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Exploring Large Data Sets

• Many large unstructured data sets must be analysed

• Text documents (news, laws, WWW documents).

• Gene expression profiles
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• Attributes for individual people, transactions, locations, ecosystems, . . ..

• Gene-gene or protein-protein interaction networks

• WWW connectivity graph

• Computer inter-connect in Internet
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• People-people affinities in Social Media

• Many example datasets can easily have up to O(109+) data points.

• Many datasets have much noise or many attributes.

• Many example datasets are sampled, subject to sampling bias.
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Tools to Explore

• Dimensionality Reduction

• Represent each data sample with a reduced set of attribute values

• Minimize loss of information

• Implicit assumption: data is subject to some level of noise.

• Graph Properties

• partitioning

• identify important nodes or links

• aggregrate properties

• Sparse Representation

• Hard to interpret individual components in traditional dimensionality reduction methods.

• Seek to represent each data sample as a combination of only a few components.

• Possibly also seek to represent each component as a combination of only a few original attributes.

• Maintain desire for small approximation error.
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Outline

• Dimensionality Reduction

• Principal Component Analysis – PCA

• Latent Semantic Indexing

• Clustering

• Graph Partitioning

• Principal Direction Divisive Partitioning

• Spectral Partitioning

• Sparse Representation – Examples

• almost shortest path routing.

• constrained clustering.

• image/vision,

• Graph Connection Discovery.

• Finding Sparse Representation
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Singular Value Decomposition – SVD
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Singular Value Decomposition – SVD

• Eliminate Noise

• Reduce Dimensionality

• Expose Major Components

• Suppose samples are columns of m× n matrix M.

• Try to find k pseudo-data columns such that all samples can be represented
by linear combinations of those k pseudo-data columns.

• Primary criterion: minimize the 2-norm of the discrepancy between the original
data and what you can represent using k pseudo-data columns.

• Answer: Singular Value Decomposition.

• Sometimes, for statistical reasons, want to remove uniform signal:

• M←M− µ1
T ,

where µ = M · 1.

• Then M
T
M is the Sample Covariance Matrix.

• Even without centering, M
T
M is a “Gram” matrix.
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Principal Component Analysis – PCA

• Suppose samples are columns of m× n matrix M.

◦ Optionally center columns of matrix M←M− µ1T .

◦ Form sample covariance matrix or Gram matrix: C = MT M,

where µ = 1
n
M1 = sample mean, 1T = [1, . . . , 1].

◦ Diagonalize C = VD2VT to get principal components V,

where D2 =diag(σ2
1 , σ2

2 , · · ·), σ1 ≥ σ2 ≥ · · · ≥ 0.

• Compute above via Singular Value Decomposition

M = UDVT

• Top k principal components =⇒ best rank k approximation:

U∗,1...k ·D1...k,1...k ·V
T
∗,1...k
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Text Documents – Data Representation
• Each document represented by n-vector d of word counts, scaled to unit

length.

• Vectors assembled into Term Frequency Matrix M = (d1 · · · dm ).

D1 INFA
NT & TODDLER first

aid

D2 BABIES & CHILDREN’s roo
m for

you
r HOME

D3 CHILD SAFETY at
HOME

D4 Your BABY’s HEALT
H and SAFETY - From

INFA
NT to

TODDLER

D5 BABY PROOFING basic
s

D6 Your GUIDE to
eas

y rust PROOFING

D7 Bean
ie BABIES col

lect
or’s

GUIDE

D8 SAFETY GUIDE for
CHILD PROOFING you

r HOME

BABY 0
√

3 0
√

5
√

2 0
√

2 0

CHILD 0
√

3
√

2 0 0 0 0
√

5

GUIDE 0 0 0 0 0
√

2
√

2
√

5

HEALTH 0 0 0
√

5 0 0 0 0

HOME 0
√

3
√

2 0 0 0 0
√

5

INFANT
√

2 0 0
√

5 0 0 0 0

PROOFING 0 0 0 0
√

2
√

2 0
√

5

SAFETY 0 0
√

2
√

5 0 0 0
√

5

TODDLER
√

2 0 0
√

5 0 0 0 0

sketch2.12.6.8.104 p9 of 39



Latent Semantic Indexing – LSI
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• Stay length-independent: compare using just angles.
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Latent Semantic Indexing – LSI

• Loadings of top two concepts on set of 98 documents with 5623 words. (Berry

et al., 1995; Boley, 1998)
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Five Concepts

PC 1 PC 2 PC 3
plus end minus end plus end minus end plus end
----------- ---------- ---------- ---------- -----------
manufactur manufactur pipe edi behavior
system employ seam employ chronolog
develop engin convert manufactur wherev
process servic processor busi ink
inform employe transmitt electron incomplet
applic mean waste standard height
technologi integr chip action slightli
integr action clock job pump
standard affirm chicago compani label
engin system scheme engin clerk
program job highli mean french
employ technologi phd affirm embassi
edi process robin capit mainli
design public reprogramm data thirti
servic law serc employe interv

• Words in concepts are somewhat informative.

• But high degree of overlap.
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Model Avian Influenza Virus

Number           Vaccine strain 

1  A/Aichi/1968 

2  A/Port Chalmers/1/1973 
3  A/Philippines/2/1982 

4  A/leningrad/360/1986 

5  A/Shanghai/11/1987 
6  A/Beijing/353/1989 

7  A/Shangdong/9/1993 
8  A/Johannesburg/33/1994 

9  A/Sydney/5/1997 

10  A/Moscow/10/1999 
11  A/Fujian/411/2002 

12  A/California/7/2004 
13  A/Wisconsin/67/2005 

14  A/Brisbane/10/2007 

15  A/Perth/16/2009 

from Lam&Boley 2011

• Evolution is a flow, naturally falls in chronological order.

• Without vaccine, picture is more a random cloud of points.

• Suggests vaccine use does affect evolution of virus.
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Model Avian Influenza Virus
(Lam et al., 2012)

• Avian Flu Virus characterized by the HA protein, which the virus uses to
penetrate the cell.

• The protein is described by a string of 566 symbols, each representing one of
20 Amino Acids.

• Embed in high dimensional Euclidean space by replacing each Amino Acid
with a string of 20 bits:

◦ E.g. 3rd amino acid = → 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• Result is a vector of length 566 · 20 = 11230.

• Use PCA to reduce dimensions from 11320 to 6.

• Use first 2 components to track evolution of this protein in a simple visual
way.
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Outline

• Dimensionality Reduction

• Principal Component Analysis – PCA

• Latent Semantic Indexing

• Clustering

• Graph Partitioning

• Principal Direction Divisive Partitioning

• Spectral Partitioning

• Sparse Representation – Examples

• almost shortest path routing.

• constrained clustering.

• image/vision,

• Graph Connection Discovery.

• Finding Sparse Representation
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Principal Direction Divisive Partitioning

(Boley, 1998)
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Divisive Partitioning for

Unsupervised Clustering

• Unsupervised, as opposed to Supervised:
• No predefined categories;

• No previously classified training data;

• No a-priori assumptions on the number of clusters.

• Top-down Hierarchical:
• Imposes a tree hierarchy on unstructured data;

• Tree is source for some taxomonic information for dataset;

• Tree is generated from the root down.

• Result is Principal Direction Divisive Partitioning. (Boley, 1998)

• Multiway Clustering.
• Project onto first k principal directions. Result: each data sample is represented by k components.

• Apply classical k-means clustering to projected data.

• Used for both Graph Partitioning and Data Clustering. (Dhillon, 2001)

• Empirically Best Approach: a hybrid method:
• Use Divisive Partitioning first (deterministic).

• Refine with K-means (avoids initialization issues). (Savaresi & Boley, 2004)
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PDDP on 98 Document Set

• Loadings of top two concepts on set of 98 documents with 5623 words.
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Top distinctive words in top 3 clusters

PC 1 PC 2 PC 3
minus end plus end minus end plus end minus end plus end
---------- ---------- ---------- ---------- ---------- ----------
employ manufactur busi employ edi manufactur
action engin capit mean electron engin
employe system fund job standard design
affirm integr credit servic busi project
servic process invest employe map tool
mean technologi corpor act commerc process
law develop investor action data integr
job project debt feder messag technologi
right tool source train paperfre research
public design compani osha network plan
feder industri offer individu secur product
act product stock public compani sme
copyright research click affirm interchang machin
osha machin tax labor translat educ
person data lease applic exchang univers
---------- ---------- ---------- ---------- ---------- ----------
labor manufacturing business labor communication manufacturing
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Spectral Graph Partitioning

• Model an undirected graph by a random walk.

• Measure distance between two nodes by average round-trip commute time
(average number of steps to go from node i to j and back again.)

• Vertices of an undirected connected graph can be embedded in high-dimensional
Euclidean space.

• Embedding preserves distances between the vertices.

• Principal Direction splitting on embedding is equivalent to two-way Spectral
Graph Partitioning.

• Much more popular in graph setting.

• Can be extended to directed graphs
(e.g., commute times still a metric). (Boley et al., 2011)
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Outline

• Dimensionality Reduction

• Principal Component Analysis – PCA

• Latent Semantic Indexing

• Clustering

• Graph Partitioning

• Principal Direction Divisive Partitioning

• Spectral Partitioning

• Sparse Representation – Examples

• almost shortest path routing.

• constrained clustering.

• image/vision,

• Graph Connection Discovery.

• Finding Sparse Representation
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Sparse Representation

• Many machine learning algorithms can explore massive data:
K-nearest Neighbors, Kernal-SVM, Boosting, Metric Learning, . . .

• All can benefit from denoising by finding a sparse representation:

raw datum dictionary atoms sparse representation

• Must find best fit, subject to sparsity limit.

• Optionally must learn the dictionary.

sketch2.12.6.8.104 p22 of 39



Almost Shortest Path Routing
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(Li et al., 2011)
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Constrained Clustering

• Graph Clustering with Must-link and Cannot-link constraints.

• Spectral Graph Cut: = xT Lx [where L = Laplacian].

• Previous approach: minimize xTLx + λxTLcx (Shi et al., 2010).

• Our approach: minimize cut with L1 penalty on constraint violations:
xTLx + λ‖Ccx‖1 [Kawale et al].
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Image Descriptors
Image Descriptor

• Pixel Descriptors: for i-th pixel zi = φ(xi, yi) is a vector of descriptors for the
pixel at point (xi, yi) in the image.

• Example, could use zi = (Ix, Iy, |gradI|, ∠gradI, Ixx, Ixy, Iyy) where I is the
intensity value. Could also incorporate color information.

Covariance Descriptor (Tuzel et al., 2006)

• Within each small patch around each pixel compute the covariance Ci of the
pixel descriptors.

• Covariance descriptors eliminate differences due to scaling, brightness, large
shadows, but enhance local features.

• Use for object detection, tracking, recognition, and more . . .

• Each Ci is a small positive semi-definite matrix (7× 7 in this example).

• Regularize each Ci by adding a small multiple of the identity.
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Covariance Descriptor Example

Raw Image first
derivatives

second
derivatives

pixel by pixel
descriptor

Image

x-grad

y-grad

grad-mag

grad-dir

Dxx

Dxy

Dyy

Covariance
descriptor
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Covariance Descriptor Usage

• Object Detection and Tracking in Image.

Object Detection Object

face license plate human Tracking

(Opelt
et al., 2004;
Sivalingam
et al., 2011)

(Porikli &
Kocak, 2006)

(Tuzel et al.,
2007)

(Palaio et al.,
2009)

Object Recognition

face action palmprint

(Pang et al.,
2008)

KTH dataset (Han et al., 2009)
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Optimization Setup for Covariances
Notation: (Sivalingam et al., 2010; Sivalingam et al., 2011)

• S = a raw covariance matrix,
x = vector of unknown coefficients.
A = (A1, A2, . . . , Ak) = collection of dictionary atoms.
x = (x1, x2, . . . , xk) = vector of unknown coefficients.

• Goal: Approximate S ≈ A1x1 + · · ·+ Akxk = A · x.

• Use “logdet” divergence as measure of discrepancy:
Dld(A · x, S) = tr((A · x)S−1)− log det((A · x)S−1)− n.

• Logdet divergence measures relative entropy between two different zero-mean
multivariate Gaussians.
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Optimization Problem for Covariances
(Sivalingam et al., 2010; Sivalingam et al., 2011)

• Leads to optimization problem

minx

∑

i

xitr(Ai)− log det

[
∑

i

xiAi

]

︸ ︷︷ ︸

Dist(A·x,S)

+ λ
∑

i

xi

︸ ︷︷ ︸

sparsity

s.t. x ≥ 0
∑

i xiAi � 0 (positive semi-definite)
∑

i xiAi � S (residual positive semi-def.)

• This is in a standard form for a MaxDet problem.

• The sparsity term is a relaxation of true desired penalty: # nonzeros in x.

• Convex problem solvable by e.g. the CVX package (Grant & Boyd, 2010).
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Graph Connections Discovery

• Signal at node i is gaussian & correlated to neighbors,
but conditionally independent of signal at unconnected
node j.

• Statistical Theory =⇒ (Covariance)−1
ij = 0.

(Covariance)−1 is called the Precision Matrix.

• If graph is sparse, expect (Covariance)−1 to be sparse.

• Problem: Graph connections are unknown.

• Task: Given signals at each node, recover graph edges.

• Applications: biology, climate modelling, social networks.

• Method:

• Compute sample precision matrix from signals.

• Find best sparse approximation to sample precision matrix.

• Use previous log-det divergence to measure discrepancy between covariance matrices.
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Outline

• Dimensionality Reduction

• Principal Component Analysis – PCA

• Latent Semantic Indexing
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• almost shortest path routing.

• constrained clustering.

• image/vision,

• Graph Connection Discovery.

• Finding Sparse Representation
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Constructing Sparse Basis
raw datum dictionary atoms

sp
arse

rep
resen

tation

• Matching Pursuit: (Mallat & Zhang, 1993)

• Greedy algorithm: try every column not already in your basis;

• evaluate quality of new column if it were added to your basis;

• add “best” column to your basis, and repeat until satisfied.

• Basis Pursuit (Chen et al., 2001)

• Minimize ‖b− Ax‖22 + λ‖x‖0.
• Difficulty: this is a NP-hard combinatorial problem.

• Relax to ‖b− Ax‖22 + λ‖x‖1.
• Relaxed problem is convex, so solvable more efficiently.

• LASSO: Solve for all λ fast (Tibshirani, 1996).
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Convex Relaxation =⇒ LASSO

• Known as Basis Pursuit, Compressed Sensing, ”small error + sparse”.

• Add penalty for number of nonzeros with weight λ:

min
x
‖Ax− b‖22 + λ‖x‖0.

• Convert hard combinatorial problem into easier convex optimization problem.

• Relax previous ||x||0 to convex problem:

min
x
‖Ax− b‖22 + λ‖x‖1,

• or convert to constrained problem:

min
x
‖Ax− b‖22 subject to ‖x‖1 ≤ tol.

• Vary parameter λ or tol, to explore the trade-off between “small error” and
“sparse”.
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Motivation: find closest sparse point

-4
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-2

-1

 0

 1

 2

 3

 4

-6 -4 -2  0  2  4  6

closest point to #(3.5 1.5) with 1-norm constraint

◦←−target point

• Find closest point to target . . . subject to ℓ1 norm constraint.

• As soon as one coordinate reaches zero, it is removed, and the remaining
coordinates are driven to zero.
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Motivation: find closest sparse point
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 0
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-6 -4 -2  0  2  4  6

closest point to #(3.5 1.5) with 1-norm constraint

◦←−
unconstrained
closest point

◦
◦
◦←−closest point s.t. ‖x‖1≤ 2

←−{x : ‖x‖1 = 2}

←−{x : ‖x‖1 = 3}

←−{x : ‖x‖1 = 4}

• As limit on ‖x‖1 is tightened, the coordinates are driven toward zero.

• As soon as one coordinate reaches zero, it is removed, and the remaining
coordinates are driven to zero.
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Example: 17 signals with 10 time points
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• As λ grows, the error grows, fill (#non-zeros) shrinks.
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Methods

• All problems are convex.

• Must work exists on software for convex programming problems

• YALMIP is a front end with links to many solver packages (Löfberg, 2004).

• CVX is a free package of convex solvers with easy matlab interface (Grant & Boyd,

2010).

• ADMM is a paradigm for a simple iterative solver especially adapted for very
large but separable problems (Boyd et al., 2011).
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Conclusions

• Many different types of data, many highly unstructured.

• Extracting patterns or connections in data involves somehow reducing the
volume of data one must look at.

• Data Reduction is an old paradigm that has been updated for the modern
digital age.

• Methods discussed here started with classical PCA - SVD based approaches
(e.g., assuming independent gaussian noise).

• Connections and pair-wise correlations modeled by graphs.

• Graphs modeled by random walks, counting subgraphs, min-cut/max-flow,
models, . . ..

• Sparse representations: wide variety of sparse approximations: low fill, short
basis, non-negative basis, non-squared loss function, count violations of some
constraints, low rank (nuclear norm = L1-norm on the singular values), . . ..

• Leads to need for scalable solvers for very large convex programs.
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THANK YOU!
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