Unsupervised Learning from Dyadic Data

Thomas Hofmann and Jan Puzicha

Presented by: Ajay Joshi

September 18, 2007
Outline

• Problem description

• Contributions in a nutshell

• Models for dyadic data

• Parameter learning with EM

• Relationships between different models

• Results in one domain

• Concluding remarks
Dyadic Data

- Two finite sets of objects X and Y.

- Observations made for pairs consisting of one element from each set: dyads (x, y).

- In some cases, a third observation $w(x, y)$ might be available indicating similarity or association values between x and y.

- This paper restricts itself to purely dyadic observations: (x, y).
Problem Description

• The objective is to accomplish two tasks:
 – Learning a joint or conditional probability distribution over $X \times Y$.
 – Discovering structure: Learning clusters or data hierarchies.

• Looks very similar to the usual learning setting.

• Why is this a hard problem?
 – Metric distances are not known! In the standard setting, features are represented as vectors in a Euclidean space.
 – Data can be extremely sparse, zero frequencies are common.
To summarize the problems

- Consider two sets $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3, y_4\}$. Suppose our observations are $(x_1, y_2), (x_1, y_3), (x_2, y_2), (x_3, y_1), (x_1, y_2)$. Note that we can have $|X| \times |Y|$ different dyads. Hence many pairs usually have zero frequencies in observations.

- How to handle sparse data? What do we do when some pairs are never sampled (the zero-frequency problem)?

- How to handle the lack of a distance metric?

- Sparseness problem also occurs in the standard setting, however, knowing a distance metric can help us generalize to unseen examples.
Applications

• Computer Vision: In image segmentation, data is usually obtained as pixel values (or processed using some filters) for each image location. The task is to group similar regions together.

• Information retrieval: One set is the collection of documents, the other represents vocabulary. A dyad is the occurrence of an object from the vocabulary in the corresponding document.

• Consumer preference analysis: One set represents consumers and the other is objects they can consume.

• Note that in some of these examples, there does not exist an obvious “distance” metric between two objects of a set.
Basic modeling principles

• Modeling is done using latent variables by specifying a joint probability distribution for latent and observable variables.

• Marginalization (summing over latent variables) gives a model over observable variables.

• Bayes’ rule is used to obtain posterior probabilities over latent variables with respect to observed variables - used for structure discovery. Useful where data groups and/or hierarchies are to be found.
Summary of Contributions

- The paper proposes a family of latent class models to deal with the data sparseness problem.

- Flat as well as hierarchical models are described and evaluated. A close relationship between aspect models and clustering models is shown.

- Previously studied models like n-gram models, distributional clustering, aggregate Markov models arise as special cases of this framework.

- The authors study EM algorithms for application to these models. Some promising results in the previously mentioned application domains are provided.
Aspect models

• Consider an observation sequence $S = (x^n, y^n)_{1 \leq n \leq N}$ as a realization of an underlying sequence of random variables $(X^n, Y^n)_{1 \leq n \leq N}$.

• We can introduce a latent class for each dyad observed. (x^n, y^n) is associated with A^n over a finite set $A = \{a_1, a_2, \ldots, a_K\}$.

• Notice that aspect models partition the observations. Therefore, identical dyads can be associated with different latent classes.

• The set of observations can be thought of as generated by a (latent) finite mixture model. The choice of the latent class from A corresponds to choosing the component of a mixture. In this view, the observed variables (x^n, y^n) are those generated by this component a^n of the mixture.
Model description

- Assumption: The observations are i.i.d. and pairs of random variables X^n and Y^n are conditionally independent given the latent class A^n.

- Data generation process:
 - Choose an aspect a with $P(a)$.
 - Choose an object x from the set X with $P(x|a)$.
 - Choose an object y from the set Y with $P(y|a)$.

Aspect model

Graphical representation of an aspect model.
(a) In the symmetric parameterization
(b) In the asymmetric parameterization.
Model description

- As described earlier, the complete data probability is first obtained and then marginalized.

\[P(S, a) = \prod_{n=1}^{N} P(x^n, y^n, a^n), \text{ where} \]

\[P(x^n, y^n, a^n) = P(a^n)P(x^n|a^n)P(y^n|a^n). \]

- Decomposition into products follows from the i.i.d. assumption, simplification of chain rule follows from the conditional independence assumption.
Model description

- Marginalizing w.r.t a gives $P(x, y) = \sum_{a \in A} P(a)P(x|a)P(y|a)$.

- Grouping identical dyads together, we get

$$P(S) = \prod_{x \in X} \prod_{y \in Y} P(x, y)^{n(x,y)}$$

- $n(x, y)$ represents the empirical co-occurrence frequencies. This number is expected to be zero for most (x, y) pairs as we have sparse data.
Expectation Maximization

- Parameter estimation is to be done using Maximum Likelihood. However, there exist problems since we have a log of a summation. The EM algorithm is therefore applied.

- Expectation step: Estimating the posterior probabilities of the unobserved mapping $P(a|S, \theta')$. θ' is the current parameter estimate.

- Maximization step: Maximization of the expected complete data log-likelihood $L(\theta|\theta') = \sum_a P(a|S, \theta') \log P(S, a, \theta)$ with respect to θ.
An equivalent asymmetric parameterization

- From the asymmetric graphical model shown earlier,

\[P(x, y) = P(x)P(y|x) = P(x) \sum_{a \in A} P(a|x)P(y|a). \]

- For a fixed \(x \), all conditional distributions \(P(y|x) \) are obtained by convex combinations of \(P(y|a) \).

- Also, \(P(x) \) can be estimated independently as \(n(x)/N \) (the occurrence frequency). Thus, maximizing the joint likelihood \(P(x, y) \) and the conditional likelihood \(P(y|x) \) are equivalent.
Word generation example from documents

- Pick a document d with probability $P(d)$.
- Pick a latent class z with probability $P(z|d)$.
- Generate a word w with probability $P(w|z)$.
- From before, we have $P(w|d) = \sum_{z \in Z} P(w|z)P(z|d)$.
- Document specific word distributions are obtained by a convex combination of the aspects $P(w|z)$.
- Documents are not assigned to clusters, they are characterized by a specific mixture of factors with weights $P(z|d)$. These mixing weights offer modeling flexibility.
• Assume a vocabulary of size M. Then, we have $M - 1$ dimensional vectors $P(\cdot|z)$ over the vocabulary. There are K such points assuming K latent classes.

• Because of the convex combination of described earlier, $P(\cdot|d)$ can lie in a $K - 1$ dimensional sub-simplex in the $M - 1$ dimensional simplex as shown in the figure. The mixing weights $P(z|d)$ correspond to the coordinates of a document in that sub-simplex.

• Dimensionality of the sub-simplex is $K - 1$ as opposed to $M - 1$ for the complete probability simplex. This can be seen as dimensionality reduction.
Cross Entropy Minimization

• Say the empirical co-occurrence frequencies are $\hat{P}(x, y) = n(x, y)/N$.

• The complete data likelihood is

$$
\prod_{n=1}^{N} P(x^n, y^n, a^n) = \prod_{n=1}^{N} P(x^n) \sum_{a \in A} P(a^n|x^n)P(y^n|a^n)
$$

• The log-likelihood is

$$
L(S, \theta) = \log \left[\prod_{x \in X} \prod_{y \in Y} \left(P(x) \sum_{a \in A} P(a|x)P(y|a) \right)^{n(x,y)} \right]
$$

$$
= \sum_{x,y} n(x, y) \cdot \log[P(x) \sum_{a} P(a|x)P(y|a)]
$$

• Hence

$$
\frac{1}{N} L(S, \theta) = \sum_{x,y} \hat{P}(x, y) \log[P(x) \sum_{a} P(a|x)P(y|a)]
$$
Cross Entropy Minimization

• Separating out terms gives

\[
\frac{1}{N} L(S, \theta) = \sum_x \hat{P}(x) \left[\log P(x) + \sum_y \hat{P}(y|x) \log \sum_a P(a|x) P(y|a) \right].
\]

• The estimation of \(P(x) \) can be done independently.

• Therefore, maximum likelihood estimation of the above is equivalent to minimizing the sum over cross entropies between empirical conditional distributions and model distributions weighted by occurrence frequencies.

• This is the same as minimizing the Kullback-Leibler divergence between the two distributions.
One-Sided Clustering Model

- In this model, latent classes are introduced for objects in one of the spaces (X or Y).

- Consider latent variables $C(x)$ over $C = \{c_1, c_2, \ldots, c_K\}$. A realization of these latent variables partitions the space X.

- In the aspect model, identical observations can have different latent classes. In contrast, in this clustering model, we can have multiple objects belonging to the same latent class. Notice that the partition is on objects and not observations.

- The authors show that the clustering model can be derived as a constrained aspect model.
Constraints on the aspect model

A one-sided clustering model

• Introduce additional latent clustering variables where latent variable states for clusters and aspects are identified, $c_k \cong a_k$. Consistency constraints on the aspect variables are

$$P(a|x, c) \equiv P\{A^n = a|X^n = x, C(x) = c\} = \delta_{ac}.$$

• $P(a|x, c)$ are not free parameters because of the above constraints. They are therefore not shown in the above graphical model.
Complete data likelihood

• The complete data likelihood for the one-sided model is

\[P(S, c) = \prod_{x \in X} P(C(x)) \prod_{y \in Y} [P(x)P(y|c(x))]^{n(x,y)}. \]

• Marginalizing with respect to the clustering variables gives

\[P(S) = \prod_{x \in X} P(S_x) \quad \text{where,} \]

\[P(S_x) = \sum_{c \in C} P(c) \prod_{y \in Y} [P(x)P(y|c)]^{n(x,y)}. \]

• Co-occurrences in \(S_x \) are not independent for given parameters, but are coupled by the latent variable \(C(x) \).
One-sided model corresponds to Naive Bayes’

• The E-step in the EM algorithm for update of posterior probabilities is

\[
P\{C(x) = c | S_x, \theta\} = \frac{P(c) \prod_{y \in Y} P(y|c)^{n(x,y)}}{\sum_{c'} P(c') \prod_{y \in Y} P(y|c')^{n(x,y)}}.
\]

• Doing away with the normalization term, this can be written as

\[
P\{C(x) = c | S_x, \theta\} \propto P(c) \exp \left[-n(x) \left(-\sum_{y \in Y} \hat{P}(y|x) \log P(y|c) \right) \right].
\]

• Compare the above with a Gaussian Mixture model. If we interpret \(Y\) as a feature space for \(x \in X\), then the one-sided model can be viewed as an unsupervised version of Naive Bayes’ classifier.
Two-sided clustering model

This model is defined by

\[P(x, y|c, d) \equiv P\{X^n = x, Y^n = y|C(x) = c, D(x) = d\} = P(x)P(y)\phi(c, d). \]

Prior probabilities are \(P(c, d) = [\prod_x P(c(x))] \cdot [\prod_y P(d(y))] \).

The two-sided clustering model can also be interpreted as a constrained aspect model model as earlier.
• Imposing the constraints, we (rather, the authors !) get

\[P(x, y|C(x) = c, D(y) = d) = P(x)P(y) \sum_{a,b} \delta_{ac}\delta_{bd} \frac{P(a,b)}{P(a)P(b)}. \]

• Comparing the two, we see that the cluster association parameters \(\phi(c, d) \) correspond to the ratio of aspect probabilities and the product of marginal probabilities.

• \(\phi(c, d) \) can also be seen as cluster association strengths. They control the probability of observing the dyad \((x, y)\) relative to the model with an unconditional independence assumption.
Hierarchical clustering model

- Hierarchical models here are defined combining aspects and clusters.
- Aspects are identified with nodes of a hierarchy, clusters are identified with terminal nodes only.
- Compatibility constraints

\[P(a|x, c) = P\{A^n = a | X^n = x, C(x) = c\} = 0, \]
\[\text{if } a \text{ is not on the path from root to } c. \]
One-sided model vs hierarchical model

- The one-sided model is a degenerate hierarchical with only terminal nodes.

- The structure for a hierarchical model is less constrained as compared to the one-sided model. The clustering structure does not completely define the aspect variables. Thus, there are more parameters in the hierarchical model.
Putting it all together

Model	$P(y	x, S)$		
Aspect	$\sum_a P(a	x)P(y	a)$	
One-sided clustering	$\sum_c P\{C(x) = c	S\}P(y	c)$	
Hierarchical clustering	$\sum_c P\{C(x) = c	S\}\sum_a P(a	x, c)P(y	a)$
Two-sided clustering	$\sum_c P\{C(x) = c	S\}P(y)\sum_d P\{D(y) = d	S\}\phi(c, d)$	

- Aspect model is the most general (least constrained), two-sided model is the most constrained.

- $P(\cdot)$ are parameters different from the posterior probabilities $P\{\cdot\}$. $P\{C(x) = c|S\}$ asymptotically approach Boolean values while this does not hold for $P(a|x)$. Thus, the parameters in the aspect model are free and it is less constrained than other models.
The segmentation is done using the one-sided clustering model described in the paper. Looks fairly good.

The paper does not mention how the number of latent clusters are chosen. If this is input by a human, then one of the hardest problems in image segmentation is circumvented. Given the number of clusters, according to my experience, other approaches will be able to do equally well.
Segmentation results

- Segmentation using the one-sided clustering model for an outdoor scene. Again, the results are good, however, if the number of clusters are known, then it is not as useful.
Concluding Remarks

• The paper proposes statistically sound models for modeling dyadic data.

• The approach can be used for prediction or discovering latent structure in the data.

• Since the model is completely probabilistic, many powerful methods can be directly used for parameter estimation.

• It is not very clear (to me) how these models actually benefit predictive performance, or structure discovery as compared to other models.

• Specifically for the zero-frequency problem, I cannot see why models described in this paper excel as compared to others. Inputs?
Thank You!