CSci 8980: Advanced Topics in Graphical Models

Instructor: Arindam Banerjee

September 4, 2007
Course Overview

Mixture Models

General Information

- Course Number: CSci 8980
- Class: Tu Th 09:45-11:00 am
- Location: 156 Amundson Hall
- Instructor: Arindam Banerjee
- Office Hours: EE/CS 6-213 Tu Th 11 am - 12 noon
- Web page: http://www-users.itlabs.umn.edu/classes/Fall-2007/csci8980-graph
- Email: banerjee@cs.umn.edu
Course Work

- Paper Reviews: 30% of total grade

- Paper Presentation: 15% of total grade
 - Present one of the papers in the 'Papers' section
 - Talk should be 40-45 minutes

- Class Participation: 10% of total grade
 - Discussion, Q&A in class
 - Contributions need to be constructive/useful
Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page
Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page

- Paper Presentation: 15% of total grade
Course Overview

Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page

- Paper Presentation: 15% of total grade
 - Present one of the papers in the ‘Papers’ section
Course Overview

Mixture Models

Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page

- Paper Presentation: 15% of total grade
 - Present one of the papers in the ‘Papers’ section
 - Talk should be 40-45 minutes
Course Work

- **Paper Reviews**: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page

- **Paper Presentation**: 15% of total grade
 - Present one of the papers in the ‘Papers’ section
 - Talk should be 40-45 minutes
 - Guidelines in class page
Course Overview

Mixture Models

Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page

- Paper Presentation: 15% of total grade
 - Present one of the papers in the ‘Papers’ section
 - Talk should be 40-45 minutes
 - Guidelines in class page

- Class Participation: 10% of total grade
Course Work

- Paper Reviews: 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page

- Paper Presentation: 15% of total grade
 - Present one of the papers in the ‘Papers’ section
 - Talk should be 40-45 minutes
 - Guidelines in class page

- Class Participation: 10% of total grade
 - Discussion, Q&A in class
Course Work

- **Paper Reviews:** 30% of total grade
 - Review 10 papers from the ‘Papers’ section
 - Each paper is 3% of total grade
 - 1-2 page reviews, due before class
 - Cannot submit more than 10 reviews
 - Guidelines in class page

- **Paper Presentation:** 15% of total grade
 - Present one of the papers in the ‘Papers’ section
 - Talk should be 40-45 minutes
 - Guidelines in class page

- **Class Participation:** 10% of total grade
 - Discussion, Q&A in class
 - Contributions need to be constructive/useful
Course Work (Contd.)

- Class Project: 45% of total grade
Course Work (Contd.)

- Class Project: 45% of total grade
 - Has the following components
Course Work (Contd.)

- Class Project: 45% of total grade
 - Has the following components
 - Proposal: 0% (due Sep 27)
Course Work (Contd.)

- Class Project: 45% of total grade
 - Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
Course Work (Contd.)

- Class Project: 45% of total grade
 - Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
Course Work (Contd.)

- Class Project: 45% of total grade
 - Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
Class Project: 45% of total grade
 Has the following components
 Proposal: 0% (due Sep 27)
 Revised Proposal: 5% (due Oct 18)
 Midterm Report: 25% (due Nov 15)
 Presentation: 20% (last 2 weeks of class)
 Final Report: 50% (due Dec 13, noon)
Class Project: 45% of total grade
- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
 - Final Report: 50% (due Dec 13, noon)
- Groups of 1-2 (you can work on your own)
Class Project: 45% of total grade
- Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
 - Final Report: 50% (due Dec 13, noon)
- Groups of 1-2 (you can work on your own)
- Stop by if you want to discuss project ideas
Course Work (Contd.)

- Class Project: 45% of total grade
 - Has the following components
 - Proposal: 0% (due Sep 27)
 - Revised Proposal: 5% (due Oct 18)
 - Midterm Report: 25% (due Nov 15)
 - Presentation: 20% (last 2 weeks of class)
 - Final Report: 50% (due Dec 13, noon)
 - Groups of 1-2 (you can work on your own)
 - Stop by if you want to discuss project ideas
 - Guidelines in class page
Topics

- Warmup
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation
Topics

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- Models
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- **Models**
 - Dirichlet Processes
Topics

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- Models
 - Dirichlet Processes
 - Infinite Mixture Models
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- **Models**
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- **Models**
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- **Models**
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- **Inference**
Topics

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- Inference
 - MCMC, Gibbs Sampling
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- **Models**
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- **Inference**
 - MCMC, Gibbs Sampling
 - Variational Inference
Topics

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- Inference
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation
Topics

- Warmup
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- Models
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- Inference
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation

- Applications
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- **Models**
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- **Inference**
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation

- **Applications**
 - Topic Modeling, Social Network Analysis
Topics

- **Warmup**
 - Finite Mixture Models, EM, Exponential Families
 - Aspect Models, PLSI, Latent Dirichlet Allocation

- **Models**
 - Dirichlet Processes
 - Infinite Mixture Models
 - Hierarchical Models
 - Gaussian Processes

- **Inference**
 - MCMC, Gibbs Sampling
 - Variational Inference
 - Expectation Propagation

- **Applications**
 - Topic Modeling, Social Network Analysis
 - Computational Biology
A FMM is a probabilistic model of the form

\[p(x|\alpha, \Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h) \]
Finite Mixture Models (FMM)

- A FMM is a probabilistic model of the form

\[p(x|\alpha, \Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h) \]

- \(\alpha \) is a discrete distribution over \(k \) components
A FMM is a probabilistic model of the form

\[p(x|\alpha, \Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h) \]

- \(\alpha \) is a discrete distribution over \(k \) components
- \(p_h(x|\theta_h) \) is the distribution of the \(h^{th} \) component
Finite Mixture Models (FMM)

- A FMM is a probabilistic model of the form

\[p(x|\alpha, \Theta) = \sum_{h=1}^{k} \alpha_h p_h(x|\theta_h) \]

- \(\alpha \) is a discrete distribution over \(k \) components
- \(p_h(x|\theta_h) \) is the distribution of the \(h^{th} \) component
- Widely used for model-based clustering
FMM (Contd.)

- Generative Model
Generative Model
- Sample $h \sim \alpha$

Given a set of samples $X = \{x_1, \ldots, x_n\}$

Estimation problem: Which set of parameters are most likely $(\alpha^*, \Theta^*) = \text{argmax}_{(\alpha, \Theta)} \sum_{i=1}^{n} \log p(x_i | \alpha, \Theta)$

Minimizes KL-divergence to the empirical distribution

Inference problem: Which component z_i generated sample x_i?
FMM (Contd.)

- Generative Model
 - Sample $h \sim \alpha$
 - Sample $x \sim p(x|\theta_h)$
Generative Model

- Sample $h \sim \alpha$
- Sample $x \sim p(x|\theta_h)$

Given a set of samples $\mathcal{X} = \{x_1, \ldots, x_n\}$
FMM (Contd.)

- Generative Model
 - Sample \(h \sim \alpha \)
 - Sample \(x \sim p(x|\theta_h) \)

- Given a set of samples \(\mathcal{X} = \{x_1, \ldots, x_n\} \)
 - Estimation problem: Which set of parameters are most likely

\[
(\alpha^*, \Theta^*) = \arg\max_{(\alpha, \Theta)} \sum_{i=1}^{n} \log p(x_i|\alpha, \Theta)
\]
FMM (Contd.)

- Generative Model
 - Sample \(h \sim \alpha \)
 - Sample \(x \sim p(x|\theta_h) \)

- Given a set of samples \(\mathcal{X} = \{x_1, \ldots, x_n\} \)
 - Estimation problem: Which set of parameters are most likely
 \[
 (\alpha^*, \Theta^*) = \operatorname{argmax}_{(\alpha, \Theta)} \sum_{i=1}^{n} \log p(x_i | \alpha, \Theta)
 \]
 - Minimizes KL-divergence to the empirical distribution
Generative Model
- Sample $h \sim \alpha$
- Sample $x \sim p(x|\theta_h)$

Given a set of samples $\mathcal{X} = \{x_1, \ldots, x_n\}$
- Estimation problem: Which set of parameters are most likely

$$(\alpha^*, \Theta^*) = \arg\max_{(\alpha, \Theta)} \sum_{i=1}^{n} \log p(x_i|\alpha, \Theta)$$

- Minimizes KL-divergence to the empirical distribution
- Inference problem: Which component z_i generated sample x_i?
Learning Mixture Models

- Estimation: Need to maximize

\[
\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i | \theta_h) \right)
\]
Learning Mixture Models

- Estimation: Need to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i | \theta_h) \right)$$

- Direct optimization w.r.t. \((\alpha, \Theta)\) is “tricky”
Learning Mixture Models

• Estimation: Need to maximize

\[
\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i | \theta_h) \right)
\]

• Direct optimization w.r.t. \((\alpha, \Theta)\) is “tricky”
• Expectation Maximization (EM) is the standard approach
Learning Mixture Models

- Estimation: Need to maximize
 \[\sum_{i=1}^{n} \log \left(\sum_{h=1}^{k} \alpha_h p_h(x_i|\theta_h) \right) \]

- Direct optimization w.r.t. \((\alpha, \Theta)\) is “tricky”
- Expectation Maximization (EM) is the standard approach
- Recent years have seen progress on alternative methods
EM: The Basic Idea

- Let z_i be the latent component generating x_i
EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z|\alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i|\theta_{z_i}))$$
EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z|\alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i|\theta_{z_i}))$$

- A random variable, function of latent variables z_i
EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z|\alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i|\theta_{z_i}))$$

- A random variable, function of latent variables z_i
- EM implements the following:
EM: The Basic Idea

- Let \(z_i \) be the latent component generating \(x_i \)
- The complete log-likelihood is given by

\[
\log p(X, Z|\alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i|\theta_{z_i}))
\]

- A random variable, function of latent variables \(z_i \)
- EM implements the following:
 - Inference (E-step): Obtain the distributions \(p(z_i|x_i, \alpha, \Theta) \)
EM: The Basic Idea

- Let z_i be the latent component generating x_i
- The complete log-likelihood is given by

$$\log p(X, Z|\alpha, \Theta) = \sum_{i=1}^{n} \log(\alpha_{z_i} p_{z_i}(x_i|\theta_{z_i}))$$

- A random variable, function of latent variables z_i
- EM implements the following:
 - Inference (E-step): Obtain the distributions $p(z_i|x_i, \alpha, \Theta)$
 - Estimation (M-step): Obtain parameters (α, Θ) that maximize

$$E_Z[\log p(X, Z|\alpha, \Theta)]$$