
overhead by a factor proportional to the measurement frexyue

The above technique for statistical resource usage repegs® through histograms is comple-
mentary to any prediction techniques that may be able toigirdure resource usage behavior
based on historical observations. Predictors are comptiang since histograms merely express
usage distributions for nodes; predictors can be used tad&onore accurate future estimates
of distributions which could then be converted into hisargs, enhancing the level of accuracy

for future resource capacity estimates.

Ill. RESOURCEBUNDLES

While using resource usage histograms provides a meanstiaream accurate representation

of an individual node’s dynamic resource usage pattern awadbles the satisfaction of statis-
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tical resource requirements, it can potentially createaabdity problem in a large wide-area
distributed system. The statistical information for eacider would be represented by multiple
histograms, corresponding to different resources anctreifit time scales. Disseminating this
kind of detailed data over the network can create signifioattvork traffic, making it infeasible
for each node to have a global node-level behavioral vievhefentire system. Moreover, if the
goal is to findmultiple nodes meeting a certain requirement, it would be desirablmimbine
this discovery process rather than having to find indivicsiatable nodes separately.

This raises the following questions. Can we use these remteggms in a scalable manner to
make better resource discovery decisions in a large sys&sm@ndly, can we use these node
behaviors to provide any collective information about gréevel usage patterns, e.g., for nodes

within an administrative domain, or for nodes assigned taes&iduted application?

A. Resource Aggregation

Aggregation [13], particularly hierarchical aggregat[@d], is a common technique employed
in large distributed systems for the scalable disseminaifonformation. Aggregation essentially
compresses the amount of transmitted data in the systera pt@aserving the overall information
content. In the context of resource discovery, this wouldespond to a suitable “compression”
of the node resource usage patterns to achieve a desiratioff between the quality of resource
discovery and the overhead of network data transmissioharsystem.

Our goal is to achieve the same quality of resource discoaerg global resource discovery
system with full historical node-behavioral knowledget tausignificantly compress the amount
of necessary node-behavioral representation data in thterayin order to achieve scalability.
Such an aggregation of node resource usage distributions ¢poup of nodes can be used to
represent:

« An accurate approximation of any individual node’s reseuwsage. This is important for

the discovery of desirable nodes based on a resource rewgrite

« The collective resource usage behavior of the group of ndd@s can provide information

about load patterns or resource usage behavior for a setabédenodes (e.g., those in the
same geographical area or running the same application).

« The overall capacity of the group. This can be used to traekaverall resource usage,

e.g., for audit or accounting purposes.
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A naive approach to aggregation for a set of nodes would beotopate the average re-
source capacity distribution across all nodes. An examplihie naive approach can be seen
in Figure 2, which shows the aggregation of two nodes, oneveftetowards low capacity
and the other skewed towards high capacity. We see that tbege representation loses
this information about the individual nodes and appearsefwasent a set of bimodal nodes.

While averaging allows the estimation of overall

capacity of the group of nodes, it is a poor

35

el | representation of individual node-level behavior.

30 [

This is because it does not account for the het-

25 |-

20 o

erogeneity of the nodes in the system, and fails to

’ capture important behavioral differences between

10

Observation Frequency in 24-hour Period

individual nodes. Thus, this approach could result

in a highly inaccurate view of individual node

10 20 30 40 5 60 70 80
Histogram Bins (increments of 34MHz)

resource capacities.

Fig. 2. Naive approach to aggregation by averaginB. Defining Resource Bundles
resource capacity distributions. _
To account for the heterogeneity of nodes,

we define the notion of aesource bundle:an

aggregation of a group of nodes witimilar
resource capacity distributions. By combining only simitades together, such an aggregation
process will preserve the individual node distributionsrenaccurately. Figure 3 shows a high-
level view of the notion of resource bundles and how they mnimghconstructed. First, a group
of nodes are bundled based on the similarity of their resoapacity histograms. Second, each
bundle produces a representative distribution that canskd to characterize the whole bundle.
The question is how can we identify such groups of similarasoi construct a resource bundle,
and how can we compute a representative to accurately ssgrde nodes in the bundle?

1) Aggregation via ClusteringTo identify nodes with similar distributions, we propose th

use of clustering algorithms that have traditionally been used in data mirapglications to
group together statistically similar data elements. H@vea clustering algorithm must meet

several requirements in our context:

. The data to be clustered (i.e., the resource histogramsy isimgle-point, but multi-element
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(consisting of multiple histogram bins). The clusteringaaithm must be able tthvandle

such multi-element data

« The node resource usage histograms could represent gridistributions, and cannot be
assumed to conform to standard distributions (e.g., Ganssniform, etc.). The clustering
algorithm must bedistribution-freg i.e., it must not assume the existence of a standard
distribution or certain parameters.

« The clustering algorithm must not only identify the closeglated set of nodes, but it is
desirable if it can also producecempact representation of the collective resource usdge
these nodes. Such a representation can be used to easétehae the nodes in a bundle
(e.g., high-capacity/low-capacity, etc.)

A clustering algorithm that meets the above requirements is
the multinomial model-based expectation maximization (EM)
clustering algorithm [15]. This clustering algorithm haseh
used primarily for the purposes of clustering text documment
with common words. We first describe this algorithm in a

document clustering context for ease of exposition, and the

describe how it maps to our context.
Fig. 3. Constructing Resource Bundles. In a document clustering context, each document is con-
sidered as a “bag of words”, and is represented as a vector
of word frequencies. Then, the set of all documents is remtesl as a mixture of multinomial
distributions on these word frequencies, with each docurelonging to one such distribution.
The probability that a document belongs to one of the clasterresponding to a multinomial
distribution is given by [15]:P(d;|A\;) = [, Fj(w;)™", where \; is the set of parameters for
model j, n; is the frequency of occurrences of wotd in documentd;, and P;(w;) is the
probability of wordw; occurring in clusterj. Further,>, P;(w;) = 1 holds.

Mapping the document clustering scenario to our contexgavethink of nodes corresponding
to documents and histogram bin magnitudes for node-lewsgluree usage distributions corre-
sponding to document word frequencies. The clusteringrithgn then maps nodes to clusters
based on the similarity of their resource usage histogramsther words, this algorithm will
group those nodes together that have similar histogranmiaignitudes, meaning it can cluster

nodes having arbitrary (but similar) distributions. Suatiwster of closely related nodes returned
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by the clustering algorithm is considered a resource bundle

In practice, the multinomial model-based EM clusteringetak set of vectors as its input and
forms clusters based on the similarity of correspondingoreelements. It is a hill-climbing
algorithm that adjusts its mapping of vectors to clusteesatively in order to maximize the
expected objective value achieved from its clustering.

Notice that this clustering algorithm meets the requiret®eme had outlined above. The
algorithm is able to handle multi-point data as it operatesvectors of values. Since the
clustering algorithm operates on arbitrary vectors, itndejpendent of any assumptions about
specific distributions, enabling the clustering of arbitreesource capacity distributions. Finally,
by associating each cluster to a multinomial distributibns able to characterize the common

statistical properties of the nodes in a cluster in a compeautner.

40
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Node2 --------
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Qi 0000000 -

Fig. 4. Four nodes bundled by CPU capacity, producing ..
bundle representative Fig. 5. Hierarchical aggregation

2) Bundle Representative#s described above, the multinomial model-based EM algarit
associates each resource bundle with a multinomial digioib that captures the statistical
properties of the nodes that are members of the bundle. Thisn@mial distribution can be
thought of as théundle representativean aggregate distribution that is a compact representation
of the individual node distributions in the bundle.

Bundle representatives are the resulting distributions$ rpresent the mean node capacity
distribution within each respective bundle. In the multmal model clustering algorithm, cluster
representatives are the result of probabilistic modelsyever the difference between these

models and the mean node capacity distribution is negégibl
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Figure 4 shows an example bundle representative that agjgsed node resource capacity his-
tograms. The representative closely matches the indivichide distributions. In Section IV, we
will quantify the closeness of the representative to its tendistributions, and its effectiveness

in resource discovery, hot spot detection and capacitynastn.

C. Hierarchical Aggregation

While aggregation, as described above, enables the creadtimsource bundles that closely
approximate individual node behavior for a similar set ofle®, the question is whether bundles
can be further aggregated to provide a meaningful view ofcimbined set of nodes corre-
sponding to multiple bundles. The ability to combine reseubundles is particularly desirable
in a large system where we may want to get concise estimatessofirce capacities of nodes
at different granularities; for instance, at a local siteeleat an administrative domain level or
at a global level.

Building on the assumed ability of the system-employed ayetb support a hierarchical
information structure, we propose the use loérarchical aggregationin combination with
resource bundles through the use of recursive clusteriag, successive clustering of bundle
representatives at different levels of the hierarchy. fégbi is a high-level illustration of this
process. Groups at the bottom level are individual sets demdistributions. These nodes are
initially clustered, producing bundle representativesclvhare then propagated to the next level
of the hierarchy to create level-2 representatives, thuggnbeng the recursive representative
clustering process.

Note that this recursive aggregation must incorporateviddal bundle cardinalities during
the clustering process to minimize the loss of represemtatata. Representatives with highly
different cardinalities might be combined. If the bundleresentatives are all treated alike, low
cardinality representatives might have an unusually lanfleence in the formation of higher-
level representatives. To balance the relative importaricdifferent resource bundles into the
resulting aggregate bundle, we use bundle cardinalitiae@esentative weights the process
of hierarchical clustering. Formally, for a bundle histagrH; having cardinalityw;, we present
it to the clustering algorithm aB/; = H;w;.

If the underlying topology of the distributed system causedes to be grouped by locality,

our hierarchical approach will be suitable for finding lozatl sets of resources for application
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deployment. Further, bundle representatives can be uspdetict group-level capacity levels.
Our ability to predict group-level capacities results irodrer high-level ability to detect hot

spots within large distributed systems.

D. Implementation Considerations

In this section, we describe the implementation detailsi@fanchical resource bundling over a
set of distributed nodes: how data would be exchanged, gatge, and propagated. We assume
an implementation on top of a hierarchical overlay as dbsdrin our system model in Sec II-A.

First, assume only one resource type being measured forisityge.g. CPU). Different
resource types are assumed to be handled independentlycbf ather. As an aside, note
that Resource Bundles can be used for multi-dimensional resodiscovery, provided that
the individual resources are bundled independently of ameth&r. One could then take the
intersection of multiple different resource requiremeautsl use that as a result. However, this
assumes statistical independence between the differsnunee types. We leave the general
problem of multi-dimensional resource discovery as futuoek.

As nodes compile their own resource usage distributiorograims, they send all histograms
up the hierarchy, including those received from their aleifld If this process would continue
unrestricted, it would be a fully-informed algorithm, withe root receiving all node resource
usage histograms. However, to achieve scalability, wericeshe amount of propagated data
by introducing aggregation at different points in the hiehy as follows. When the number
of histograms reaches some threshéld then the resource usage histograms are aggregated
by the resource bundles algorithm, produciBg aggregate bundles (representative histograms)
as output. Then thé3, bundles are sent upward instead of (greater thanhistograms, thus
applying aggregation for scalability.

The choice ofB; determines the maximum amount of resource bundle repeasaes (his-
tograms) that can be sent upwards by any node in the systaimalan determines how often
the bundles must be aggregated. If this number is too srhalh the clustering algorithm would
be run too frequently and on too few histograms, resultingnrunderfitting of the data for the
formation of bundle representatives. If this number is taghhthen the histograms would be
aggregated infrequently (as they propagated to the rcedjihg to unnecessary data transfers

of large numbers of histograms. The rule of thumb we usedBfowas to define it as a small
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multiple of the number of clusters. in the system. For our simulations in Section IV-G, we
chose that multiple to be 7; so that for 10 clustdss,—= 70. The number of aggregate bundles
producedB, is identical to the number of clusters. We present an adaptive algorithm to select
this parameter.. in section IlI-F.

Notice that in a hierarchical system, the bundling algonitmay receive as input all of the
following: single-node histograms, first-level bundle negentatives (e.g. representing tens of
nodes) and high-level bundle representatives (e.g. reptieg thousands of nodes). Therefore
we also maintainethundle representative cardinalitige appropriately weigh the formation of

higher-level bundle representatives from these variousldeof input data.

E. Analysis of Network Overhead

We now analyze the network overhead complexity of our Reso@gndles algorithm in
terms of the number of messages sent in a complete propagatica hierarchical overlay,
as described above. We compare this overhead complexithab df a baseline algorithm
PropagateAll (described in more detail in Section 1V) thah@y propagates everything to
the root in the hierarchy.

Intuitively, with an extreme parameterization of Resourcenddas (a small value of3,),
aggregation would take place at every (internal) level i titee, so that a constant number of
histograms B,) is propagated upward by each node. Therefore, this i©@n algorithm in
terms of the number of messages being propagated in thensystgh » being the number
of nodes in the system). In a real implementation of Resouraad®s, aggregation need not
take place at every level of the tree. The aggregation poeuasid depend on the degree of
each node and at the locations in the tree where the thresliBlyl are exceeded. Deriving
closed-form equations for the complexity of Resource Bunofiedbe general case proves to be
difficult, as the degree of the tree nodes and the parametdiseaggregation together may
create an oscillatory effect on the frequency of the agdi@gas we traverse a tree. So to show
Resource Bundles is an(n) algorithm, we introduce a simplified experiment where weehav

balanced-tree assumption with respect to the hierarchgtatiort.

IWe also show this result using simulations of realistic systems with diverséotgips in Section IV-G.
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In Figure 6, we show the average number of

T T
ResourceBundles ---+--

G| ProvegatcAl | ‘ 1 messages sent per node in the system with the
balanced-tree assumption, for system sizes be-
st ] tween 100,000 and 5 million nodes. This number

for Resource Bundles remains constant at 2.87 for

Average Messages (Representatives) Sent Per Node

2y 1 all such system sizes.

As a comparison, PropagateAll by definition is

. . . . .
0 1le+06 2e+06 3e+06 4e+06 5e+06
Network Size (Nodes)

O(n log(n)). The histograms at the bottom of the
tree must traverse the height of the tree up to the
Fig. 6. Resource Bundles sho@n) complexity root, which is a path of lengtfog,(n), whered

is the average degree of a node.

Besides the overall bandwidth in the network, bandwidth aomsion at the upper levels of
the tree can be a concern, as too many messages near the npgiresant a bottleneck to
tree-based algorithms. Under Resource Bundles, any nodeesdive (B; — 1)d messages in
the worst case, or 414 messages as configured in Figure 6e Isathe tree configuration at 5
million nodes, PropagateAll nodes directly below the rameaived on average 833,332 messages
per propagation, which is over 2,012 times the worst-caselWwalth of Resource Bundles, and
in this system was over 3,800 times the actual bandwidth ob&ee Bundles, which averaged

218 messages received at the same level.

F. Adaptive Algorithm for Parameter Selection

One must consider the importance of choosing an appropdie for the number of clusters
(n.) in the resource bundling algorithm. If too small a valuehesen, the bundle representatives
will poorly represent their constituent nodes due to higketageneity. If too large a value is
chosen, then these techniques for aggregation will not feetefe due to the large overhead in
transferring nearly as many bundle representatives as Hrernodes themselvé3herefore we
must carefully employ techniques to have the system deterthis parameter robustly without

the need for administrative intervention.

2\We show this tradeoff empirically in Section IV-E.
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To automatically select the appropriate number of clustahse in a live system, we propose
an adaptive hill-climbing algorithm for the selection of. The algorithm works as follows.
The resource discovery query system introspectively mosithe quality of its decisions (i.e.,
the choice of nodes during resource discovery) over timeetlirns its decisions based on the
current value of.., but also stores decisions that would have been made for, oiarby values
of n.. It then evaluates this set of possible decisions and toigsaximize an objective function
in order to achieve better results in the future by choosimgogressively better value for,.

Our objective function to determine the goodness of thelresucompared to other values of
n. is defined as3(p, r,n.) = F'1Score(p,r) — én., where F1Score(p,r) = %, wherep is the
precision of resource discovery (i.e. the fraction of noglassfying their requirement from the
selected set of nodes),is the recall of resource discovery (i.e. the fraction of emdiscovered
in the system out of the total nodes in the system that woule [satisfied the requirement),

and/ is the threshold of the minimum desired improvement in fieScore per unit increase

AF1Score

in the number of clusters,, i.e., § = minDesired(==4:>°

). The F1Score is the harmonic
meanof the precision and recall, and is commonly used in mactaéaening technigques as an
objective function to determine the high-level accuracyloftering decisions.

For instance, a decision to allocate 30 nodes for a periodidfduirs under,. = 20 could be
evaluated 24 hours later to determine the actual precisidnecall. The algorithm also evaluates
the alternative decisions that could have been made giver surrounding values of. such
asn. = {17,18,19,21,22,23}. In retrospect, if the objective function would be maxinuzZer
n. = 17, then the value of. would be changed ta7 for the next bundling cycle, and the
algorithm will do another introspective evaluation sonmastilater.

In our analysis, we chosg= 0.005. The choice o, unlike the choice ot., is not system-
dependent. The inclusion of thein. term in g avoids local maxima values and allows the
algorithm to more accurately determine the true knee of Hjeative function curve. For instance,
a selection ofn. = 45 might not seem to be a bad selection, but if the sai&core was

available forll < n. < 45, then11 is a much better choice for aggregation overhead reasons.

G. Alternate Compression Techniques

One of the benefits of resource bundles is their ability to m@®s node-level resource usage

representation data. There exist other techniques for cesamg this data that we consider
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below as alternatives to resource bundles. We will discoess tradeoffs and explain our choice
of resource bundles in our context.

A simple technique for compression is general lossless cesspn over the histograms, e.g.,
LZMA. Running such a lossless compression algorithm ovegeigastograms, while reducing
the overall bandwidth requirement, withuse the amount of data to grow in proportion to the
number of histogramat higher-level nodes in the tree, placing more load on thEewen with
PropagateAll using compression under the scenario destiitbSection IlI-E, its bandwidth at
the root is over 48 Mbps, assuming one propagation per miriaethe other hand, resource
bundles can be combined recursively many times over, kkaping the amount of data bounded
for nodes at all levels of a propagation tree. The worst-taselwidth for any node in Resource
Bundles under the same scenario is 11.64 Kbps uncompresseleirnote that we can apply
a lossless compression algorithm to resource bundles dsfunther reducing their bandwidth
requirement (4.15 Kbps for the above scenario). Finallywitedemonstrate in Section IV that
even with recursive aggregation, resource bundles ardyhagiturate with minimal data loss.

Another approach for compactly approximating a histogramulal be to use a specific distri-
bution (e.g., Chebyshev or Gaussian) to represent eachsnadayje data. However, a specific
distribution would not be able to accurately capture théeifeary) shape of the whole histogram
in general. As a result, it might be accurate for specific @atie values, but would result in
less accuracy for an arbitrary percentile value, thus reduthe flexibility of resource discovery.
It would also render our group-level capacity estimatiameccurate.

It is important to note that we are bundlingsource usage representations (histograms) .only
Other host-specific information (such as host IP addressgrgehic location, etc.) is largely
static or changes very infrequently. Such data need not dateg and propagated along with
dynamically changing resource usage data. Rather, sudt déh could be accessed in a much
more efficient manner without the need for frequent upd&esexample, it could be stored in a
distributed storage or file system, and referred using siallor keys. These IDs could then be
passed around in the Resource Bundles implementation, akddsa@one on demand. To avoid
a scalability issue with passing large numbers of IDs ardiedsystem, nodes in the hierarchy
could easily cache sets of IDs (i.e., bundle membershipd) updates would only consist of

changes in these memberships, along with their bundle septatives.
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IV. EVALUATION

We now evaluate the performance of using resource bundteg$ource discovery, capacity
estimation and hot spot detection using data analysis of athdong PlanetLab trace as well
as a trace-driven simulation. We begin with our data anslyessults and present the simulation

results in detail in Section IV-G.

A. Data Analysis Methodology

We used a PlanetLab trace obtained by CoMon [16] from Febr2@@y for our experiments.
CoMon runs a daemon on each PlanetLab node and collects eeele¢source capacity infor-
mation every 5 minutes. We uséde CPU capacityas the resource of interest for our evaluation,
which was estimated using ti@&PU Burpstatistic: it is calculated by occasionally running a spin-
loop to determine how much CPU bandwidth could be obtainedrswdy-deployed application.
We multiply the CPU Burp by the CPU speed to determine the totaluamnof node-level free
CPU. During February 2007, 427 PlanetLab nodes contributdelaat one data point per day
and thus were chosen for our analysié/e used a time period of 24 hours as the desired time
window?, thus computing node histograms on a 24-hour period, onal@gr Each histogram
consisted of 100 bifs(with an overflow bin), each one representing about 34 MHzh\Bi4
GHz assumed as the maximum CPU capacity in PlanetLab.

We used MatLab as our main tool for data analysis incorpagaéin already implemented
Matlab package for the multinomial model EM clustering aiton [18]. Since this algorithm
is hill-climbing, we ran it with 100 random initializationtaking the best objective value to
determine the best clustering. We emulated single-levat)) (flusterings, as well as hierarchical
clusterings with 2 and 5 levels over the trace. In a simplecherark used to test the computa-
tional overhead of the clustering algorithm in MatLab, weedeined the average running time

to be 0.72 seconds, indicating that the algorithm has l@sycomputational overhead.

3Churn is a widely-studied phenomenon in wide-area distributed systethis dreyond the scope of our paper, but is being

considered as future work.

“We use a 24-hour time period for clarity of exposition, but maintaining hiatog for other time periods is a straightforward

exercise.

50ne might consider variable-sized bins for compression reasons Hi¥ the resource bundles algorithm requires fixed

boundaries for the histogram bins across the entire system.
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1) Emulating Resource Discoveryfo evaluate the accuracy of a resource bundle-based
resource discovery process in finding desirable nodes, weaadena resource discovery process
as follows. We run a resource discovery algorithm oroheervation time windowo determine
the choice of acceptable nodes that meet a desired resaqoeement. We then compare this
choice ofacceptable nodew the actual set of nodes that satisfied the desired reqeireaver
a solution time windowthe time window in the trace during which these nodes woddeh
been allocated to the application.

For the purposes of our experiments, we defined the stafiggrjuirement-={CPU, c, p,
24hrs, with different values of ¢ and p. The goal of the algorithmessvio find all nodes meeting
requirementr on the 427-node PlanetLab trace. Notice we did not specify imany nodes an
application needs for its deployment. Instead of using #sisa parameter in our analysis, we
had the algorithms search for the complete set of acceptetiules.

In our experiments, we use the entire February 2007 tracesimg wach day'’s trace (starting
from Feb 1 data) as the observation window with the next diagise being used as the solution
window. The observation and solution windows are then sthifty one day, thus giving us 27
samples of trace data to evaluate our algorithms. Note tiatptopagation frequency in an
implementation would be higher than once per day (e.g.,yebeminutes) to avoid staleness.
Here we use one histogram per day to ensure our time windowsdoverlap with previously
used histograms for evaluation.

2) Comparison AlgorithmsWe compared the following resource discovery algorithms:

e Memoryless: This algorithm uses the last CPU capacity data point for eacke to estimate its
expected capacity over the next day. This algorithm emsilegsource discovery algorithms that
use recent resource usage information to determine thabditit of a node to meet a minimum
requirement, and does not incorporate statistical regousage patterns into its decisions.

e History: This is a centralized algorithm with global historical krledge of the entire system.
It maintains complete 24-hour CPU capacity histograms fahazode. Each node histogram
is individually examined to determine which nodes meet theiréd statistical requirement
thereby determining the set of acceptable nodes. Thisi#igocan be considered to be the best
we can do using historical observations without using argueate predictors. It also provides
us with a baseline to determine the effect of data loss dueggpegation on the accuracy of

resource discovery.
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Fig. 7. Aggregation compared against baseline resource discolganjtiams 05" percentile).

e Aggregation (Cluster): This algorithm uses resource bundles to aggregate thenesosage
histograms of groups of nodes into resource bundles. Nagesuadled intdk bundles based on
histogram similarity. For each bundle, if its representatheets the desired statistical requirement
r, all of its members are selected as acceptable nodes.

e Hierarchical Aggregation (HierClus): This algorithm uses recursive bundling over a 2-level
hierarchy consisting of 420 PlanetLab nodes divided intcaddom groups of size 70. The
hierarchical aggregation algorithm first reduces each grofunodes tok first-level resource
bundles. All the first-level resource bundles from acro$g@ups are then further aggregated
into & second-level resource bundles. For resource discovepopas, the algorithm examines
these second-level bundle representatives and if a buegkesentatived; meets requirement
r, then all nodes represented B¥ (recursively) are selected as acceptable.

3) Evaluation Metrics:The accuracy of resource discovery was measured using twricene
Precision = Zt—t and Recall = }f,—, where,n,.. = acceptable nodes chosen,; = total nodes
chosen,N,.. = total acceptable nodes in the system. Intuitively, higbc@ion means that a
high fraction of the nodes returned by a resource discoviggrithm are actually acceptable,
thus reducing the chances of poor allocation decisions.n@rother hand, recall measures what
percentage of the total acceptable nodes in the systemsa@vered by the algorithm, indicating

how well it can locate acceptable nodes in the system.
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B. Accuracy in Resource Discovery

Figure 7 compares the accuracy of our single-level and tuieal aggregation algorithms
using 10 clustefsagainst the memoryless and history-based resource digcagorithms.
This figure shows the precision and recall achieved by theriihgns for three different CPU
capacity requirements as well as thean requirementMeanCPU), the average over all possible
requirements (for each of the 100 histogram bins).

As seen from Figure 7(a), both the Cluster and History algoré have significantly better
precision (87-97%) than the Memoryless algorithm (37-7.7%)is results from their use of
historical information to make statistically accurate idems. The algorithms using capacity
distributions select a node only if it has had a resource appaf at leastc CPU MHz for at
leastp = 95% of the observations in the past 24 hours. On the other handydvidess will
select a node if it has a capacity ofMHz at its last observation point, which is a much less
stringent requirement.

This same behavior also explains the recall values in Fig@g which shows Memoryless
had the highest recall, while History came in second, andt@eensistently had the worst recall
among the three. The Memoryless algorithm turns out to benasually optimistic predictor; it
finds nearly all of the acceptable nodes but also finds margr athacceptable (but temporarily
well-performing) nodes as well, leading to poor precisiart excellent recall. This result can
be understood by noting that the Memoryless algorithm wdind, on averagep = 95% of
the acceptable nodes in the system along with every othee tiwat had a resource capacity
¢ > c at the moment of observation The Cluster algorithm suffers in recall because it is
conservative similar to History. However it misses addiibacceptable nodes due to the loss
of accuracy because of aggregation, that might sometimebioe acceptable nodes along with
unacceptable nodes in the same bundle. Thus it achievesharhigecision than History but
experiences worse recall.

However, when we look at the absolute number of nodes disedvly each algorithm in
Figure 7(c), we find that the actual number of nodes missed bgté is typically between 10-
20, even in the worst recall case (MeanCPU - 13 nodes missédg the number of additional

(unacceptable) nodes returned by Memoryless can be in tfe of 50-85 nodes. This indicates
®We investigate the impact of number of clusters on aggregation accimagction IV-E.
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that the impact of missing acceptable nodes by Cluster is acatipely smaller than that of
finding additional poor nodes by Memoryless.

To consider the relative impact of high precision vs. lowateand vice versa, we note that the
goodness of choicef nodes from the application’s perspective is primariligefed by precision.
Once the allocation decision has been made, precisionaikisnreflects the confidence of the
application in the selected nodes meeting the given rea@ne. On the other hand, recall’s
effects are dependent on the system context. In a systenewkey few nodes meet the given
requirement, a high recall may be desired so that most of cheptiable nodes could be found.
However, in a large system with several acceptable nodeall neould primarily affect query
latency: low recall implies that acceptable nodes will besed, therefore taking the query longer
to find the desired number of acceptable nodes.

Figure 7 also compares HierClus with Cluster for precision eswhll statistics. Precision
does not suffer from the recursive aggregation in HierClusilenthe recall is slightly lower
(about 6% for MeanCPU). This shows that the loss of accuradienarchical clustering is
small compared to a single-level clustering.

In summary, our precision and recall evaluations show tkeaburce discovery usingur
resource bundle approach is able to find a choice of nodedasinmi quality to those discovered
by a fully-informed history-based algorithralthough its set of chosen nodes is smaller, thereby

missing a few potentially acceptable nodes.

C. Identifying Group Characteristics

One potential advantage of using resource bundles is taggpcapture group characteristics
of sets of nodes such as their overall load behavior and syzgracity. Such group-level char-
acteristics could inform decisions of load balancing oramaty planning without having to rely
on fine-grained node-level statistics. Next, we perform gpeement to evaluate this potential
of resource bundles for geographically related nodes ind®lab.

To establish proximity-based groupings of nodes for oureexpent, we hand-selected 5
geographically distributed group leaders in our Planetitabe. These leaders were respectively
from UMASS Amherst, UFL, UT Austin, UWash, and UMN, represeg different US regions.

Pairwise pings between these leaders and the remainingtBdnnodes were taken, forming a
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1) Load Hot Spot DetectionFigure 8(a) shows a visual display of the resource usage
histograms of 60 nodes from one of the geographical groups.fiure is a gray-scale image
where the x-axis corresponds to CPU capacity, the y-axiespands to node identifiers (sorted
based on the bundle identifier assigned by our clusteringyigihgn), and the brightness of a point
corresponds to the magnitude of the histogram bin. Thus,de math brighter values towards
smaller CPU capacity values (e.g., node 10) has a smallee <pRRAU capacity available. Fig-
ure 8(b) shows the corresponding bundle representativesbteen by our clustering algorithm.

As seen in the figure, low capacity nodes are clearly seghfaden high capacity nodes, and
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further we can easily estimate the number of nodes in eadgagt simply by the cardinality
of the corresponding bundle. For instance, cluster 2 (n8eE8) appears to have very low spare
CPU capacity, and could potentially be overloaded. Usingh sgroup-level views can allow
administrators to identify potential load hot spots by gsappropriate thresholds.

2) Capacity Estimation:We now investigate the capacity estimation abilities of aggre-
gation algorithm. Here, we ask the following question: Toaivievel of accuracy can the
aggregation-based algorithm estimate the resource ¢gmd@ group of nodes for the next day
based on observations of a 24-hour period? We compare tbhksrés those of a history-based
capacity estimation algorithm that has fine-grained kndg#eof individual node resource usage.
For the aggregation-based algorithm, group capacitieestimated by taking a weighted sum
of the mean capacities of the bundle representatives; &history-based estimation algorithm,
the mean capacities of individual nodes are added.

Figure 9 shows our results. Using 10 clusters, the aggmgathised algorithm is able to
estimate within 3% accuracy of a history-based estimatigorhm. To see how sensitive
aggregation is to the choice of a good cluster size, we aldade an average of our group-level
predictions for all clusterings that used between 5 and 86tets (the third bar in the figure).

The results show that the impact of the cluster size is mih{mal% accuracy).

D. Aggregation Information Loss

While aggregation helps in the scalability of resource discp and the capturing of group-
level characteristics by reducing the amount of resouregj@islata to be maintained and exam-
ined, we next examine how much information loss occurs asualtref this reduction.

We measure this information loss by comparing each nodd-l@source distribution to its
bundle representative. We use the Kolmogorov-Smirnov )Kt&tistic D,,.4. for each node as
a quantitative measure for this comparis@h,os. = sup,, |Frode(z) — Frep(z)|, WhereF,,,q4. and
F,., are CDFs for the resource capacity distributions of the naukies bundle representative
respectively. The K-S statistic is a value between 0 andd ntbre similar the two distributions
are, the closer the statistic is to 0.

For our evaluation, we compare the K-S statistic for theofeihg algorithms: single-level
aggregation, hierarchical 2-level aggregation, hieragidt2-level unweighted aggregation (where

we do not consider bundle cardinalities during recursivgreggation), and random (which assigns
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nodes randomly to equal-sized bundles). Here we use the@mamdgorithm as a baseline for
comparison. Note that a history-based algorithm would e S statistic of 0, since it uses
individual node-level distributions.

Figure 10 shows the average K-S statistics for these afgosit The K-S statistic has a worst-
case value of about 0.38 for the single-level aggregatiohydxduces to about 0.21 for a cluster
size of 10 (which is the value used in our previous experigjermompared to a value of 0.55
for the random algorithm. While a K-S stat value of 0.21 maynseebit high, this result still
shows that the loss of information is relatively low considg that 420 distributions have been
reduced to 10 distributions. The results from previousisesthave shown that this information
loss has only a small impact on the accuracy of resource whsg@nd capacity estimation.

We also see from the figure that hierarchical aggregatianteeis a small loss of information,
and that using bundle cardinalities as weights providesenagcurate results compared to the
unweighted algorithm. Also, the value of K-S statistic d&ges with increasing number of
clusters. This is as expected, because as the number ddrslustreases, each cluster has fewer

constituent nodes, resulting in more accurate aggregation

E. Effect of Clustering Parameters
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We next examine the impact of the number of clusters used &\clinstering algorithm to
generate the desired set of resource bundles. Figure 1lsshevaccuracy of capacity estimation.
The figure shows that the accuracy decreases as we increasarttber of clusters. This result

seems counter-intuitive as one might expect the accuracpneerge to that of History when
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the number of clusters approaches the number of nodes, ashgsasved for information loss
in Figure 10. However, this inaccuracy occurs because the ditidtering algorithm uses a
probabilistic model to generate bundle representativesa Pesult, the representative distributions
are not identical to the individual node distributions ire thmit, and there is always a small
amount of difference in the resulting distributioivith a high number of clusters, this difference
gets amplified due to the additive nature of capacity estonat

Intuitively, since the resulting representation of a stngdsource bundle from the multinomial
EM algorithm is actually a prediction model, each resourcedte has a certain amount of
error, or noise. Using more bundles is akin to adding moreenmito the sum for group capacity
measurements, leading to more inaccuracies with highetbatsrof bundles used.

Together, the results from Figures 10 and 11 show that walenly too few clusters might
result in inaccurate bundle-level aggregation, having rieeny clusters can adversely impact
group-level estimates. This implies that some intermedialues might be desirable to achieve
a good balance between the two requirements. This resulsaseaident from Figure 12 that
shows diminishing returns in the accuracy of resource @&goover the number of clusters
beyond the knee of the curve (@t = 10). In general, this value is dependent on the dynamism

and heterogeneity of the system.

F. Adaptive Algorithm for Parameter Selection

We applied our adaptive algorithm described in SectiorFltie the PlanetLab trace. First,
we applied ourg objective function to the overall month-long trace to obseits derivation of
the ideal number of clusters.f) in the system from the peak in the curve. Second, we applied
[ to a live rendition of the PlanetLab trace, and also subgedtéo a systematic fluctuation in
heterogeneity in order to observe its ability to detect tihange.

Figure 13 plotsg against precision and recall from figure 12. This algorithmaréfore ap-
proaches the appropriate value for the “knee” of the curag pmovides the best benefit to the
system in terms of resource discovery accuracy and overhead

Figure 14 shows our functio working adaptively in the Feb 2007 PlanetLab trace. After

each day, the adaptive algorithm considered zi : n. £ 5 based on query results evaluated

"Note that this difference is expected as the probabilistic model is using Seevetl distribution merely as a set of samples

that are being fitted to a general distribution from which these samplesanand
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adaptive algorithm converges to the new ideal value.

from the previous day. A new value far, was chosen at the end of each day. We initialized
n. = 25, more than double the ideal value of 10 (from Figure 13). H@mxeas seen from
the figure, our algorithm was able to converge to the idealevadf 10. We also injected a
fluctuation in the amount of heterogeneity in the system at 14 by removing 3 of the 10
observed bundles of nodes in the system and replacing thémandistribution from another
existing node, effectively reducing the heterogeneityha system but keeping the number of
nodes constant. This fluctuation reduces the ideal valug tf 7, and once again, our algorithm
is able to find this optimal value.

The results show that our adaptive algorithf) successfully converges to the ideal value for
n.. Please note that the observed fluctuations around therndeaé due to daily fluctuations that

do not appear in Figure 13 (since Figure 13 is derived fron2&ltays of the trace combined).

G. Trace-Driven Aggregation Simulation

We now present results from a trace-driven simulation ofeadnchical aggregation algorithm.
The purpose of these simulations was to quantify the overhed query latency of our resource
discovery algorithms in a large-scale system with a realigipology. We have based our
simulator on PeerSim [19], a widely used simulator for distied protocol evaluation. We

have used our month-long PlanetLab trace to drive theselaiims. A hierarchical overlay
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was implemented usingVirelnetTopologyin PeerSim. The depth of the hierarchy varied from
5 to 7 levels. We generated 10 random topologies for eachanktsize and took an average

over them. Single nodes may now be bundled together withithewkl bundles, so we define a

bundleas representing 1 or more nodes.

At each simulator cycle, each node propagates its bundlegdisards to its parent. Each node
upon receiving its messages, updates its data store ara miuttmber of bundles it stores exceeds
a maximum bundle threshol®;, the aggregation algorithm is executed at that node, cbnsol
dating its current list of bundles int®, aggregate bundles. We ran our resource bundle-based
aggregation algorithm over the simulated topologies. Wapared it to a baselineropagateAll
algorithm, which uses a threshold, = oo, so that no aggregation takes place and all node-
level capacity distributions are propagated all the wayheorbot. Another baseline algorithm we
used wadPropagateNone, where no resource discovery information is propagateddsst nodes
beforehand; resource discovery must be performed thrdwggprobing of each node individually
for its capacity distribution. All three algorithms use bila histograms for resource discovery.

1) Data Transfer OverheadWe measured the data transfer that occurred during a coenplet
system-wide propagation to the root node in the hierarclg.géherated 10 random topologies
for each network size. Data is measured in the number of ban@lirectly proportional to
bandwidth) sent over the network. Figure 15 measures oadrhg the size of the network. The
overhead of Aggregations;, = 70, B, = 10) increases at a slower pace than PropagateAll, with
only about 48-61% messages required across the differéwbriesizes.

2) Query Latency:We now analyze query latency from our trace of 11,529 Plaatethode
distributions (427 node27 days as in Section IV-A.1). We chose not to fix an applicatio
desired number of acceptable nodes to be found; instead, e@sured how many nodes were
found given a time-to-live value measured in hops. We usedehuiremen{CPU, 680MHz, 95,
24hrg to determine the actual acceptable nodes. Our results araviirage of queries injected
at 500 random points in the network. Queries are answerech®made on which the query
was injected and can be propagated further to other nodesll@&uwere chosen based on their
histograms and the number of acceptable nodes found welgag@ as in previous sections.

Figure 16 shows that Aggregation finds nearly as many nod&amgateAll (within 119%),
but with about half the data transfer overhead in the sanrarcieical structure. PropagateNone,

which has no data overhead, performs much more poorly,memionly about 1-15% of nodes
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up to 5 hops. It also has high query-time overhead; it mustyqaach individual node.
Overall, these results show thasing aggregation provides a good tradeoff between data

dissemination overhead and query-time overhead, withyfdiiyjh accuracy.

V. RELATED WORK

Statistical resource guarantees. Offline profiling [20] has been used for application placemen
to meet statistical QoS levels. Our work targets online Aedel as well as group-level capacity
observations for statistical resource discovery. Comjmrtat Markets [21] has focused on the
prediction of consumer-oriented resource costs in a mdr&eed system to maintain QoS levels.
We focus more on resource discovery than socio-economiardigs.

Resource discovery: Condor [11] employs centralized matchmaking; our focus islecentral-
ized discovery. SWORD [9] is a resource discovery servicdayep on PlanetLab that uses
a DHT underlay to store load metrics. While SWORD provides adulity in querying, we
have also addressed scalability in data collection andgmafon. Several recent approaches
have explored resource discovery in dynamic desktop Gnar@mments [8], [10], [22]. Most
of these approaches use peer-to-peer query forwardingfaaud on finding single nodes for
individual application tasks. Our work instead emphasibesarchical propagation of node
resource usage information to enable the quick discoveryamfe groups of nodes. Also,
while existing resource discovery work focuses on findingakle nodes meeting instantaneous
requirements, our approach is geared towards statisggainrements. Resource ‘bags’ [23] have

been used in static and inter-node contexts; dynamic mdde metrics is our focus.
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Aggregation: Information Planes [14], Astrolabe [24], SDIMS [13] and S&rmin [25] provide
frameworks for scalable deployments of information systemd show hierarchical aggregation
to be a useful model for scalability. While these systems idewgeneral aggregation frame-
works, they do not provide specific aggregation functionsr @cus is on solving the specific
aggregation problem for resource usage distributions.

Historical data and prediction: Prediction has been used in several contexts such as altyilab
prediction [26], Web workload prediction [27], and workébarediction for multi-tier Internet
applications [28]. Network Weather Service [29], [30] usesrnament predictors to accurately
predict trends in resource usage levels. However, thedligiens are limited to the next mea-
surement point, while our techniques are flexible in the t@mlpand statistical descriptions of
resource usage. Such prediction is complimentary to ouotisesource usage profiles and we

can incorporate prediction for greater accuracy in proygdstatistical guarantees.

VI. CONCLUSION

In this paper, we addressed the problem of scalable resdigcevery in large-scale systems.
The presence of node-level dynamism means that selectohgsrizased only on recently observed
capacities can lead to poor deployments resulting in agjptic failures or migrations. However,
existing resource discovery techniques rely only on reoéservations to achieve scalability.

We proposed the notion of a resource bundle that employs drgplementary techniques to
overcome the limitations of existing techniques: resowsage histograms to provide statistical
guarantees for resource capacities, and clustering-b@&sedirce aggregation to achieve scal-
ability. We presented an adaptive algorithm that detectstufations in heterogeneity in order
to parameterize the clustering-based resource bundlesthly. Using trace-driven simulations
and data analysis of a PlanetLab trace, we showed that rEsbundles are able to provide high
accuracy for statistical resource discovery, while adhgwhigh scalability. We also showed that
resource bundles are ideally suited for identifying gréeyel characteristics such as finding load

hot spots and estimating total group capacity.
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