Boosting as a Regularized Path

to a Maximum Margin Classifier

Saharon Rosset (IBM)
Ji Zhu (U. Michigan)
Trevor Hastie (Stanford)

Presented by
Charlie Olson
March 21, 2006
Outline

- Boosting as Gradient Descent
- Margins, Support Vector Machines, and Boosting
- Boosting as Approximate Incremental \(l_1 \) Constrained Fitting
- \(l_p \)-Constrained Classification Loss Functions
Boosting as Gradient Descent

One way of looking at Boosting:

\[F_T(x) = \sum_{t=1}^{T} \alpha_t h_{j_t}(x) \]

\(x\) is the input vector.

\(h_{j_t}\) is the best hypothesis to use at step \(t\) (based on information gain, etc.)

\(\alpha_t\) is the corresponding weight of that hypothesis at step \(t\).
Boosting as Gradient Descent

A simpler perspective of Boosting:

\[F_T(x) = \sum_{j=1}^{J} h_j(x) \cdot \beta_j^{(T)} \]
Boosting as Gradient Descent

A simpler perspective of Boosting:

\[F_T(x) = \sum_{j=1}^{J} h_j(x) \cdot \beta_j^{(T)} \]

\(\beta \) is the coefficient vector
(each element \(\beta_j \) is the sum of all \(\alpha \)'s ever applied to the corresponding \(h_j \))

\(J \) is the total number of hypotheses in the dictionary
Boosting as Gradient Descent

So you could simply write:

\[F(x) = \beta \cdot h(x) \]

where \(\beta \) is a normal vector, and \(h(x) \) is a vector in hypothesis-space (\(x \) mapped into hypothesis space).
Boosting as Gradient Descent

In other words...
F(x) = β • h(x) = the projection onto the normal, which is your classification prediction,

but you care about how correct you are, so find a β-hat that minimizes the loss function C(y,F) over all training examples:

\[\hat{\beta}(c) = \arg \min_{\|\beta\|_1 \leq c} \sum_i C(y_i, h(x_i)'\beta) \]
Boosting as Gradient Descent

\[\hat{\beta}(c) = \arg \min_{\|\beta\|_1 \leq c} \sum_i C(y_i, h(x_i)'\beta) \]

Limit possible values of \(\beta \) to 1-norms less than \(c \)...

Large values of \(c \) would send the loss toward zero if the training data was separated.

(could \(c > 1 \) then be considered a regularizer..?)
Boosting as Gradient Descent

The meat of Boosting as Gradient Descent:

Find a good value for the β vector (one that minimizes the total loss) using an iterative process:
1. Scan for the coordinate of β whose change has the best effect on the loss function.
2. Step in that direction.

Variations like line-search can also work (AdaBoost). If the dictionary is large, settle for an okay coordinate direction rather than “the best”.

Boosting as Gradient Descent

Coordinate descent is probably self-explanatory, but here is an algorithm:

Algorithm 1 Generic gradient-based boosting algorithm

1. Set $\beta^{(0)} = 0$.

2. For $t = 1 : T$,

 (a) Let $F_i = \beta^{(t-1)'h(x_i)}$, $i = 1, \ldots, n$ (the current fit).

 (b) Set $w_i = \frac{\partial C(y_i, F_i)}{\partial F_i}$, $i = 1, \ldots, n$.

 (c) Identify $j_t = \arg\max_j |\sum_i w_i h_j(x_i)|$.

 (d) Set $\beta_{j_t}^{(t)} = \beta_{j_t}^{(t-1)} - \alpha_t \text{sign}\left(\sum_i w_i h_{j_t}(x_i)\right)$ and $\beta_{k}^{(t)} = \beta_{k}^{(t-1)}$, $k \neq j_t$.
Common Loss Functions

Exponential: \(C_e(y, F) = \exp(-yF); \)
Loglikelihood: \(C_l(y, F) = \log(1 + \exp(-yF)) \)
Margins, SVMs, and Boosting
Margins, SVMs, and Boosting

(in hypothesis space:)

Margin

Large Marge
Margins, SVMs, and Boosting

l_p margin: $m_p(\beta) = \min_i \frac{y_i F(x_i)}{\|\beta\|_p}$

$F(x) = \sum_j h_j(x) \beta_j$

β is the normal to the separating hyperplane, normalize it, then margin is the minimal projection onto the normal.
Margins, SVMs, and Boosting

l_2 Euclidean margin:

l_1 max. margin:

(this picture could be more helpful)
Margins, SVMs, and Boosting

One intuition for why m_1 is vertical, and m_2 is diagonal:

\[
\frac{yF(x)}{\|\beta\|_1} = \frac{yF(x)}{\|\beta\|_2} \cdot \frac{\|\beta\|_2}{\|\beta\|_1}
\]

m_1 will be large when the β-ratio is large, which happens when β is sparse.
Margins, SVMs, and Boosting

Or just notice that m_1 is larger if $\|\beta\|_1$ is smaller.

Keep $\|\beta\|_1$ small by staying as close to a single axis as possible... the more zeroes in β the better.

(the “sparsity” effect)
Margins, SVMs, and Boosting

Coordinate descent attempts to separate in the l_1-margin sense.

By stepping along the best axis each iteration it tries to find β with a minimal 1-norm.

If it moves monotonically towards β

$$\beta_{j_t} \neq 0 \Rightarrow \text{sign}(\alpha_t) = \text{sign}(\beta_{j_t})$$

Then the sum of the steps, $\|\alpha\|_1$, is the same as $\|\beta\|_1$ (not profound, but used later)
Margins, SVMs, and Boosting

Margin-maximization leads to over-fitting...
Boosting as Approximate Incremental l_1 Constrained Fitting
Boosting as Approximate Incremental l_1 Constrained Fitting

If the optimal l_1 path is monotone, then traditional coordinate descent using infinitely-small steps will result in the same l_1-optimal solution path.

(identical)
Boosting as Approximate Incremental l_1 Constrained Fitting

If the solution path is non-monotone, then the similarity breaks down:
Boosting as Approximate Incremental l_1 Constrained Fitting

The points:

Boosting follows the optimal l_1 constrained path if the step size is infinitely small, and the optimal path is monotone, by moving in the locally optimal l_1 direction.

But, realistic step sizes only approximate the optimal path.

And.. it only works for monotone paths.
l_p-Constrained Classification Loss Function
l_p-Constrained Classification Loss Function

Authors prove that if there is a unique l_p-margin maximizing hyper-plane, then the normalized constrained solution converges to it.

Recall “normalized constrained” from earlier:

$$\|\beta\|_p \leq c_{\text{max}}$$

as in:

$$\hat{\beta}(c) = \arg \min_{\|\beta\|_1 \leq c} \sum_i C(y_i, h(x_i)'\beta)$$
l_p-Constrained Classification
Loss Functions

Can turn coordinate-descent into l_2 boosting, and maximize the l_2-margin, by choosing the coordinate that has the greatest proportional effect on β

Choose the coordinate to maximize:

$$\frac{|\sum_i w_i h_j(x_i)|}{|\beta_j|}$$

This has problems in reality, but is still cool.