
TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 1

Resource Bundles: Using Aggregation for

Statistical Large-Scale Resource Discovery and

Management

Michael CardosaMember, IEEE,and Abhishek ChandraMember, IEEE

Department of Computer Science

University of Minnesota

{cardosa, chandra}@cs.umn.edu

This work was supported in part by an NSF CAREER Award CNS-0643505.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 2

Abstract

Resource discovery is an important process for finding suitable nodes that satisfy application

requirements in large loosely-coupled distributed systems. Besides inter-node heterogeneity, many of

these systems also show a high degree of intra-node dynamism, so that selecting nodes based only on

their recently observed resource capacities can lead to poor deployment decisions resulting in application

failures or migration overheads. However, most existing resource discovery mechanisms rely mainly on

recent observations to achieve scalability in large systems. In this paper, we propose the notion of

a resource bundle - a representative resource usage distribution for a group of nodes with similar

resource usage patterns - that employs two complementary techniques to overcome the limitations of

existing techniques: resource usage histograms to providestatistical guarantees for resource capacities,

and clustering-based resource aggregation to achieve scalability. Using trace-driven simulations and

data analysis of a month-long PlanetLab trace, we show that resource bundles are able to provide high

accuracy for statistical resource discovery, while achieving high scalability. We also show that resource

bundles are ideally suited for identifying group-level characteristics (e.g. hot spots, total group capacity).

To automatically parameterize the bundling algorithm, we present an adaptive algorithm that can detect

online fluctuations in resource heterogeneity.

Index Terms

resource discovery, aggregation, resource management, machine learning

I. I NTRODUCTION

Recent years have seen increasing use of loosely-coupled distributed platforms for scientific

computation [1]–[3], data sharing and dissemination [4]–[6], and experimental testbeds [7].

Examples of such large-scale platforms include volunteer computation grids such as SETI@home

(over 3.6 million participant machines), P2P systems such as Kazaa (over 30 million users) and

Kad networks (over 2 million users). While such platforms arehighly attractive due to their low

deployment cost and inherent scalability, they are also highly heterogeneous and dynamic [8].

The nodes participating in such platforms differ widely in their resource capabilities such as

CPU speeds, bandwidth, and memory capacity. As a result,resource discoveryis often used in

such large-scale systems to find suitable nodes that satisfyapplication requirements.

Many existing resource discovery systems [8]–[11] rely on the recently observed resource

capacities of individual nodes to make their deployment decisions. However, resource allocation

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 3

decisions based on current status of nodes have severe limitations in these systems, because of

the presence of intra-node dynamism in addition to the inter-node heterogeneity. Individual nodes

can have widely varying resource capabilities due to varying loads, network connectivity, churn,

or user behavior. For instance, a resource usage study of PlanetLab [12] has shown that node

resource capabilities fluctuate on the order of about 30 minutes. Such dynamism in node-level

resource capacities makes it difficult to deploy long-running services and applications that need

consistent resource availability to ensure desired performance and avoid disruptions or migration

overheads.

To handle the inherent heterogeneity and dynamism in such systems, the resource discovery

process employed in such systems must be able to providestatistical guaranteeson application

resource requirements. While incorporating long-term resource availability information is likely

to improve the resource discovery decisions substantially[12], most existing resource discovery

systems use only the recent node usage information for scalability and simplicity reasons. It helps

in reducing the amount of monitoring data that needs to be exchanged between nodes in the

system, and enables easy location of desirable nodes (e.g.,by mapping resource requirements to

node IDs in case of DHT-based resource discovery systems [9], [10]). We argue in this paper that

for providing statistical resource guarantees in a scalable manner, the resource usage information

from nodes can be approximated both in temporal (long-term usage pattern) and spatial (number

of nodes with similar usage patterns) dimensions.

In this paper, we propose the notion of aresource bundle—a representative resource usage

distribution for a group of nodes with similar resource usage patterns. A resource bundle employs

two complementary techniques to capture the long-term resource usage behavior of a set of nodes:

(i) resource usage histogramsto provide statistical guarantees for resource capacities, and (ii)

clustering-based resource aggregationto achieve compact representation of a set of similarly-

behaving nodes for scalability. To handle the parameterization of the clustering algorithm, we

present an adaptive algorithm to detect the amount of heterogeneity in the system and show its

ability to adjust to fluctuations in an online fashion.

Besides providing a scalable resource discovery mechanism to achieve stable application

deployment, resource bundles can also be used for several other purposes in a large distributed

system. Resource bundles can be used to easily find agroup of nodessatisfying a common

requirement. Resource bundles can also be used to find loadhot spots: geographical regions

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 4

in the distributed system with several nodes experiencing overloads due to reasons such as

heavy demand for a popular resource in that region or locality-based application stresses. The

identification of such hot spots can be used to inform decisions about application deployment or

load balancing. Finally, resource bundles can also be used for auditing and accountingpurposes,

e.g., to determine the resource assignment of a distributedapplication running on multiple nodes,

or to determine the spare capacity in an administrative domain.

We evaluate the performance of resource bundle-based resource discovery using trace-driven

simulations and data analysis of a month-long PlanetLab trace. Our results show that resource

bundles are able to provide high accuracy for resource discovery through the use of resource

usage histograms (up to 56% better precision than an algorithm based on current usage values),

while achieving high scalability through aggregation (up to 55% fewer messages than a non-

aggregation algorithm). We also show that resource bundlesare ideally suited for identifying

group-level characteristics such as finding load hot spots and estimating total group capacity

(within 8% of actual values).

II. STATISTICAL NODE BEHAVIOR

In this section, we present our system model, define a notion of statistical resource usage

guarantees, and discuss how historical resource usage patterns can be used to provide these

statistical guarantees.

A. System Model

We assume our system is a large-scale wide-area distributedsystem. Participant nodes are

geographically distributed and could span multiple administrative domains. We assume the nodes

are interconnected by an interconnection overlay, using a DHT or a flooding-based approach,

which allows nodes to communicate with other nearby nodes. Nodes monitor their own resource

capacities over time and can exchange messages as required.Further, we assume a hierarchical

structure can be constructed on top of the overlay, e.g., using methods provided in SDIMS [13].

B. Statistical Resource Requirements

During the resource discovery process, applications typically seek nodes meeting certain

resource requirements, e.g., minimum CPU spare capacity of 1GHz, memory capacity of 512

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 5

MB, etc. Such resource requirements can be expressed as a tuple {R,c}, where R is a resource

type, and c is the desired minimum capacity of the resource. However, the resource capacities

of nodes in loosely-coupled distributed systems often varya lot over time, which could result in

application performance degradation, failures, or need for frequent migrations [12] resulting in

large overhead. It would be desirable to provide statistical resource guarantees so that applications

can be deployed on nodes that are likely to satisfy the minimum desired requirement for a certain

period of time. The desired length of time could depend on factors such as the overheads of

application component migration and restart, or the cost ofperformance degradation or disruption.

We formalize this notion of statistical resource requirement as follows:

Definition 1: Statistical Requirement: We define a statistical requirement r as a tuple{R, c,

p, t}, where, R is a resource type, c refers to a capacity level, p isa percentile value, and t is a

time duration.

Intuitively, based on this definition, an application can specify that it needs a resource R to

meet a minimum capacity levelc for at leastp percent of time (corresponding to its tolerance to

overload) over a time durationt (which could depend on its length of execution and overheadsof

disruption and migration, etc.). The goal is to avoid serious service disruptions (e.g. overloads)

or reallocation penalties (e.g. migration overheads) overtime t. Thus, using this definition of

statistical requirements, a compute-intensive application can specify a requirement{CPU, 1GHz,

95, 24hrs}, which would mean it requires a 95 percentile CPU capacity of 1GHz over 24 hours.

C. Resource Usage Representation

Since different applications can specify different valuesof c, p, and t, maintaining only a few

values such as the capacity corresponding to a fixed percentile (e.g., 95th percentile) of resource

usage on each node, or the percentile corresponding to a fixedcapacity level (e.g., 1 GHz) may

not provide enough information to satisfy different resource discovery queries. Similarly, we may

need to capture the resource usage behavior over different time durations (such as an hour, day,

week, etc.) to incorporate requirements over different time granularities and capture long-term

vs. short-term trends.

To provide a general way to handle different resource requirement specifications, we propose

the use of resource usage histograms with an associated observation time periodT , which

represent the resource capacity distributions from observations over the pastT time units.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 6

Figure 1 shows how a statistical requirement can be mapped toa resource capacity histogram

(with p% of the capacity observations to the right of the vertical line corresponding to capacityc).

A separate histogram would need to be maintained for each resource type (e.g., CPU, memory,

etc.) and for each time granularity (e.g., hour, day, week, etc.); intermediate time granularities

can be interpolated from these histograms.

F
re
q
u
en
cy

Resource Capacity

p %-tile

c

Fig. 1. Mapping a statistical requirement to a resource

capacity distribution.

Using histograms to represent resource usage

data has two primary advantages. First, require-

ment percentiles (corresponding top) for a par-

ticular resource capacity are now straightforward

computations from the given histograms. Second,

histograms help us preserve all usage data, so

that even if different applications specify differ-

ent resource capacity requirements with different

tolerances, these can be easily captured using the

same histogram representation.

Each node can maintain its own histogram by

monitoring its own resource capacities over time. Given an arbitrary time periodT , nodes can

construct histograms from their own historical observations. To reduce storage overhead at each

node, instead of maintaining the entire historical resource usage trace, one could choose to

preserve only the histograms themselves (along with a decayfunction), thereby reducing the

overhead by a factor proportional to the measurement frequency.

The above technique for statistical resource usage representation through histograms is comple-

mentary to any prediction techniques that may be able to predict future resource usage behavior

based on historical observations. Predictors are complimentary since histograms merely express

usage distributions for nodes; predictors can be used to provide more accurate future estimates

of distributions which could then be converted into histograms, enhancing the level of accuracy

for future resource capacity estimates.

III. R ESOURCEBUNDLES

While using resource usage histograms provides a means to capture an accurate representation

of an individual node’s dynamic resource usage pattern and enables the satisfaction of statis-

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 7

tical resource requirements, it can potentially create a scalability problem in a large wide-area

distributed system. The statistical information for each node would be represented by multiple

histograms, corresponding to different resources and different time scales. Disseminating this

kind of detailed data over the network can create significantnetwork traffic, making it infeasible

for each node to have a global node-level behavioral view of the entire system. Moreover, if the

goal is to findmultiple nodes meeting a certain requirement, it would be desirable to combine

this discovery process rather than having to find individualsuitable nodes separately.

This raises the following questions. Can we use these representations in a scalable manner to

make better resource discovery decisions in a large system?Secondly, can we use these node

behaviors to provide any collective information about group-level usage patterns, e.g., for nodes

within an administrative domain, or for nodes assigned to a distributed application?

A. Resource Aggregation

Aggregation [13], particularly hierarchical aggregation[14], is a common technique employed

in large distributed systems for the scalable dissemination of information. Aggregation essentially

compresses the amount of transmitted data in the system while preserving the overall information

content. In the context of resource discovery, this would correspond to a suitable “compression”

of the node resource usage patterns to achieve a desirable tradeoff between the quality of resource

discovery and the overhead of network data transmission in the system.

Our goal is to achieve the same quality of resource discoveryas a global resource discovery

system with full historical node-behavioral knowledge, but to significantly compress the amount

of necessary node-behavioral representation data in the system in order to achieve scalability.

Such an aggregation of node resource usage distributions for a group of nodes can be used to

represent:

• An accurate approximation of any individual node’s resource usage. This is important for

the discovery of desirable nodes based on a resource requirement.

• The collective resource usage behavior of the group of nodes. This can provide information

about load patterns or resource usage behavior for a set of related nodes (e.g., those in the

same geographical area or running the same application).

• The overall capacity of the group. This can be used to track the overall resource usage,

e.g., for audit or accounting purposes.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 8

A naive approach to aggregation for a set of nodes would be to compute the average re-

source capacity distribution across all nodes. An example of this naive approach can be seen

in Figure 2, which shows the aggregation of two nodes, one skewed towards low capacity

and the other skewed towards high capacity. We see that the average representation loses

this information about the individual nodes and appears to represent a set of bimodal nodes.

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80

O
bs

er
va

tio
n

F
re

qu
en

cy
 in

 2
4-

ho
ur

 P
er

io
d

Histogram Bins (increments of 34MHz)

AverageNode
Node1
Node2

Fig. 2. Naive approach to aggregation by averaging

resource capacity distributions.

While averaging allows the estimation of overall

capacity of the group of nodes, it is a poor

representation of individual node-level behavior.

This is because it does not account for the het-

erogeneity of the nodes in the system, and fails to

capture important behavioral differences between

individual nodes. Thus, this approach could result

in a highly inaccurate view of individual node

resource capacities.

B. Defining Resource Bundles

To account for the heterogeneity of nodes,

we define the notion of aresource bundle:an

aggregation of a group of nodes withsimilar

resource capacity distributions. By combining only similarnodes together, such an aggregation

process will preserve the individual node distributions more accurately. Figure 3 shows a high-

level view of the notion of resource bundles and how they might be constructed. First, a group

of nodes are bundled based on the similarity of their resource capacity histograms. Second, each

bundle produces a representative distribution that can be used to characterize the whole bundle.

The question is how can we identify such groups of similar nodes to construct a resource bundle,

and how can we compute a representative to accurately represent the nodes in the bundle?

1) Aggregation via Clustering:To identify nodes with similar distributions, we propose the

use of clustering algorithms that have traditionally been used in data miningapplications to

group together statistically similar data elements. However, a clustering algorithm must meet

several requirements in our context:

• The data to be clustered (i.e., the resource histograms) is not single-point, but multi-element

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 9

(consisting of multiple histogram bins). The clustering algorithm must be able tohandle

such multi-element data.

• The node resource usage histograms could represent arbitrary distributions, and cannot be

assumed to conform to standard distributions (e.g., Gaussian, uniform, etc.). The clustering

algorithm must bedistribution-free, i.e., it must not assume the existence of a standard

distribution or certain parameters.

• The clustering algorithm must not only identify the closelyrelated set of nodes, but it is

desirable if it can also produce acompact representation of the collective resource usageof

these nodes. Such a representation can be used to easily characterize the nodes in a bundle

(e.g., high-capacity/low-capacity, etc.)

(1)

(2)

Fig. 3. Constructing Resource Bundles.

A clustering algorithm that meets the above requirements is

the multinomial model-based expectation maximization (EM)

clustering algorithm [15]. This clustering algorithm has been

used primarily for the purposes of clustering text documents

with common words. We first describe this algorithm in a

document clustering context for ease of exposition, and then

describe how it maps to our context.

In a document clustering context, each document is con-

sidered as a “bag of words”, and is represented as a vector

of word frequencies. Then, the set of all documents is represented as a mixture of multinomial

distributions on these word frequencies, with each document belonging to one such distribution.

The probability that a document belongs to one of the clusters corresponding to a multinomial

distribution is given by [15]:P (di|λj) =
∏

l Pj(wl)
nil , whereλj is the set of parameters for

model j, nil is the frequency of occurrences of wordwl in documentdi, and Pj(wl) is the

probability of wordwl occurring in clusterj. Further,
∑

l Pj(wl) = 1 holds.

Mapping the document clustering scenario to our context, wecan think of nodes corresponding

to documents and histogram bin magnitudes for node-level resource usage distributions corre-

sponding to document word frequencies. The clustering algorithm then maps nodes to clusters

based on the similarity of their resource usage histograms.In other words, this algorithm will

group those nodes together that have similar histogram bin-magnitudes, meaning it can cluster

nodes having arbitrary (but similar) distributions. Such acluster of closely related nodes returned

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 10

by the clustering algorithm is considered a resource bundle.

In practice, the multinomial model-based EM clustering takes a set of vectors as its input and

forms clusters based on the similarity of corresponding vector elements. It is a hill-climbing

algorithm that adjusts its mapping of vectors to clusters iteratively in order to maximize the

expected objective value achieved from its clustering.

Notice that this clustering algorithm meets the requirements we had outlined above. The

algorithm is able to handle multi-point data as it operates on vectors of values. Since the

clustering algorithm operates on arbitrary vectors, it is independent of any assumptions about

specific distributions, enabling the clustering of arbitrary resource capacity distributions. Finally,

by associating each cluster to a multinomial distribution,it is able to characterize the common

statistical properties of the nodes in a cluster in a compactmanner.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30 35 40

O
bs

er
va

tio
n

F
re

qu
en

cy
 in

 2
4-

ho
ur

 P
er

io
d

Histogram Bins (increments of 34MHz)

Representative
Node1
Node2
Node3
Node4

Fig. 4. Four nodes bundled by CPU capacity, producing a

bundle representative

Nodes

Clustering

Bundle Representatives

Level-2 Bundle Representatives

Clustering
of Bundles

Fig. 5. Hierarchical aggregation

2) Bundle Representatives:As described above, the multinomial model-based EM algorithm

associates each resource bundle with a multinomial distribution that captures the statistical

properties of the nodes that are members of the bundle. This multinomial distribution can be

thought of as thebundle representative:an aggregate distribution that is a compact representation

of the individual node distributions in the bundle.

Bundle representatives are the resulting distributions that represent the mean node capacity

distribution within each respective bundle. In the multinomial model clustering algorithm, cluster

representatives are the result of probabilistic models; however the difference between these

models and the mean node capacity distribution is negligible.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 11

Figure 4 shows an example bundle representative that aggregates 4 node resource capacity his-

tograms. The representative closely matches the individual node distributions. In Section IV, we

will quantify the closeness of the representative to its member distributions, and its effectiveness

in resource discovery, hot spot detection and capacity estimation.

C. Hierarchical Aggregation

While aggregation, as described above, enables the creationof resource bundles that closely

approximate individual node behavior for a similar set of nodes, the question is whether bundles

can be further aggregated to provide a meaningful view of thecombined set of nodes corre-

sponding to multiple bundles. The ability to combine resource bundles is particularly desirable

in a large system where we may want to get concise estimates ofresource capacities of nodes

at different granularities; for instance, at a local site level, at an administrative domain level or

at a global level.

Building on the assumed ability of the system-employed overlay to support a hierarchical

information structure, we propose the use ofhierarchical aggregationin combination with

resource bundles through the use of recursive clustering, i.e., successive clustering of bundle

representatives at different levels of the hierarchy. Figure 5 is a high-level illustration of this

process. Groups at the bottom level are individual sets of node distributions. These nodes are

initially clustered, producing bundle representatives which are then propagated to the next level

of the hierarchy to create level-2 representatives, thus beginning the recursive representative

clustering process.

Note that this recursive aggregation must incorporate individual bundle cardinalities during

the clustering process to minimize the loss of representative data. Representatives with highly

different cardinalities might be combined. If the bundle representatives are all treated alike, low

cardinality representatives might have an unusually largeinfluence in the formation of higher-

level representatives. To balance the relative importanceof different resource bundles into the

resulting aggregate bundle, we use bundle cardinalities asrepresentative weightsin the process

of hierarchical clustering. Formally, for a bundle histogramHi having cardinalitywi, we present

it to the clustering algorithm asWi = Hiwi.

If the underlying topology of the distributed system causesnodes to be grouped by locality,

our hierarchical approach will be suitable for finding localized sets of resources for application

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 12

deployment. Further, bundle representatives can be used topredict group-level capacity levels.

Our ability to predict group-level capacities results in another high-level ability to detect hot

spots within large distributed systems.

D. Implementation Considerations

In this section, we describe the implementation details of hierarchical resource bundling over a

set of distributed nodes: how data would be exchanged, aggregated, and propagated. We assume

an implementation on top of a hierarchical overlay as described in our system model in Sec II-A.

First, assume only one resource type being measured for simplicity (e.g. CPU). Different

resource types are assumed to be handled independently of each other. As an aside, note

that Resource Bundles can be used for multi-dimensional resource discovery, provided that

the individual resources are bundled independently of one another. One could then take the

intersection of multiple different resource requirementsand use that as a result. However, this

assumes statistical independence between the different resource types. We leave the general

problem of multi-dimensional resource discovery as futurework.

As nodes compile their own resource usage distribution histograms, they send all histograms

up the hierarchy, including those received from their children. If this process would continue

unrestricted, it would be a fully-informed algorithm, withthe root receiving all node resource

usage histograms. However, to achieve scalability, we restrict the amount of propagated data

by introducing aggregation at different points in the hierarchy as follows. When the number

of histograms reaches some thresholdBt, then the resource usage histograms are aggregated

by the resource bundles algorithm, producingBa aggregate bundles (representative histograms)

as output. Then theBa bundles are sent upward instead of (greater than)Bt histograms, thus

applying aggregation for scalability.

The choice ofBt determines the maximum amount of resource bundle representatives (his-

tograms) that can be sent upwards by any node in the system, and also determines how often

the bundles must be aggregated. If this number is too small, then the clustering algorithm would

be run too frequently and on too few histograms, resulting inan underfitting of the data for the

formation of bundle representatives. If this number is too high, then the histograms would be

aggregated infrequently (as they propagated to the root), leading to unnecessary data transfers

of large numbers of histograms. The rule of thumb we used forBt was to define it as a small

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 13

multiple of the number of clustersnc in the system. For our simulations in Section IV-G, we

chose that multiple to be 7; so that for 10 clusters,Bt = 70. The number of aggregate bundles

producedBa is identical to the number of clustersnc. We present an adaptive algorithm to select

this parameternc in section III-F.

Notice that in a hierarchical system, the bundling algorithm may receive as input all of the

following: single-node histograms, first-level bundle representatives (e.g. representing tens of

nodes) and high-level bundle representatives (e.g. representing thousands of nodes). Therefore

we also maintainedbundle representative cardinalitiesto appropriately weigh the formation of

higher-level bundle representatives from these various levels of input data.

E. Analysis of Network Overhead

We now analyze the network overhead complexity of our Resource Bundles algorithm in

terms of the number of messages sent in a complete propagation on a hierarchical overlay,

as described above. We compare this overhead complexity to that of a baseline algorithm

PropagateAll (described in more detail in Section IV) that simply propagates everything to

the root in the hierarchy.

Intuitively, with an extreme parameterization of Resource Bundles (a small value ofBt),

aggregation would take place at every (internal) level in the tree, so that a constant number of

histograms (Ba) is propagated upward by each node. Therefore, this is anO(n) algorithm in

terms of the number of messages being propagated in the system (with n being the number

of nodes in the system). In a real implementation of Resource Bundles, aggregation need not

take place at every level of the tree. The aggregation pointswould depend on the degree of

each node and at the locations in the tree where the thresholds (Bt) are exceeded. Deriving

closed-form equations for the complexity of Resource Bundlesin the general case proves to be

difficult, as the degree of the tree nodes and the parameters of the aggregation together may

create an oscillatory effect on the frequency of the aggregation as we traverse a tree. So to show

Resource Bundles is anO(n) algorithm, we introduce a simplified experiment where we have a

balanced-tree assumption with respect to the hierarchy construction1.

1We also show this result using simulations of realistic systems with diverse topologies in Section IV-G.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 14

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1e+06 2e+06 3e+06 4e+06 5e+06

A
ve

ra
ge

 M
es

sa
ge

s
(R

ep
re

se
nt

at
iv

es
)

S
en

t P
er

 N
od

e

Network Size (Nodes)

ResourceBundles
PropagateAll

Fig. 6. Resource Bundles showsO(n) complexity

In Figure 6, we show the average number of

messages sent per node in the system with the

balanced-tree assumption, for system sizes be-

tween 100,000 and 5 million nodes. This number

for Resource Bundles remains constant at 2.87 for

all such system sizes.

As a comparison, PropagateAll by definition is

O(n log(n)). The histograms at the bottom of the

tree must traverse the height of the tree up to the

root, which is a path of lengthlogd(n), whered

is the average degree of a node.

Besides the overall bandwidth in the network, bandwidth consumption at the upper levels of

the tree can be a concern, as too many messages near the root may present a bottleneck to

tree-based algorithms. Under Resource Bundles, any node willreceive(Bt − 1)d messages in

the worst case, or 414 messages as configured in Figure 6. In the same tree configuration at 5

million nodes, PropagateAll nodes directly below the root received on average 833,332 messages

per propagation, which is over 2,012 times the worst-case bandwidth of Resource Bundles, and

in this system was over 3,800 times the actual bandwidth of Resource Bundles, which averaged

218 messages received at the same level.

F. Adaptive Algorithm for Parameter Selection

One must consider the importance of choosing an appropriatevalue for the number of clusters

(nc) in the resource bundling algorithm. If too small a value is chosen, the bundle representatives

will poorly represent their constituent nodes due to high heterogeneity. If too large a value is

chosen, then these techniques for aggregation will not be effective due to the large overhead in

transferring nearly as many bundle representatives as there are nodes themselves.2 Therefore we

must carefully employ techniques to have the system determine this parameter robustly without

the need for administrative intervention.

2We show this tradeoff empirically in Section IV-E.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 15

To automatically select the appropriate number of clustersvalue in a live system, we propose

an adaptive hill-climbing algorithm for the selection ofnc. The algorithm works as follows.

The resource discovery query system introspectively monitors the quality of its decisions (i.e.,

the choice of nodes during resource discovery) over time. Itreturns its decisions based on the

current value ofnc, but also stores decisions that would have been made for other, nearby values

of nc. It then evaluates this set of possible decisions and tries to maximize an objective function

in order to achieve better results in the future by choosing aprogressively better value fornc.

Our objective function to determine the goodness of the result as compared to other values of

nc is defined asβ(p, r, nc) = F1Score(p, r) − δnc, whereF1Score(p, r) = 2pr

p+r
, wherep is the

precision of resource discovery (i.e. the fraction of nodessatisfying their requirement from the

selected set of nodes),r is the recall of resource discovery (i.e. the fraction of nodes discovered

in the system out of the total nodes in the system that would have satisfied the requirement),

and δ is the threshold of the minimum desired improvement in theF1Score per unit increase

in the number of clustersnc, i.e., δ = minDesired(△F1Score

△nc
). The F1Score is the harmonic

meanof the precision and recall, and is commonly used in machine learning techniques as an

objective function to determine the high-level accuracy ofclustering decisions.

For instance, a decision to allocate 30 nodes for a period of 24 hours undernc = 20 could be

evaluated 24 hours later to determine the actual precision and recall. The algorithm also evaluates

the alternative decisions that could have been made given other surrounding values ofnc such

asnc = {17, 18, 19, 21, 22, 23}. In retrospect, if the objective function would be maximized for

nc = 17, then the value ofnc would be changed to17 for the next bundling cycle, and the

algorithm will do another introspective evaluation some time later.

In our analysis, we choseδ = 0.005. The choice ofδ, unlike the choice ofnc, is not system-

dependent. The inclusion of the−δnc term in β avoids local maxima values and allows the

algorithm to more accurately determine the true knee of the objective function curve. For instance,

a selection ofnc = 45 might not seem to be a bad selection, but if the sameF1Score was

available for11 ≤ nc ≤ 45, then11 is a much better choice for aggregation overhead reasons.

G. Alternate Compression Techniques

One of the benefits of resource bundles is their ability to compress node-level resource usage

representation data. There exist other techniques for compressing this data that we consider

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 16

below as alternatives to resource bundles. We will discuss their tradeoffs and explain our choice

of resource bundles in our context.

A simple technique for compression is general lossless compression over the histograms, e.g.,

LZMA. Running such a lossless compression algorithm over usage histograms, while reducing

the overall bandwidth requirement, willcause the amount of data to grow in proportion to the

number of histogramsat higher-level nodes in the tree, placing more load on them.Even with

PropagateAll using compression under the scenario described in Section III-E, its bandwidth at

the root is over 48 Mbps, assuming one propagation per minute. On the other hand, resource

bundles can be combined recursively many times over, thuskeeping the amount of data bounded

for nodes at all levels of a propagation tree. The worst-casebandwidth for any node in Resource

Bundles under the same scenario is 11.64 Kbps uncompressed. Further note that we can apply

a lossless compression algorithm to resource bundles as well, further reducing their bandwidth

requirement (4.15 Kbps for the above scenario). Finally, wewill demonstrate in Section IV that

even with recursive aggregation, resource bundles are highly accurate with minimal data loss.

Another approach for compactly approximating a histogram would be to use a specific distri-

bution (e.g., Chebyshev or Gaussian) to represent each node’s usage data. However, a specific

distribution would not be able to accurately capture the (arbitrary) shape of the whole histogram

in general. As a result, it might be accurate for specific percentile values, but would result in

less accuracy for an arbitrary percentile value, thus reducing the flexibility of resource discovery.

It would also render our group-level capacity estimations inaccurate.

It is important to note that we are bundlingresource usage representations (histograms) only.

Other host-specific information (such as host IP address, geographic location, etc.) is largely

static or changes very infrequently. Such data need not be updated and propagated along with

dynamically changing resource usage data. Rather, such static data could be accessed in a much

more efficient manner without the need for frequent updates.For example, it could be stored in a

distributed storage or file system, and referred using smallIDs or keys. These IDs could then be

passed around in the Resource Bundles implementation, and lookups done on demand. To avoid

a scalability issue with passing large numbers of IDs aroundthe system, nodes in the hierarchy

could easily cache sets of IDs (i.e., bundle memberships) and updates would only consist of

changes in these memberships, along with their bundle representatives.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 17

IV. EVALUATION

We now evaluate the performance of using resource bundles for resource discovery, capacity

estimation and hot spot detection using data analysis of a month-long PlanetLab trace as well

as a trace-driven simulation. We begin with our data analysis results and present the simulation

results in detail in Section IV-G.

A. Data Analysis Methodology

We used a PlanetLab trace obtained by CoMon [16] from February2007 for our experiments.

CoMon runs a daemon on each PlanetLab node and collects node-level resource capacity infor-

mation every 5 minutes. We usedfree CPU capacityas the resource of interest for our evaluation,

which was estimated using theCPU Burpstatistic: it is calculated by occasionally running a spin-

loop to determine how much CPU bandwidth could be obtained by anewly-deployed application.

We multiply the CPU Burp by the CPU speed to determine the total amount of node-level free

CPU. During February 2007, 427 PlanetLab nodes contributed at least one data point per day

and thus were chosen for our analysis3. We used a time period of 24 hours as the desired time

window4, thus computing node histograms on a 24-hour period, one perday. Each histogram

consisted of 100 bins5 (with an overflow bin), each one representing about 34 MHz, with 3.4

GHz assumed as the maximum CPU capacity in PlanetLab.

We used MatLab as our main tool for data analysis incorporating an already implemented

Matlab package for the multinomial model EM clustering algorithm [18]. Since this algorithm

is hill-climbing, we ran it with 100 random initializationstaking the best objective value to

determine the best clustering. We emulated single-level (flat) clusterings, as well as hierarchical

clusterings with 2 and 5 levels over the trace. In a simple benchmark used to test the computa-

tional overhead of the clustering algorithm in MatLab, we determined the average running time

to be 0.72 seconds, indicating that the algorithm has verylow computational overhead.

3Churn is a widely-studied phenomenon in wide-area distributed systems and is beyond the scope of our paper, but is being

considered as future work.

4We use a 24-hour time period for clarity of exposition, but maintaining histograms for other time periods is a straightforward

exercise.

5One might consider variable-sized bins for compression reasons [17], but the resource bundles algorithm requires fixed

boundaries for the histogram bins across the entire system.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 18

1) Emulating Resource Discovery:To evaluate the accuracy of a resource bundle-based

resource discovery process in finding desirable nodes, we emulate a resource discovery process

as follows. We run a resource discovery algorithm on anobservation time windowto determine

the choice of acceptable nodes that meet a desired resource requirement. We then compare this

choice ofacceptable nodesto the actual set of nodes that satisfied the desired requirement over

a solution time window: the time window in the trace during which these nodes would have

been allocated to the application.

For the purposes of our experiments, we defined the statistical requirementr={CPU, c, p,

24hrs}, with different values of c and p. The goal of the algorithms was to find all nodes meeting

requirementr on the 427-node PlanetLab trace. Notice we did not specify how many nodes an

application needs for its deployment. Instead of using thisas a parameter in our analysis, we

had the algorithms search for the complete set of acceptablenodes.

In our experiments, we use the entire February 2007 trace by using each day’s trace (starting

from Feb 1 data) as the observation window with the next day’strace being used as the solution

window. The observation and solution windows are then shifted by one day, thus giving us 27

samples of trace data to evaluate our algorithms. Note that the propagation frequency in an

implementation would be higher than once per day (e.g., every 5 minutes) to avoid staleness.

Here we use one histogram per day to ensure our time windows donot overlap with previously

used histograms for evaluation.

2) Comparison Algorithms:We compared the following resource discovery algorithms:

• Memoryless: This algorithm uses the last CPU capacity data point for eachnode to estimate its

expected capacity over the next day. This algorithm emulates resource discovery algorithms that

use recent resource usage information to determine the suitability of a node to meet a minimum

requirement, and does not incorporate statistical resource usage patterns into its decisions.

• History: This is a centralized algorithm with global historical knowledge of the entire system.

It maintains complete 24-hour CPU capacity histograms for each node. Each node histogram

is individually examined to determine which nodes meet the desired statistical requirementr,

thereby determining the set of acceptable nodes. This algorithm can be considered to be the best

we can do using historical observations without using any accurate predictors. It also provides

us with a baseline to determine the effect of data loss due to aggregation on the accuracy of

resource discovery.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 19

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

MeanCPU1020 MHz680 MHz340 MHz

P
re

ci
si

on

CPU Capacity Requirement

Memoryless
History
Cluster

HierClus

(a) Precision

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

MeanCPU1020 MHz680 MHz340 MHz

R
ec

al
l

CPU Capacity Requirement

Memoryless
History
Cluster

HierClus

(b) Recall

 0

 50

 100

 150

 200

 250

 300

 350

MeanCPU1020 MHz680 MHz340 MHz

N
od

es
 C

ho
se

n

CPU Capacity Requirement

Memoryless-Unacceptable
Memoryless-Acceptable

History-Unacceptable
History-Acceptable

Cluster-Unacceptable
Cluster-Acceptable

HierClus-Unacceptable
HierClus-Acceptable

Total Actual Acceptable

(c) Nodes Discovered

Fig. 7. Aggregation compared against baseline resource discovery algorithms (95th percentile).

• Aggregation (Cluster): This algorithm uses resource bundles to aggregate the resource usage

histograms of groups of nodes into resource bundles. Nodes are bundled intok bundles based on

histogram similarity. For each bundle, if its representative meets the desired statistical requirement

r, all of its members are selected as acceptable nodes.

• Hierarchical Aggregation (HierClus): This algorithm uses recursive bundling over a 2-level

hierarchy consisting of 420 PlanetLab nodes divided into 6 random groups of size 70. The

hierarchical aggregation algorithm first reduces each group of nodes tok first-level resource

bundles. All the first-level resource bundles from across all groups are then further aggregated

into k second-level resource bundles. For resource discovery purposes, the algorithm examines

these second-level bundle representatives and if a bundle representativeHi meets requirement

r, then all nodes represented byHi (recursively) are selected as acceptable.

3) Evaluation Metrics:The accuracy of resource discovery was measured using two metrics:

Precision = nacc

ntot
andRecall = nacc

Nacc
, where,nacc = acceptable nodes chosen,ntot = total nodes

chosen,Nacc = total acceptable nodes in the system. Intuitively, high precision means that a

high fraction of the nodes returned by a resource discovery algorithm are actually acceptable,

thus reducing the chances of poor allocation decisions. On the other hand, recall measures what

percentage of the total acceptable nodes in the system are discovered by the algorithm, indicating

how well it can locate acceptable nodes in the system.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 20

B. Accuracy in Resource Discovery

Figure 7 compares the accuracy of our single-level and hierarchical aggregation algorithms

using 10 clusters6 against the memoryless and history-based resource discovery algorithms.

This figure shows the precision and recall achieved by the algorithms for three different CPU

capacity requirements as well as themean requirement(MeanCPU), the average over all possible

requirements (for each of the 100 histogram bins).

As seen from Figure 7(a), both the Cluster and History algorithms have significantly better

precision (87-97%) than the Memoryless algorithm (37-77%). This results from their use of

historical information to make statistically accurate decisions. The algorithms using capacity

distributions select a node only if it has had a resource capacity of at leastc CPU MHz for at

leastp = 95% of the observations in the past 24 hours. On the other hand, Memoryless will

select a node if it has a capacity ofc MHz at its last observation point, which is a much less

stringent requirement.

This same behavior also explains the recall values in Figure7(b), which shows Memoryless

had the highest recall, while History came in second, and Cluster consistently had the worst recall

among the three. The Memoryless algorithm turns out to be an unusually optimistic predictor; it

finds nearly all of the acceptable nodes but also finds many other unacceptable (but temporarily

well-performing) nodes as well, leading to poor precision but excellent recall. This result can

be understood by noting that the Memoryless algorithm wouldfind, on average,p = 95% of

the acceptable nodes in the system along with every other node that had a resource capacity

ct ≥ c at the moment of observationt. The Cluster algorithm suffers in recall because it is

conservative similar to History. However it misses additional acceptable nodes due to the loss

of accuracy because of aggregation, that might sometimes combine acceptable nodes along with

unacceptable nodes in the same bundle. Thus it achieves a higher precision than History but

experiences worse recall.

However, when we look at the absolute number of nodes discovered by each algorithm in

Figure 7(c), we find that the actual number of nodes missed by Cluster is typically between 10-

20, even in the worst recall case (MeanCPU - 13 nodes missed), while the number of additional

(unacceptable) nodes returned by Memoryless can be in the order of 50-85 nodes. This indicates

6We investigate the impact of number of clusters on aggregation accuracyin Section IV-E.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 21

that the impact of missing acceptable nodes by Cluster is comparatively smaller than that of

finding additional poor nodes by Memoryless.

To consider the relative impact of high precision vs. low recall and vice versa, we note that the

goodness of choiceof nodes from the application’s perspective is primarily affected by precision.

Once the allocation decision has been made, precision ultimately reflects the confidence of the

application in the selected nodes meeting the given requirement. On the other hand, recall’s

effects are dependent on the system context. In a system where very few nodes meet the given

requirement, a high recall may be desired so that most of the acceptable nodes could be found.

However, in a large system with several acceptable nodes, recall would primarily affect query

latency: low recall implies that acceptable nodes will be missed, therefore taking the query longer

to find the desired number of acceptable nodes.

Figure 7 also compares HierClus with Cluster for precision andrecall statistics. Precision

does not suffer from the recursive aggregation in HierClus, while the recall is slightly lower

(about 6% for MeanCPU). This shows that the loss of accuracy inhierarchical clustering is

small compared to a single-level clustering.

In summary, our precision and recall evaluations show that resource discovery usingour

resource bundle approach is able to find a choice of nodes similar in quality to those discovered

by a fully-informed history-based algorithm, although its set of chosen nodes is smaller, thereby

missing a few potentially acceptable nodes.

C. Identifying Group Characteristics

One potential advantage of using resource bundles is to concisely capture group characteristics

of sets of nodes such as their overall load behavior and sparecapacity. Such group-level char-

acteristics could inform decisions of load balancing or capacity planning without having to rely

on fine-grained node-level statistics. Next, we perform an experiment to evaluate this potential

of resource bundles for geographically related nodes in PlanetLab.

To establish proximity-based groupings of nodes for our experiment, we hand-selected 5

geographically distributed group leaders in our PlanetLabtrace. These leaders were respectively

from UMASS Amherst, UFL, UT Austin, UWash, and UMN, representing different US regions.

Pairwise pings between these leaders and the remaining PlanetLab nodes were taken, forming a

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 22

CPU Capacity Available: Histogram Bins (increments of 34MHz)

N
od

e
D

is
tr

ib
ut

io
ns

 S
or

te
d

B
y

B
un

dl
e

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

(a) Nodes: sorted by bundle rep

CPU Capacity Available: Histogram Bins (increments of 34MHz)

N
od

es
 R

ep
la

ce
d

B
y

B
un

dl
e

D
is

tr
ib

ut
io

n,
 S

or
te

d
B

y
B

un
dl

e

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

(b) Nodes: replaced by bundle rep

Fig. 8. Bundle representatives can be used to detect hot spots in the network.

total of 300 responsive PlanetLab nodes. We formed 5 groups of 60 nodes each based on their

proximity from the selected group leaders.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

Group5Group4Group3Group2Group1G
ro

up
-le

ve
l C

ap
ac

ity
 A

cc
ur

ac
y

D
iff

er
en

ce
 in

 P
er

ce
nt

 (
lo

w
er

 is
 b

et
te

r)

History
Clus10

ClusAvg5to20

Fig. 9. Accuracy of capacity estimation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 K
S

-S
ta

t

Clusters

Random
Hierarchical, no weighting

Hierarchical, weighting
Single-level

Fig. 10. Information loss for aggregation.

1) Load Hot Spot Detection:Figure 8(a) shows a visual display of the resource usage

histograms of 60 nodes from one of the geographical groups. The figure is a gray-scale image

where the x-axis corresponds to CPU capacity, the y-axis corresponds to node identifiers (sorted

based on the bundle identifier assigned by our clustering algorithm), and the brightness of a point

corresponds to the magnitude of the histogram bin. Thus, a node with brighter values towards

smaller CPU capacity values (e.g., node 10) has a smaller spare CPU capacity available. Fig-

ure 8(b) shows the corresponding bundle representatives weobtain by our clustering algorithm.

As seen in the figure, low capacity nodes are clearly separated from high capacity nodes, and

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 23

further we can easily estimate the number of nodes in each category simply by the cardinality

of the corresponding bundle. For instance, cluster 2 (nodes9-19) appears to have very low spare

CPU capacity, and could potentially be overloaded. Using such group-level views can allow

administrators to identify potential load hot spots by using appropriate thresholds.

2) Capacity Estimation:We now investigate the capacity estimation abilities of ouraggre-

gation algorithm. Here, we ask the following question: To what level of accuracy can the

aggregation-based algorithm estimate the resource capacity of a group of nodes for the next day

based on observations of a 24-hour period? We compare the results to those of a history-based

capacity estimation algorithm that has fine-grained knowledge of individual node resource usage.

For the aggregation-based algorithm, group capacities areestimated by taking a weighted sum

of the mean capacities of the bundle representatives; for the history-based estimation algorithm,

the mean capacities of individual nodes are added.

Figure 9 shows our results. Using 10 clusters, the aggregation-based algorithm is able to

estimate within 3% accuracy of a history-based estimation algorithm. To see how sensitive

aggregation is to the choice of a good cluster size, we also include an average of our group-level

predictions for all clusterings that used between 5 and 20 clusters (the third bar in the figure).

The results show that the impact of the cluster size is minimal (< 1% accuracy).

D. Aggregation Information Loss

While aggregation helps in the scalability of resource discovery and the capturing of group-

level characteristics by reducing the amount of resource usage data to be maintained and exam-

ined, we next examine how much information loss occurs as a result of this reduction.

We measure this information loss by comparing each node-level resource distribution to its

bundle representative. We use the Kolmogorov-Smirnov (K-S) statisticDnode for each node as

a quantitative measure for this comparison:Dnode = supx |Fnode(x) − Frep(x)|, whereFnode and

Frep are CDFs for the resource capacity distributions of the node and its bundle representative

respectively. The K-S statistic is a value between 0 and 1; the more similar the two distributions

are, the closer the statistic is to 0.

For our evaluation, we compare the K-S statistic for the following algorithms: single-level

aggregation, hierarchical 2-level aggregation, hierarchical 2-level unweighted aggregation (where

we do not consider bundle cardinalities during recursive aggregation), and random (which assigns

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 24

nodes randomly to equal-sized bundles). Here we use the random algorithm as a baseline for

comparison. Note that a history-based algorithm would havea K-S statistic of 0, since it uses

individual node-level distributions.

Figure 10 shows the average K-S statistics for these algorithms. The K-S statistic has a worst-

case value of about 0.38 for the single-level aggregation, but reduces to about 0.21 for a cluster

size of 10 (which is the value used in our previous experiments), compared to a value of 0.55

for the random algorithm. While a K-S stat value of 0.21 may seem a bit high, this result still

shows that the loss of information is relatively low considering that 420 distributions have been

reduced to 10 distributions. The results from previous sections have shown that this information

loss has only a small impact on the accuracy of resource discovery and capacity estimation.

We also see from the figure that hierarchical aggregation results in a small loss of information,

and that using bundle cardinalities as weights provides more accurate results compared to the

unweighted algorithm. Also, the value of K-S statistic decreases with increasing number of

clusters. This is as expected, because as the number of clusters increases, each cluster has fewer

constituent nodes, resulting in more accurate aggregations.

E. Effect of Clustering Parameters

0%

5%

10%

15%

20%

25%

 10 20 30 40 50 60

G
ro

up
-le

ve
l C

ap
ac

ity
 A

cc
ur

ac
y

D
iff

er
en

ce
 in

 P
er

ce
nt

 (
lo

w
er

 is
 b

et
te

r)

Number of clusters used in Cluster Algorithm

History
Cluster

Fig. 11. Fewer clusters are better for capacity estimation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y
S

ta
tis

tic
s

Clusters

HierClus Precision
Cluster Precision

HierClus Recall
Cluster Recall

Fig. 12. 10 clusters is appropriate. (MeanCPU,p = 95%)

We next examine the impact of the number of clusters used by the clustering algorithm to

generate the desired set of resource bundles. Figure 11 shows the accuracy of capacity estimation.

The figure shows that the accuracy decreases as we increase the number of clusters. This result

seems counter-intuitive as one might expect the accuracy toconverge to that of History when

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 25

the number of clusters approaches the number of nodes, as wasobserved for information loss

in Figure 10. However, this inaccuracy occurs because the EMclustering algorithm uses a

probabilistic model to generate bundle representatives. As a result, the representative distributions

are not identical to the individual node distributions in the limit, and there is always a small

amount of difference in the resulting distribution7. With a high number of clusters, this difference

gets amplified due to the additive nature of capacity estimation.

Intuitively, since the resulting representation of a single resource bundle from the multinomial

EM algorithm is actually a prediction model, each resource bundle has a certain amount of

error, or noise. Using more bundles is akin to adding more noise into the sum for group capacity

measurements, leading to more inaccuracies with higher numbers of bundles used.

Together, the results from Figures 10 and 11 show that while having too few clusters might

result in inaccurate bundle-level aggregation, having toomany clusters can adversely impact

group-level estimates. This implies that some intermediate values might be desirable to achieve

a good balance between the two requirements. This result is also evident from Figure 12 that

shows diminishing returns in the accuracy of resource discovery over the number of clusters (nc)

beyond the knee of the curve (atnc = 10). In general, this value is dependent on the dynamism

and heterogeneity of the system.

F. Adaptive Algorithm for Parameter Selection

We applied our adaptive algorithm described in Section III-F to the PlanetLab trace. First,

we applied ourβ objective function to the overall month-long trace to observe its derivation of

the ideal number of clusters (nc) in the system from the peak in the curve. Second, we applied

β to a live rendition of the PlanetLab trace, and also subjected it to a systematic fluctuation in

heterogeneity in order to observe its ability to detect thischange.

Figure 13 plotsβ against precision and recall from figure 12. This algorithm therefore ap-

proaches the appropriate value for the “knee” of the curve that provides the best benefit to the

system in terms of resource discovery accuracy and overhead.

Figure 14 shows our functionβ working adaptively in the Feb 2007 PlanetLab trace. After

each day, the adaptive algorithm considerednc,NEW : nc ± 5 based on query results evaluated

7Note that this difference is expected as the probabilistic model is using the observed distribution merely as a set of samples

that are being fitted to a general distribution from which these samples are drawn.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 26

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y
S

ta
tis

tic
s

Clusters

HierClus Precision
HierClus Recall

HierClus β

Fig. 13. Heuristic functionβ used to determine the number

of clusters parameternc. β is a function of theF1Score

(from Precisionp and Recallr, as shown), andδ, the threshold

minimum desired increase inF1Score per unit increase innc.

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25

N
um

be
r

of
 C

lu
st

er
s

P
ar

am
et

er

Day in Feb 2007

HierClus β
HierClus Ideal

Fig. 14. Determiningnc using adaptive functionβ. The

nc parameter is incorrectly initialized at 25 clusters, quickly

converging near the ideal. Att = 14, some heterogeneity is

removed from the system to bring the idealnc down to 7. The

adaptive algorithm converges to the new ideal value.

from the previous day. A new value fornc was chosen at the end of each day. We initialized

nc = 25, more than double the ideal value of 10 (from Figure 13). However, as seen from

the figure, our algorithm was able to converge to the ideal value of 10. We also injected a

fluctuation in the amount of heterogeneity in the system att = 14 by removing 3 of the 10

observed bundles of nodes in the system and replacing them with a distribution from another

existing node, effectively reducing the heterogeneity in the system but keeping the number of

nodes constant. This fluctuation reduces the ideal value ofnc to 7, and once again, our algorithm

is able to find this optimal value.

The results show that our adaptive algorithm (β) successfully converges to the ideal value for

nc. Please note that the observed fluctuations around the idealnc are due to daily fluctuations that

do not appear in Figure 13 (since Figure 13 is derived from all28 days of the trace combined).

G. Trace-Driven Aggregation Simulation

We now present results from a trace-driven simulation of a hierarchical aggregation algorithm.

The purpose of these simulations was to quantify the overhead and query latency of our resource

discovery algorithms in a large-scale system with a realistic topology. We have based our

simulator on PeerSim [19], a widely used simulator for distributed protocol evaluation. We

have used our month-long PlanetLab trace to drive these simulations. A hierarchical overlay

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 27

was implemented usingWireInetTopologyin PeerSim. The depth of the hierarchy varied from

5 to 7 levels. We generated 10 random topologies for each network size and took an average

over them. Single nodes may now be bundled together with multi-level bundles, so we define a

bundleas representing 1 or more nodes.

At each simulator cycle, each node propagates its bundle list upwards to its parent. Each node

upon receiving its messages, updates its data store and if the number of bundles it stores exceeds

a maximum bundle thresholdBt, the aggregation algorithm is executed at that node, consoli-

dating its current list of bundles intoBa aggregate bundles. We ran our resource bundle-based

aggregation algorithm over the simulated topologies. We compared it to a baselinePropagateAll

algorithm, which uses a thresholdBt = ∞, so that no aggregation takes place and all node-

level capacity distributions are propagated all the way to the root. Another baseline algorithm we

used wasPropagateNone, where no resource discovery information is propagated between nodes

beforehand; resource discovery must be performed through the probing of each node individually

for its capacity distribution. All three algorithms use bundle histograms for resource discovery.

1) Data Transfer Overhead:We measured the data transfer that occurred during a complete

system-wide propagation to the root node in the hierarchy. We generated 10 random topologies

for each network size. Data is measured in the number of bundles (directly proportional to

bandwidth) sent over the network. Figure 15 measures overhead by the size of the network. The

overhead of Aggregation (Bt = 70, Ba = 10) increases at a slower pace than PropagateAll, with

only about 48-61% messages required across the different network sizes.

2) Query Latency:We now analyze query latency from our trace of 11,529 PlanetLab node

distributions (427 nodes∗27 days as in Section IV-A.1). We chose not to fix an application-

desired number of acceptable nodes to be found; instead, we measured how many nodes were

found given a time-to-live value measured in hops. We used the requirement{CPU, 680MHz, 95,

24hrs} to determine the actual acceptable nodes. Our results are the average of queries injected

at 500 random points in the network. Queries are answered on the node on which the query

was injected and can be propagated further to other nodes. Bundles were chosen based on their

histograms and the number of acceptable nodes found were evaluated as in previous sections.

Figure 16 shows that Aggregation finds nearly as many nodes asPropagateAll (within 11%),

but with about half the data transfer overhead in the same hierarchical structure. PropagateNone,

which has no data overhead, performs much more poorly, returning only about 1-15% of nodes

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 28

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 10000 20000 30000 40000 50000

M
es

sa
ge

s
(R

ep
re

se
nt

at
iv

es
)

S
en

t O
ve

r
N

et
w

or
k

Network Size (Nodes)

Aggregation
PropagateAll

Fig. 15. Data transfer overhead.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 7

A
ct

ua
l A

cc
ep

ta
bl

e
N

od
es

 F
ou

nd

Time To Live (Hops)

PropagateNone
Aggregation

PropagateAll

Fig. 16. Nodes found by query latency.

up to 5 hops. It also has high query-time overhead; it must query each individual node.

Overall, these results show thatusing aggregation provides a good tradeoff between data

dissemination overhead and query-time overhead, with fairly high accuracy.

V. RELATED WORK

Statistical resource guarantees: Offline profiling [20] has been used for application placement

to meet statistical QoS levels. Our work targets online node-level as well as group-level capacity

observations for statistical resource discovery. Computational Markets [21] has focused on the

prediction of consumer-oriented resource costs in a market-based system to maintain QoS levels.

We focus more on resource discovery than socio-economic dynamics.

Resource discovery: Condor [11] employs centralized matchmaking; our focus is ondecentral-

ized discovery. SWORD [9] is a resource discovery service deployed on PlanetLab that uses

a DHT underlay to store load metrics. While SWORD provides scalability in querying, we

have also addressed scalability in data collection and propagation. Several recent approaches

have explored resource discovery in dynamic desktop Grid environments [8], [10], [22]. Most

of these approaches use peer-to-peer query forwarding, andfocus on finding single nodes for

individual application tasks. Our work instead emphasizeshierarchical propagation of node

resource usage information to enable the quick discovery oflarge groups of nodes. Also,

while existing resource discovery work focuses on finding suitable nodes meeting instantaneous

requirements, our approach is geared towards statistical requirements. Resource ‘bags’ [23] have

been used in static and inter-node contexts; dynamic intra-node metrics is our focus.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 29

Aggregation: Information Planes [14], Astrolabe [24], SDIMS [13] and SanFermin [25] provide

frameworks for scalable deployments of information systems and show hierarchical aggregation

to be a useful model for scalability. While these systems provide general aggregation frame-

works, they do not provide specific aggregation functions. Our focus is on solving the specific

aggregation problem for resource usage distributions.

Historical data and prediction: Prediction has been used in several contexts such as availability

prediction [26], Web workload prediction [27], and workload prediction for multi-tier Internet

applications [28]. Network Weather Service [29], [30] usestournament predictors to accurately

predict trends in resource usage levels. However, their predictions are limited to the next mea-

surement point, while our techniques are flexible in the temporal and statistical descriptions of

resource usage. Such prediction is complimentary to our useof resource usage profiles and we

can incorporate prediction for greater accuracy in providing statistical guarantees.

VI. CONCLUSION

In this paper, we addressed the problem of scalable resourcediscovery in large-scale systems.

The presence of node-level dynamism means that selecting nodes based only on recently observed

capacities can lead to poor deployments resulting in application failures or migrations. However,

existing resource discovery techniques rely only on recentobservations to achieve scalability.

We proposed the notion of a resource bundle that employs two complementary techniques to

overcome the limitations of existing techniques: resourceusage histograms to provide statistical

guarantees for resource capacities, and clustering-basedresource aggregation to achieve scal-

ability. We presented an adaptive algorithm that detects fluctuations in heterogeneity in order

to parameterize the clustering-based resource bundles algorithm. Using trace-driven simulations

and data analysis of a PlanetLab trace, we showed that resource bundles are able to provide high

accuracy for statistical resource discovery, while achieving high scalability. We also showed that

resource bundles are ideally suited for identifying group-level characteristics such as finding load

hot spots and estimating total group capacity.

REFERENCES

[1] D. Anderson, “BOINC: A System for Public-Resource Computing and Storage,” inGRID 2004.

[2] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, “Cluster Computing on the Fly: P2P Scheduling of Idle Cycles in the

Internet,” in Proceedings of the IEEE Fourth International Conference on Peer-to-Peer Systems, 2004.

August 17, 2009 DRAFT

TPDS JOURNAL SUBMISSION FOR REVIEW, JANUARY 2009 30

[3] I. Foster and C. Kesselman, Eds.,Grid2: Blueprint for a New Computing Infrastructure. M. Kauffman, CA, USA, 2004.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Making Gnutella-like P2P Systems Scalable,” in

Proceedings of ACM SIGCOMM, Aug. 2003.

[5] B. Cohen, “Incentives build robustness in BitTorrent,” inthe 1st Workshop on the Economics of P2P Systems, Jun. 2003.

[6] S. Guha, N. Daswani, and R. Jain, “An experimental study of the skype peer-to-peer voip system,” inIPTPS, 2006.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, “PlanetLab: an overlay testbed

for broad-coverage services,”ACM SIGCOMM Computer Communication Review, vol. 33, no. 3, pp. 3–12, Jul. 2003.

[8] A. Iamnitchi and I. Foster, “On Fully Decentralized Resource Discovery in Grid Environments,” inGRID 2001.

[9] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Distributed resource discovery on PlanetLab with SWORD,”

in WORLDS’04, Dec. 2004.

[10] J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman, “Using Content-Addressable Networks for Load

Balancing in Desktop Grids,” inHPDC’07, Jun. 2007.

[11] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed Resource Management for High Throughput

Computing,” inHPDC’98, Jul. 1998.

[12] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, and A.Vahdat, “Service Placement in a Shared Wide-Area

Platform,” in Usenix Annual Technical Conference, Jun. 2006.

[13] P. Yalagandula and M. Dahlin, “A Scalable Distributed Information Management System,” inSIGCOMM’04, 2004.

[14] B. Chun, J. M. Hellerstein, R. Huebsch, P. Maniatis, and T. Roscoe, “Design Considerations for Information Planes,” in

WORLDS’04, Dec. 2004.

[15] S. Zhong and J. Ghosh, “A comparative study of generative models for document clustering,” inSDM Workshop on

Clustering High Dimensional Data and Its Applications, 2003.

[16] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring systemfor planetlab,”SIGOPS OS Rev v.40 no.1, 2006.

[17] J. M. Schopf, “A practical methodology for defining histograms for predictions and scheduling,” inNU Tech Rep., 1999.

[18] S. Zhong, http://www.cse.fau.edu/∼zhong/software/index.htm.

[19] “PeerSim,” http://peersim.sourceforge.net.

[20] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource Overbooking and Application Profiling in Shared Hosting Platforms,”

in OSDI’02, December 2002.

[21] T. Sandholm and K. Lai, “A statistical approach to risk mitigation in computational markets,” inHPDC’07, 2007.

[22] A. Gupta, D. Agrawal, and A. E. Abbadi, “Distributed resource discovery in large scale computing systems,” inSAINT’05.

[23] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. A. Chien, “Efficient resource description and high quality

selection for virtual grids,” inCCGRID’05, pp. 598–606.

[24] R. V. Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and scalable technology for distributed system monitoring,

management, and data mining,”ACM Trans. Comput. Syst., vol. 21, no. 2, pp. 164–206, 2003.

[25] J. Cappos and J. H. Hartman, “San fermı́n: aggregating large data sets using a binomial swap forest,” inNSDI’08.

[26] J. Mickens and B. Noble, “Exploiting Availability Prediction in Distributed Systems,” inNSDI’06, May 2006.

[27] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak, “Statistical Service Assurances for Applications in Utility Grid Environments,”

HP Labs, Tech. Rep. HPL-2002-155, 2002.

[28] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic Provisioning of Multi-tier Internet Applications,” inICAC’05.

[29] R. Wolski, “Experiences with predicting resource performance on-line in comp. grid settings,” inSIGMETRICS’03.

[30] “Network Weather Service,” http://nws.cs.ucsb.edu/ewiki/.

August 17, 2009 DRAFT

