Markov Chain Sampling Methods for Dirichlet Process Mixture Models

Radford M. Neal, University of Toronto, Ontario, Canada
Presented by Colin DeLong
Outline

- Introduction
- Dirichlet process mixture models
- Gibbs sampling w/ conjugate priors
 - Algorithms 1, 2, and 3
- Methods for handling non-conjugate priors
 - Algorithm 4
- Metropolis-Hastings and partial Gibbs
 - Algorithms 5, 6, and 7
- Gibbs sampling w/ auxiliary parameters
 - Algorithm 8
- Experiments (well, one)
Introduction

- Some problems are more accurately represented with non-conjugate priors
 - Audio interpolation (Godsill & Rayner, 1995)
 - Climatology opinion quantification (Al-Awadhi & Garthwaite, 2001)
 - Financial risk assessment (Siu & Yang, 1999)
- Non-conjugate priors + Gibbs = headache.
 - Update integrals are nasty to compute
Dirichlet process mixture models

- Basic idea
 - Given data y_1, \ldots, y_n ind. drawn from an unknown distribution (y_i may be multivariate)
 - Model the unknown distribution as being drawn from a mixture of distributions $F(\theta)$, w/ mixing distribution over θ being G.
 - Let prior for G be a Dirichlet process w/ concentration parameter α and base distribution G_0.
 - Then you have:

$$
\begin{align*}
 y_i \mid \theta_i & \sim F(\theta_i) \\
 \theta_i \mid G & \sim G \\
 G & \sim D(G_0, \alpha)
\end{align*}
$$
Dirichlet process mixture models

- Integrate over G in previous model, giving a representation of the prior distribution of θ_i in terms of previous θ's:

$$\theta_i \mid \theta_1, \ldots, \theta_{i-1} \sim \frac{1}{i-1+\alpha} \sum_{j=1}^{i-1} \delta(\theta_j) + \frac{\alpha}{i-1+\alpha} G_0$$

- $\delta(\theta)$ is distribution concentrated at point θ.

- You might notice the “Chinese Restaurant Process” at work here.
Dirichlet process mixture models

- You can also get here by letting K (# of components) go to ∞…

$$y_i \mid c, \phi \sim F(\phi_{c_i})$$

$$c_i \mid p \sim \text{Discrete} \left(p_1, \ldots, p_K \right)$$

$$\phi_c \sim G_0$$

$$p_1, \ldots, p_K \sim \text{Dirichlet} \left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K} \right)$$

- c_i is the latent class associated with y_i
- The parameters ϕ_c determine the distribution of observations from c
Dirichlet process mixture models

• Integrate over mixing proportions p_c to write prior of c_i as follows:

$$P(c_i = c \mid c_1, \ldots, c_{i-1}) = \frac{n_{i,c} + \alpha/K}{i - 1 + \alpha}$$

• Where $n_{i,c}$ is the number of c_j for $j < i$ equal to c. Letting K go to ∞, we get c_i’s prior as:

$$P(c_i = c \mid c_1, \ldots, c_{i-1}) \rightarrow \frac{n_{i,c}}{i - 1 + \alpha}$$

$$P(c_i \neq c_j \text{ for all } j < i \mid c_1, \ldots, c_{i-1}) \rightarrow \frac{\alpha}{i - 1 + \alpha}$$
Gibbs sampling w/ conjugate priors

- Exact computation of posterior for DP mixture models not feasible, so use Monte Carlo approaches
- Sample from posterior of $\theta_1, \ldots, \theta_n$ by simulating a Markov chain with this posterior as its equilibrium distribution
- Gibbs sampling is the natural approach here for conjugate priors
- 3 main ways of doing this
Algorithm 1: Let the state of the Markov chain consist of $\theta_1, \ldots, \theta_n$. Repeatedly sample as follows:

- For $i = 1, \ldots, n$: Draw a new value from $\theta_i \mid \theta_{-i}, y_i$ as defined by equation (7).

$$
\theta_i \mid \theta_{-i}, y_i \sim \sum_{j \neq i} q_{i,j} \delta(\theta_j) + r_i H_i
$$

- Where H_i is the posterior for θ based on the prior G_0 and y_i, having likelihood $F(y_i, \theta)$ and:

$$
q_{i,j} = b F(y_i, \theta_j)
$$

$$
r_i = b \alpha \int F(y_i, \theta) dG_0(\theta)
$$

- Convergence may be slow due to groups of observations that are highly probably to be associated with the same θ
Algorithm 2 (West, Muller, & Escobar, 1994)

Algorithm 2: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

- For $i = 1, \ldots, n$: If the present value of c_i is associated with no other observation (i.e., $n_{-i,c_i} = 0$), remove ϕ_{c_i} from the state. Draw a new value for c_i from $c_i \mid c_{-i}, y_i, \phi$ as defined by equation (11). If the new c_i is not associated with any other observation, draw a value for ϕ_{c_i} from H_i and add it to the state.

- For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$.

If $c = c_j$ for some $j \neq i$:

$$P(c_i = c \mid c_{-i}, y_i, \phi) = b \frac{n_{-i,c}}{n-1+\alpha} F(y_i, \phi_c)$$

$$P(c_i \neq c_j \text{ for all } j \neq i \mid c_{-i}, y_i, \phi) = b \frac{\alpha}{n-1+\alpha} \int F(y_i, \phi) dG_0(\phi)$$ \hspace{1cm} (11)
Algorithm 3 (Neal, 1992)

Algorithm 3: Let the state of the Markov chain consist of \(c_1, \ldots, c_n \). Repeatedly sample as follows:

- For \(i = 1, \ldots, n \): Draw a new value from \(c_i \mid c_{-i}, y_i \) as defined by equation (12).

If \(c = c_j \) for some \(j \neq i \):

\[
P(c_i = c \mid c_{-i}, y_i) = b \frac{n-i,c}{n-1+\alpha} \int F(y_i, \phi) dH_{-i,c}(\phi)
\]

\[
P(c_i \neq c_j \text{ for all } j \neq i \mid c_{-i}, y_i) = b \frac{\alpha}{n-1+\alpha} \int F(y_i, \phi) dG_0(\phi)
\]
Methods for handling non-conjugate priors

- If G_0 is not the conjugate prior for F, the integrals for sampling from the posterior might not be feasible to compute.

- West, Muller, and Escobar suggested a Monte Carlo approximation to compute the integral (1994).
 - Slower convergence
 - New values of c_i are likely to be discarded during following Gibbs iteration, leading to wrong distribution.
Algorithm 4: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

- For $i = 1, \ldots, n$: Let k^- be the number of distinct c_j for $j \neq i$, and let these c_j have values in $\{1, \ldots, k^-\}$. If $c_i \neq c_j$ for all $j \neq i$, then with probability $k^-/(k^- + 1)$ do nothing, leaving c_i unchanged. Otherwise, label c_i as $k^- + 1$ if $c_i \neq c_j$ for all $j \neq i$, or draw a value for ϕ_{k^-+1} from G_0 if $c_i = c_j$ for some $j \neq i$. Then draw a new value for c_i from $\{1, \ldots, k^- + 1\}$ using the following probabilities:

$$P(c_i = c \mid c_{-i}, y_i, \phi_1, \ldots, \phi_{k^-+1}) = \begin{cases} b n_{-i,c} F(y_i, \phi_c) & \text{if } 1 \leq c \leq k^- \\ b [\alpha/(k^- + 1)] F(y_i, \phi_c) & \text{if } c = k^- + 1 \end{cases}$$

where b is the appropriate normalizing constant. Change the state to contain only those ϕ_c that are now associated with an observation.

- For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$, or perform some other update to ϕ_c that leaves this distribution invariant.

Algorithm 4 (MacEachern & Muller, 1998)
Problem with Algorithm 4

- Algorithm 4 has a problem in that assigning c_i to a new component is reduced by a factor of $k^- + 1$.

- However, something similar without this problem is possible.
Metropolis-Hastings and partial Gibbs

- Use Metropolis-Hastings approach to update the c_i using the conditional prior as the proposal distribution.
- Draw a candidate state, compute its acceptance probability. If it’s accepted, use the candidate state, else leave as is.
- We can apply this to the finite model from slide 6, again integrating out ρ_c.
Algorithm 5 (Neal, 1998)

Algorithm 5: Let the state of the Markov chain consist of \(c_1, \ldots, c_n \) and \(\phi = (\phi_c : c \in \{c_1, \ldots, c_n\}) \). Repeatedly sample as follows:

- For \(i = 1, \ldots, n \), repeat the following update of \(c_i \) \(R \) times: Draw a candidate, \(c_i^* \), from the conditional prior for \(c_i \) given by equation (16). If a \(c_i^* \) not in \(\{c_1, \ldots, c_n\} \) is proposed, choose a value for \(\phi_{c_i^*} \) from \(G_0 \). Compute the acceptance probability, \(a(c_i^*, c_i) \), as in equation (15), and set the new value of \(c_i \) to \(c_i^* \) with this probability. Otherwise let the new value of \(c_i \) be the same as the old value.

- For all \(c \in \{c_1, \ldots, c_n\} \): Draw a new value from \(\phi_c \mid y_i \) s.t. \(c_i = c \), or perform some other update to \(\phi_c \) that leaves this distribution invariant.

\[
a(c_i^*, c_i) = \min \left[1, \frac{F(y_i, \phi_{c_i^*})}{F(y_i, \phi_{c_i})} \right]
\]

If \(c = c_j \) for some \(j \neq i \):
\[
P(c_i = c \mid c_{-i}) = \frac{n_{-i,c}}{n - 1 + \alpha}
\]
\[
P(c_i \neq c_j \text{ for all } j \neq i \mid c_{-i}) = \frac{\alpha}{n - 1 + \alpha}
\]
Algorithm 6 (Neal, 1998)

Algorithm 6: Let the state of the Markov chain consist of $\theta_1, \ldots, \theta_n$. Repeatedly sample as follows:

- For $i = 1, \ldots, n$, repeat the following update of θ_i R times: Draw a candidate, θ_i^*, from the following distribution:

 $$
 \frac{1}{n-1+\alpha} \sum_{j \neq i} \delta(\theta_j) + \frac{\alpha}{n-1+\alpha} G_0
 $$

 Compute the acceptance probability

 $$
 a(\theta_i^*, \theta_i) = \min[1, F(y_i, \theta_i^*) / F(y_i, \theta_i)]
 $$

 Set the new value of θ_i to θ_i^* with this probability; otherwise let the new value of θ_i be the same as the old value.
Algorithm 7 (Neal, 1998)

Algorithm 7: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

- For $i = 1, \ldots, n$, update c_i as follows: If c_i is not a singleton (i.e., $c_i = c_j$ for some $j \neq i$), let c_i^* be a newly-created component, with $\phi_{c_i^*}$ drawn from G_0. Set the new c_i to this c_i^* with probability

$$ a(c_i^*, c_i) = \min \left[1, \frac{\alpha}{n-1} \frac{F(y_i, \phi_{c_i^*})}{F(y_i, \phi_{c_i})} \right] $$

Otherwise, when c_i is a singleton, draw c_i^* from c_{-i}, choosing $c_i^* = c$ with probability $n_i/c / (n-1)$. Set the new c_i to this c_i^* with probability

$$ a(c_i^*, c_i) = \min \left[1, \frac{n_i-1}{\alpha} \frac{F(y_i, \phi_{c_i^*})}{F(y_i, \phi_{c_i})} \right] $$

If the new c_i is not set to c_i^*, it is the same as the old c_i.

- For $i = 1, \ldots, n$: If c_i is a singleton (i.e., $c_i \neq c_j$ for all $j \neq i$), do nothing. Otherwise, choose a new value for c_i from $\{c_1, \ldots, c_n\}$ using the following probabilities:

$$ P(c_i = c | c_{-i}, y_i, \phi, c_i \in \{c_1, \ldots, c_n\}) = \frac{b_{n-i,c}}{n-1} F(y_i, \phi_c) $$

where b is the appropriate normalizing constant.

- For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c | y_i$ s.t. $c_i = c$, or perform some other update to ϕ_c that leaves this distribution invariant.
Gibbs sampling w/ auxiliary parameters

- More flexible.
 - Basic idea is that we sample from a distribution π_x for x by sampling from distribution π_{xy} for (x, y).
 - Idea extendable to accommodate auxiliary variables which can be created/discarded during Markov chain simulation.
 - A variable y can be introduced temporarily:
 - Draw a value for y from its conditional given x
 - Perform an update of (x, y) leaving π_{xy} invariant
 - Discard y, leaving x.
 - This technique can be used to update c_i for the DPM without having to integrate w.r.t. G_0.
Algorithm 8 (Neal, 1998)

Algorithm 8: Let the state of the Markov chain consist of c_1, \ldots, c_n and $\phi = (\phi_c : c \in \{c_1, \ldots, c_n\})$. Repeatedly sample as follows:

- For $i = 1, \ldots, n$: Let k^{-} be the number of distinct c_j for $j \neq i$, and let $h = k^{-} + m$. Label these c_j with values in $\{1, \ldots, k^{-}\}$. If $c_i = c_j$ for some $j \neq i$, draw values independently from G_0 for those ϕ_c for which $k^{-} < c \leq h$. If $c_i \neq c_j$ for all $j \neq i$, let c_i have the label $k^{-} + 1$, and draw values independently from G_0 for those ϕ_c for which $k^{-} + 1 < c \leq h$. Draw a new value for c_i from $\{1, \ldots, h\}$ using the following probabilities:

$$P(c_i = c \mid c_{-i}, y_i, \phi_1, \ldots, \phi_h) = \begin{cases}
 b \frac{n-i,c}{n-1+\alpha} F(y_i, \phi_c) & \text{for } 1 \leq c \leq k^{-} \\
 b \frac{\alpha/m}{n-1+\alpha} F(y_i, \phi_c) & \text{for } k^{-} < c \leq h
\end{cases}$$

where $n_{-i,c}$ is the number of c_j for $j \neq i$ that are equal to c, and b is the appropriate normalizing constant. Change the state to contain only those ϕ_c that are now associated with one or more observations.

- For all $c \in \{c_1, \ldots, c_n\}$: Draw a new value from $\phi_c \mid y_i$ s.t. $c_i = c$, or perform some other update to ϕ_c that leaves this distribution invariant.
The Experiment

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time per iteration in microseconds</th>
<th>Autocorrelation time for k</th>
<th>Autocorrelation time for θ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg. 4 (“no gaps”)</td>
<td>7.6</td>
<td>13.7</td>
<td>8.5</td>
</tr>
<tr>
<td>Alg. 5 (Metropolis-Hastings, $R = 4$)</td>
<td>8.6</td>
<td>8.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Alg. 6 (M-H, $R = 4$, no ϕ update)</td>
<td>8.3</td>
<td>19.4</td>
<td>64.1</td>
</tr>
<tr>
<td>Alg. 7 (mod M-H & partial Gibbs)</td>
<td>8.0</td>
<td>6.9</td>
<td>5.3</td>
</tr>
<tr>
<td>Alg. 8 (auxiliary Gibbs, $m = 1$)</td>
<td>7.9</td>
<td>5.2</td>
<td>5.6</td>
</tr>
<tr>
<td>Alg. 8 (auxiliary Gibbs, $m = 2$)</td>
<td>8.8</td>
<td>3.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Alg. 8 ($m = 30$, approximates Alg. 2)</td>
<td>38.0</td>
<td>2.0</td>
<td>2.8</td>
</tr>
</tbody>
</table>

- k is the number of distinct c_i, θ_1 is the parameter associated with y_1
- Algorithm 8 with $m=1$ superior to algorithm 4 (“no gaps”)
- Performance much worse for algorithm 6, where no updates for φ_c are included
- With $m=30$, algorithm 8 takes longer, but performance is great.