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Abstract

Resource discovery is an important process for finding
suitable nodes that satisfy application requirements in large
loosely-coupled distributed systems. Besides inter-node
heterogeneity, many of these systems also show a high de-
gree of intra-node dynamism, so that selecting nodes based
only on their recently observed resource capacities for scal-
ability reasons can lead to poor deployment decisions re-
sulting in application failures or migration overheads. In
this paper, we propose the notion of aresource bundle—
a representative resource usage distribution for a group
of nodes with similar resource usage patterns—that em-
ploys two complementary techniques to overcome the limi-
tations of existing techniques:resource usage histogramsto
provide statistical guarantees for resource capacities, and
clustering-based resource aggregationto achieve scalabil-
ity. Using trace-driven simulations and data analysis of a
month-long PlanetLab trace, we show that resource bundles
are able to provide high accuracy for statistical resource
discovery (up to 56% better precision than using only re-
cent values), while achieving high scalability (up to 55%
fewer messages than a non-aggregation algorithm). We also
show that resource bundles are ideally suited for identifying
group-level characteristics such as finding load hot spots
and estimating total group capacity (within 8% of actual
values).

1. Introduction

Recent years have seen increasing use of loosely-coupled
distributed platforms for scientific computation [1, 10],
data sharing and dissemination [3, 6], and experimental
testbeds [4]. While such platforms are highly attractive
due to their low deployment cost and inherent scalability,
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they are also highly heterogeneous and dynamic [8]. The
nodes participating in such platforms differ widely in their
resource capabilities such as CPU speeds, bandwidth, and
memory capacity. As a result,resource discoveryis often
used in such large-scale systems to find suitable nodes that
satisfy application requirements.

Many existing resource discovery systems [13, 9, 8, 17]
rely on the recently observed resource capacities of individ-
ual nodes to make their deployment decisions. However, re-
source allocation decisions based on current status of nodes
have severe limitations in these systems, because of the
presence of intra-node dynamism in addition to the inter-
node heterogeneity. Individual nodes can have widely vary-
ing resource capabilities due to varying loads, network con-
nectivity, churn, or user behavior. For instance, a resource
usage study of PlanetLab [14] has shown that node resource
capabilities fluctuate on the order of about 30 minutes. Such
dynamism in node-level resource capacities makes it diffi-
cult to deploy long-running services and applications that
need consistent resource availability to ensure desired per-
formance and avoid disruptions or migration overheads.

To handle the inherent heterogeneity and dynamism in
such systems, the resource discovery process employed in
such systems must be able to providestatistical guarantees
on application resource requirements. While incorporating
long-term resource availability information is likely to im-
prove the resource discovery decisions substantially [14],
most existing resource discovery systems use only the re-
cent node usage information for scalability and simplicity
reasons. It helps in reducing the amount of monitoring data
that needs to be exchanged between nodes in the system,
and enables easy location of desirable nodes (e.g., by map-
ping resource requirements to node IDs in case of DHT-
based resource discovery systems [13, 9]). We argue in this
paper that for providing statistical resource guarantees in a
scalable manner, the resource usage information from nodes
can be approximated both in temporal (long-term usage pat-
tern) and spatial (number of nodes with similar usage pat-
terns) dimensions.



In this paper, we propose the notion of aresource
bundle—a representative resource usage distribution for a
group of nodes with similar resource usage patterns. A re-
source bundle employs two complementary techniques to
capture the long-term resource usage behavior of a set of
nodes: (i)resource usage histogramsto provide statistical
guarantees for resource capacities, and (ii)clustering-based
resource aggregationto achieve compact representation of
a set of similarly-behaving nodes for scalability.

Besides providing a scalable resource discovery mech-
anism to achieve stable application deployment, resource
bundles can also be used for several other purposes in a
large distributed system. Resource bundles can be used to
easily find agroup of nodessatisfying a common require-
ment. Resource bundles can also be used to find loadhot
spots: geographical regions in the distributed system with
several nodes experiencing overloads due to reasons such
as heavy demand for a popular resource in that region or
locality-based application stresses. The identification of
such hot spots can be used to inform decisions about appli-
cation deployment or load balancing. Finally, resource bun-
dles can also be used forauditing and accountingpurposes,
e.g., to determine the resource assignment of a distributed
application running on multiple nodes, or to determine the
spare capacity in an administrative domain.

We evaluate the performance of resource bundle-based
resource discovery using trace-driven simulations and data
analysis of a month-long PlanetLab trace. Our results show
that resource bundles are able to provide high accuracy for
resource discovery through the use of resource usage his-
tograms (up to 56% better precision than an algorithm based
on current usage values), while achieving high scalability
through aggregation (up to 55% fewer messages than a non-
aggregation algorithm). We also show that resource bundles
are ideally suited for identifying group-level characteristics
such as finding load hot spots and estimating total group
capacity (within 8% of actual values).

2. Statistical Node Behavior

2.1. System Model

We assume our system is a large-scale wide-area dis-
tributed system. Participant nodes are geographically dis-
tributed and could span multiple administrative domains.
We assume the nodes are interconnected by an interconnec-
tion overlay, using a DHT or a flooding-based approach,
which allows nodes to communicate with other nearby
nodes. Nodes monitor their own resource capacities over
time and can exchange messages as required. Further, we
assume a hierarchical structure can be constructed on top of
the overlay, e.g., using methods provided in SDIMS [24].

2.2. Statistical Resource Requirements

During the resource discovery process, applications typ-
ically seek nodes meeting certain resource requirements. In
the presense of intra-node dynamism, we must avoid appli-
cation performance degradation, failures, or need for fre-
quent migrations [14] resulting in large overhead. It would
be desirable to provide statistical resource guarantees so
that applications can be deployed on nodes that are likely to
satisfy the minimum desired requirement for a certain pe-
riod of time. We formalize this notion of statistical resource
requirement as follows:

Definition 1 Statistical Requirement: We define a statis-
tical requirement r as a tuple{R, c, p, t}, where, R is a
resource type, c refers to a capacity level, p is a percentile
value, and t is a time duration.

Intuitively, an application can specify that it needs a re-
source R to meet a minimum capacity levelc for at least
p percent of time (corresponding to its tolerance to over-
load) over a time durationt (which could depend on its
length of execution and overheads of disruption and migra-
tion, etc.). The goal is to avoid serious service disruptions
or reallocation penalties (e.g. overloads, migration over-
heads) over timet. Thus, using this definition of statistical
requirements, a compute-intensive application can specify
a requirement{CPU, 1GHz, 95, 24hrs}, which means it re-
quires a 95 percentile CPU capacity of 1 GHz over 24 hours.

2.3. Resource Usage Representation

Since different applications can specify different values
of c, p, and t, our resource usage representation must be
flexible towards a wide variety of application requirements.
We may need to capture the resource usage behavior over
different time durations (such as an hour, day, week, etc.) to
incorporate requirements over different time granularities.

To provide a general way to handle different resource
requirement specifications, we propose the use of resource
usage histograms with an associated observation time pe-
riod T , which represent the resource capacity distributions
from observations over the pastT time units. A statisti-
cal requirement can be mapped to a resource capacity his-
togram (withp% of the capacity observations to the right
of a vertical line corresponding to capacityc). A separate
histogram can be maintained for each resource type (e.g.,
CPU, memory) and for each time granularity (e.g., hour,
day, week); intermediate time granularities can be inter-
polated from these histograms. Nodes can construct his-
tograms from their own historical observations.

Using histograms to represent resource usage data has
two primary advantages: (i) requirement percentiles (corre-
sponding top) for a particular resource capacity are now



straightforward computations from the given histograms,
and (ii) histograms help us preserve all usage data, so that
even if different applications specify different resourceca-
pacity requirements with different tolerances, these can be
easily captured using the same histogram representation.

This representation technique is complementary to any
prediction techniques that may be able to predict future
resource usage behavior based on historical observations.
Predictions could easily be converted into histograms.

3. Resource Bundles

While using resource usage histograms provides a means
to capture an accurate representation of an individual node’s
dynamic resource usage pattern and enables the satisfaction
of statistical resource requirements, it can potentially create
a scalability problem in a large wide-area distributed sys-
tem. The statistical information for each node would be
represented by multiple histograms, corresponding to dif-
ferent resources and different time scales. Disseminating
this amount of data over the network can create significant
network traffic, making it infeasible for each node to have
a global view of the system. Moreover, if the goal is to
find multiplenodes meeting a certain requirement, it would
be desirable to combine this discovery process rather than
having to find individual suitable nodes separately.

This raises the following questions. Can we use these
representations in a scalable manner to make better resource
discovery decisions in a large system? Secondly, can we use
these node behaviors to provide any collective information
about group-level usage patterns, e.g. for nodes within an
administrative domain or assigned to an application?

3.1. Resource Aggregation

Aggregation [24], particularly hierarchical aggrega-
tion [5], is a common technique employed in large dis-
tributed systems for the scalable dissemination of informa-
tion. Aggregation essentially compresses the amount of
transmitted data in the system while preserving the overall
information content. In the context of resource discovery,
this would correspond to a suitable “compression” of the
node resource usage patterns to achieve a desirable tradeoff
between the quality of resource discovery and the overhead
of network data transmission in the system.

Our goal is to achieve the same quality of resource
discovery as a global resource discovery system with full
historical node-behavioral knowledge, but to significantly
compress the amount of necessary node-behavioral repre-
sentation data in the system in order to achieve scalability.
Such an aggregation of node resource usage distributions
for a group of nodes can be used to represent: (i) an accu-
rate approximation of any individual node’s resource usage

for the accurate discovery of desirable nodes based on a re-
source requirement, (ii) collective resource usage behavior
of a group of nodes to provide information about load pat-
terns or resource usage behavior for a set of related nodes
(e.g. geographically or by assignment), and (iii) overall
group capacity for resource usage tracking (e.g. for audit
or accounting purposes).

A naive approach to aggregation for a set of nodes would
be to compute the average resource capacity distribution
across all nodes. An example would be the averaging of
left-skewed and right-skewed nodes, producing a bimodal
representative. While averaging allows the estimation of
overall capacity of the group of nodes, it is a poor represen-
tation of individual node-level behavior. This is because it
does not account for the heterogeneity of the nodes in the
system. Thus, this approach could result in a highly inaccu-
rate view of individual node resource capacities.

3.2. Defining Resource Bundles

To account for the heterogeneity of nodes, we define the
notion of aresource bundle:an aggregation of a group of
nodes withsimilar resource capacity distributions. By com-
bining only similar nodes together, such an aggregation pro-
cess will preserve the individual node distributions more ac-
curately. Figure 1 shows a high-level view of the notion of
resource bundles and how they might be constructed. First,
a group of nodes are bundled based on the similarity of
their resource capacity histograms. Second, each bundle
produces a representative distribution that can be used to
characterize the whole bundle. The question is how can we
identify such groups of similar nodes to construct a resource
bundle, and compute its representative accurately?

3.2.1 Aggregation via Clustering

To identify nodes with similar distributions, we propose
the use ofclusteringalgorithms that have traditionally been
used in data mining applications to group together statis-
tically similar data elements. However, a clustering algo-
rithm must meet several requirements in our context:

• The data to be clustered (i.e., the resource histograms)
is not single-point, but multi-element (consisting of
multiple histogram bins). The clustering algorithm
must be able tohandle such multi-element data.

• The clustering algorithm must bedistribution-free.
The node resource usage histograms could represent
arbitrary distributions, and cannot be assumed to con-
form to standard distributions (e.g. Gaussian).

• It is desirable if it can produce acompact representa-
tion of the collective resource usageof these nodes in
order to characterize the bundle (e.g. low-capacity).
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Figure 1. Constructing Resource Bundles.

A clustering algorithm that meets the above require-
ments is themultinomial model-based expectation maxi-
mization (EM)clustering algorithm [26]. This clustering al-
gorithm has been used primarily for the purposes of cluster-
ing text documents with common words. We first describe
this algorithm in a document clustering context for ease of
exposition, and then describe how it maps to our context.

In a document clustering context, each document is con-
sidered as a “bag of words”, and is represented as a vec-
tor of word frequencies. Then, the set of all documents
is represented as a mixture of multinomial distributions on
these word frequencies, with each document belonging to
one such distribution. The probability that a document be-
longs to one of the clusters corresponding to a multinomial
distribution is given by [26]:P (di|λj) =

∏
l Pj(wl)

nil ,

whereλj is the set of parameters for modelj, nil is the
frequency of occurrences of wordwl in documentdi, and
Pj(wl) is the probability of wordwl occurring in clusterj.
Further,

∑
l Pj(wl) = 1 holds.

Mapping the document clustering scenario to our con-
text, we can think of nodes corresponding to documents
and histogram bin magnitudes for node-level resource us-
age distributions corresponding to document word frequen-
cies. The clustering algorithm then maps nodes to clusters
based on the similarity of their resource usage histograms.
In other words, this algorithm will group those nodes to-
gether that have similar histogram bin-magnitudes, meaning
it can cluster nodes having arbitrary (but similar) distribu-
tions. Such a cluster of closely related nodes returned by
the clustering algorithm is considered a resource bundle.

In practice, the multinomial model-based EM clustering
takes a set of vectors as its input and forms clusters based
on the similarity of corresponding vector elements. It is a
hill-climbing algorithm that adjusts its mapping of vectors
to clusters iteratively in order to maximize the expected ob-
jective value achieved from its clustering.

This clustering algorithm meets the above requirements.
It is able to handle multi-point (vector) data, it operates on
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Figure 2. Hierarchical aggregation

arbitrary distributions, and characterizes the common statis-
tical properties of clustered nodes in a compact manner.

3.2.2 Bundle Representatives

As described above, the multinomial model-based EM al-
gorithm associates each resource bundle with a multino-
mial distribution that captures the statistical properties of
the nodes that are members of the bundle. This multinomial
distribution can be thought of as thebundle representative:
an aggregate distribution that is a compact representationof
the individual node distributions in the bundle.

Bundle representatives are the resulting distributions that
represent the mean node capacity distribution within each
respective bundle. In the multinomial model clustering al-
gorithm, cluster representatives are the result of probabilis-
tic models; however the difference between these models
and the mean node capacity distribution is negligible.

In Section 4, we will quantify the closeness of the rep-
resentative to its members by its effectiveness in resource
discovery, hot spot detection and capacity estimation.

3.3. Hierarchical Aggregation

While aggregation, as described above, enables the cre-
ation of resource bundles that closely approximate individ-
ual node behavior for a similar set of nodes, the question
is whether bundles can be further aggregated to provide a
meaningful view of the combined set of nodes correspond-
ing to multiple bundles. The ability to combine resource
bundles is particularly desirable in a large system where we
may want to get concise estimates of resource capacities of
nodes at different granularities; for instance, at a local site
level, at an administrative domain level or at a global level.

Building on the assumed ability of the system-employed
overlay to support a hierarchical information structure, we
propose the use ofhierarchical aggregationin combination
with resource bundles through the use of recursive cluster-
ing, i.e., successive clustering of bundle representatives at
different levels of the hierarchy. Figure 2 is a high-level il-
lustration of this process. Groups at the bottom level are



individual sets of node distributions. These nodes are ini-
tially clustered, producing bundle representatives whichare
then propagated to the next level of the hierarchy to create
level-2 representatives, thus beginning the recursive repre-
sentative clustering process.

Note that this recursive aggregation must consider indi-
vidual bundle cardinalities; this prevents undue influence
from low-cardinality bundle representatives during the re-
cursive bundling process. To remedy this issue, we use bun-
dle cardinalities asrepresentative weightsin the process of
hierarchical clustering. Formally, for a bundle histogram
Hi having cardinalitywi, we present it to the clustering al-
gorithm asWi = Hiwi.

If the underlying topology of the distributed system
causes nodes to be grouped by locality, our hierarchical
approach will be suitable for finding localized sets of re-
sources for application deployment. Further, bundle repre-
sentatives can be used to predict group-level capacity lev-
els. Our ability to predict group-level capacities resultsin
another high-level ability to detect hot spots within large
distributed systems.

4. Evaluation

4.1. Data Analysis Methodology

We used a PlanetLab trace of 427 nodes obtained by
CoMon [15] from February 2007 for our experiments. We
usedfree CPU capacity(from CPU Burp) as the resource
of interest. We used a time period of 24 hours, comput-
ing node histograms on a 24-hour period, one per day. Each
histogram consisted of 100 bins, each representing 34 MHz.

We used MatLab as our main tool for data analysis in-
corporating an already implemented Matlab package for the
multinomial model EM clustering algorithm [25]. We em-
ulated single-level (flat) clusterings, as well as hierarchical
clusterings of multiple levels. Due to space constraints, we
present only a subset of our results and more details can be
found in a technical report [2].

4.1.1 Emulating Resource Discovery

To evaluate the accuracy of a resource bundle-based re-
source discovery process in finding desirable nodes, we em-
ulate a resource discovery process as follows. The resource
discovery algorithm is run on anobservation time window
to determine thechoiceof acceptable nodes that meet the
desired resource requirement. We then compare this choice
to the actual set of nodes that satisfied the desired require-
ment over asolution time window: the time frame during
which nodes would have been allocated to the application.

For the purposes of our experiments, we defined the sta-
tistical requirementr={CPU, c, p, 24hrs}, varying c and p.

The goal was tofind all nodes(of 427) meetingr. Notice
we did not specify how many nodes an application needs
for its deployment. Instead, we had the algorithms search
for the complete set of acceptable nodes.

We used the entire trace by intially using Feb 1 as the
observation window and Feb 2 as the solution window. The
windows were then shifted by one day, thus giving us 27
samples of trace data to evaluate our algorithms.

4.1.2 Comparison Algorithms

We compared the following resource discovery algorithms:
• Memoryless: This algorithm uses the last CPU capacity
data point for each node to estimate its expected capacity
over the next day. This algorithm emulates resource discov-
ery algorithms that use recent resource usage information
to determine the suitability of a node to meet a minimum
requirement, and does not incorporate statistical resource
usage patterns into its decisions.
• History: This is a centralized algorithm with global histor-
ical knowledge of the entire system. It maintains complete
24-hour CPU capacity histograms for each node. This pro-
vides a baseline to determine the effect of data loss due to
aggregation on the accuracy of resource discovery.
• Aggregation (Cluster): This algorithm uses resource bun-
dles to aggregate the resource usage histograms of groups
of nodes into resource bundles. Nodes are bundled intok

bundles based on histogram similarity. For each bundle, if
its representative meets the desired statistical requirement
r, all of its members are selected as acceptable nodes.
• Hierarchical Aggregation (HierClus): This algorithm
uses recursive bundling over a 2-level hierarchy consisting
of 420 PlanetLab nodes divided into 6 random groups of
size 70. The hierarchical aggregation algorithm first reduces
each group of nodes tok first-level resource bundles. All
the first-level resource bundles from across all groups are
then further aggregated intok second-level resource bun-
dles. For resource discovery purposes, the algorithm exam-
ines these second-level bundle representatives and if a bun-
dle representativeHi meets requirementr, then all nodes
represented byHi (recursively) are selected as acceptable.

4.1.3 Evaluation Metrics

The accuracy of resource discovery was measured using
two metrics: Precision = nacc

ntot

and Recall = nacc

Nacc

,

where,nacc = acceptable nodes chosen,ntot = total nodes
chosen,Nacc = total acceptable nodes in the system. In-
tuitively, high precision means that a high fraction of the
nodes returned by a resource discovery algorithm are ac-
tually acceptable, thus reducing the chances of poor allo-
cation decisions. On the other hand, recall measures what
percentage of the total acceptable nodes in the system are
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Figure 3. Aggregation compared against baseline resource discovery algorithms (95th percentile).

discovered by the algorithm, indicating how well it can lo-
cate acceptable nodes in the system.

4.2. Accuracy in Resource Discovery

Figure 3 compares the precision and recall of the algo-
rithms using 10 clusters1. Themean requirementis the aver-
age over all possible requirements (for 100 histogram bins).

As seen from Figure 3(a), both Cluster and History have
significantly better precision (87-97%) than Memoryless
(37-77%). This results from their use of historical infor-
mation to make statistically accurate decisions.

This same behavior also explains the recall values in Fig-
ure 3(b), which shows Memoryless had the highest recall,
while History came in second, and Cluster consistently had
the worst recall among the three. Memoryless turns out to
be an unusually optimistic predictor, finding nearly all of
the acceptable nodes but also many other unacceptable (but
temporarily well-performing) nodes, leading to poor preci-
sion and excellent recall.2 Cluster suffers in recall because
it is conservative similar to History. However it misses ad-
ditional acceptable nodes due to its loss of information from
aggregation; it might combine acceptable nodes along with
unacceptable nodes into the same bundle. Thus it achieves
higher precision than History but experiences worse recall.

However, when we look at the absolute number of nodes
discovered by each algorithm in Figure 3(c), we find that
the actual number of nodes missed by Cluster is typically
between 10-20, even in the worst recall case (MeanCPU -
13 nodes missed), while the number of additional (unac-
ceptable) nodes returned by Memoryless can be in the order
of 50-85 nodes. This indicates that the impact of missing

1We investigate the impact of number of clusters on aggregationaccu-
racy in the technical report [2].

2Memoryless finds, on average,p = 95% of the acceptable nodes in
the system along with every other node that had a resource capacityct ≥ c

at the moment of observationt.

acceptable nodes by Cluster is comparatively smaller than
that of finding additional poor nodes by Memoryless.

To consider the relative impact of high precision vs. low
recall and vice versa, we note that thegoodness of choice
of nodes from the application’s perspective is primarily af-
fected by precision. Once the allocation decision has been
made, precision ultimately reflects the confidence of the ap-
plication in the selected nodes meeting the given require-
ment. On the other hand, recall’s effects are dependent on
the system context. In a system where very few nodes meet
the given requirement, a high recall may be desired so that
most of the acceptable nodes could be found. However, in
a large system with several acceptable nodes, recall would
primarily affect query latency: low recall implies that ac-
ceptable nodes will be missed, therefore taking the query
longer to find the desired number of acceptable nodes.

Figure 3 also compares HierClus with Cluster for pre-
cision and recall statistics. Precision does not suffer from
the recursive aggregation in HierClus, while the recall is
slightly lower (about 6% for MeanCPU). This shows that
the loss of accuracy in hierarchical clustering is small com-
pared to a single-level clustering.

In summary, our precision and recall evaluations show
that resource discovery usingour resource bundle approach
is able to find a choice of nodes similar in quality to those
discovered by a fully-informed history-based algorithm, al-
though its set of chosen nodes is smaller, thereby missing a
few potentially acceptable nodes.

4.3. Identifying Group Characteristics

One potential advantage of using resource bundles is to
concisely capture group characteristics of sets of nodes such
as their overall load behavior and spare capacity. Such
group-level characteristics could inform decisions of load
balancing or capacity planning without having to rely on
fine-grained node-level statistics. Next, we perform an ex-
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Figure 4. Bundle representatives can be used to detect hot spots in the network.

periment to evaluate this potential of resource bundles for
geographically related nodes in PlanetLab.

To establish proximity-based groupings of nodes for
our experiment, we hand-selected 5 geographically dis-
tributed group leaders in our PlanetLab trace. These leaders
were respectively from UMASS Amherst, UFL, UT Austin,
UWash, and UMN, representing different US regions. Pair-
wise pings between these leaders and the remaining Plan-
etLab nodes were taken, forming a total of 300 responsive
PlanetLab nodes. We formed 5 groups of 60 nodes each
based on their proximity from the selected group leaders.

4.3.1 Load Hot Spot Detection

Figure 4(a) shows a visual display of the resource usage his-
tograms of 60 nodes from one of the geographical groups.
The figure is a gray-scale image where the x-axis corre-
sponds to CPU capacity, the y-axis corresponds to node
identifiers (sorted based on the bundle identifier assigned
by our clustering algorithm), and the brightness of a point
corresponds to the magnitude of the histogram bin. Thus,
a node with brighter values towards smaller CPU capac-
ity values (e.g., node 10) has a smaller spare CPU capac-
ity available. Figure 4(b) shows the corresponding bun-
dle representatives we obtain by our clustering algorithm;
low capacity nodes are clearly separated from high capacity
nodes. Using such group-level views can allow administra-
tors to identify potential load hot spots by using appropriate
thresholds.

4.3.2 Capacity Estimation

We now investigate the capacity estimation abilities of our
aggregation algorithm. To what level of accuracy can the
aggregation-based algorithm estimate the resource capacity
of a group of nodes for the next day based on observations
of a 24-hour period? We compare the results to those of
a history-based capacity estimation algorithm that has fine-

grained knowledge of individual node resource usage. For
the aggregation-based algorithm, group capacities are es-
timated by taking a weighted sum of the mean capacities
of the bundle representatives; for the history-based estima-
tion algorithm, the mean capacities of individual nodes are
added.

We found the aggregation-based algorithm (using 10
clusters) is able to estimate group-level capacity within 8%
accuracy overall and within 3% accuracy of a history-based
estimation algorithm [2]. We also considered an average of
our group-level predictions for all clusterings that used be-
tween 5 and 20 clusters. We found that the impact of the
cluster size is minimal (< 1% accuracy).

4.4. Trace-Driven Aggregation Simulation

We now present results from a trace-driven simulation of
a hierarchical aggregation algorithm. The purpose of these
simulations was to quantify the overhead and query latency
of our resource discovery algorithms in a large-scale sys-
tem with a realistic topology. We have based our simulator
on PeerSim [16], a widely used simulator for distributed
protocol evaluation. We have used our month-long Planet-
Lab trace to drive these simulations. A hierarchical overlay
was implemented usingWireInetTopologyin PeerSim. The
depth of the hierarchy varied from 5 to 7 levels. We gener-
ated 10 random topologies for each network size and took
an average over them. Single nodes may now be bundled
together with multi-level bundles, so we define abundleas
representing 1 or more nodes.

At each simulator cycle, each node propagates its bun-
dle list upwards to its parent. Each node upon receiving its
messages, updates its data store and if the number of bun-
dles it stores exceeds amaximum bundle thresholdBt, the
aggregation algorithm is executed at that node, consolidat-
ing its current list of bundles intoBa aggregate bundles.
We ran our resource bundle-based aggregation algorithm
over the simulated topologies. We compared it to a baseline
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PropagateAll algorithm, which uses a thresholdBt = ∞,
so that no aggregation takes place and all node-level ca-
pacity distributions are propagated all the way to the root.
Another baseline algorithm we used wasPropagateNone,
where no resource discovery information is propagated be-
tween nodes beforehand; resource discovery must be per-
formed through the probing of each node individually for
its capacity distribution. All three algorithms use bundle
histograms for resource discovery purposes.
Data Transfer Overhead.We investigated the overhead of
Aggregation and PropagateAll by measuring the data trans-
fer necessary for a complete system-wide propagation to the
root node in the hierarchy. We used the average of 10 ran-
domly generated topologies for each network size. Data
transfer is measured in the number of bundles sent over the
network. For Aggregation, we usedBt = 70, Ba = 10.
Figure 5 measures overhead by the size of the network. The
overhead of Aggregation increases at a slower pace than
PropagateAll, with only about 48-61% messages required
across the different network sizes.
Query Latency. We now analyze query latency from our
trace of 11,529 PlanetLab node distributions (427 nodes×
27 days). We chose not to fix an application-desired num-
ber of acceptable nodes to be found; instead, we measured
how many nodes were found given a time-to-live value mea-
sured in hops. We choser = {CPU, 680MHz, 95, 24hrs}
to determine acceptable nodes. Our results are the average
of queries injected at 500 random points in the network.

Figure 6 shows that Aggregation finds nearly as many
nodes as PropagateAll (within 11%), but with about half
the data transfer overhead in the same hierarchical struc-
ture. PropagateNone, which has no data overhead, performs
much more poorly, returning only about 1-15% of nodes up
to 5 hops. It also has significant query-time overhead, as it
must query each individual acceptable node it finds.

Our results show thatusing aggregation provides a good
tradeoff between data dissemination overhead and query-
time overhead, with fairly high accuracy.

5. Related Work

Statistical resource guarantees: Previous work on re-
source overbooking [22] has used offline application pro-
filing for determining application placement at the single-
node level to meet statistical QoS levels. Our work tar-
gets online node-level as well as group-level capacity ob-
servations for statistical resource discovery. Recent work
in Computational Markets [20] has used predictions of con-
sumer market resource costs to maintain QoS levels.
Resource discovery:Condor matchmaking [17] relies on
a centralized matchmaker for matching resources to appli-
cations. Our focus is on decentralized resource discovery.
SWORD [13] is a scalable resource discovery service de-
ployed on PlanetLab that uses a DHT underlay to store node
statistics. While the focus of SWORD is on providing scala-
bility in terms of querying, we have also addressed the issue
of scalability in data collection and propagation. Several
recent approaches have explored resource discovery in dy-
namic desktop Grid environments [8, 9, 7]. Most of these
approaches use peer-to-peer query forwarding, and focus on
finding single nodes for individual application tasks. Our
work instead emphasizes hierarchical propagation of node
resource usage information to enable the quick discovery
of large groups of nodes for collective deployment. Also,
while most existing resource discovery mechanisms focus
on finding suitable nodes meeting short-term requirements,
our approach is geared towards meeting long-term statisti-
cal requirements.
Aggregation: Recent work on Information Planes [5] and
Astrolabe [18] provide frameworks for scalable deploy-
ments of information systems. They have shown hierarchi-
cal aggregation to be a useful model for scalability, but in a
more general context. Similarly, SDIMS [24] mentions ag-
gregation as a key model for scalability, and specifies lan-
guage constructs to support aggregation. While these sys-
tems provide a general aggregation framework without pro-
viding specific aggregation functions, our focus is on solv-
ing the specific aggregation problem for resource usage dis-
tributions, and a key contribution of our work is to show the
use of clustering-based resource bundles for this purpose.
Historical data and prediction: Prediction has been used



in several contexts such as availability prediction [11],
Web workload prediction [19], and workload prediction for
multi-tier Internet applications [21]. Network Weather Ser-
vice [23, 12] uses tournament predictors to accurately pre-
dict trends in resource usage levels. However, their predic-
tions are limited to the next measurement point, while our
techniques are flexibile in the temporal and statistical de-
scriptions of resource usage. Prediction is complimentary
to resource usage profiles; we can incorporate prediction
for greater accuracy in providing statistical guarantees.

6. Conclusion

In this paper, we addressed the problem of scalable re-
source discovery in large loosely-coupled distributed sys-
tems. A key problem in these systems is that the resource
capacities of individual nodes can vary drastically over
time. This dynamism means that selecting nodes based only
on their recently observed resource capacities can lead to
poor deployment decisions resulting in application failures
or migration overheads. However, most existing resource
discovery mechanisms rely only on recent observations to
achieve scalability in large systems.

We proposed the notion of a resource bundle—a repre-
sentative resource usage distribution for a group of nodes
with similar resource usage patterns—that employs two
complementary techniques to overcome the limitations of
existing techniques: resource usage histograms to provide
statistical guarantees for resource capacities, and clustering-
based resource aggregation to achieve scalability. Using
trace-driven simulations and data analysis of a month-long
PlanetLab trace, we showed that resource bundles are able
to provide high accuracy for statistical resource discovery,
while achieving high scalability. We also showed that re-
source bundles are ideally suited for identifying group-level
characteristics such as finding load hot spots and estimating
total group capacity.
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