Infinite Mixture Models
Latent Feature Models
Indian Buffet Process
Applications

CSci 8980: Advanced Topics in Graphical Models

Infinite Mixture Models, Indian Buffet Process

Instructor: Arindam Banerjee

October 30, 2007
Finite Mixture Models

Prior of cluster assignment is independent

\[
P(c|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta_{c_i}
\]
Finite Mixture Models

- Prior of cluster assignment is independent

\[P(c|\theta) = \prod_{i=1}^{N} p(x_{i}|\theta) = \prod_{i=1}^{N} \theta_{c_{i}} \]

- The mixture model is given by

\[P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(x_{i}|c_{i} = k)\theta_{k} \]
Finite Mixture Models

- Prior of cluster assignment is independent

\[P(c|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta_{c_i} \]

- The mixture model is given by

\[P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(x_i|c_i = k)\theta_k \]

- Define a (symmetric) Dirichlet prior over \(\theta \)

\[D \left(\frac{\alpha}{K}, \cdots, \frac{\alpha}{K} \right) = \frac{\Gamma(\frac{\alpha}{K})^K}{\Gamma(\alpha)} \]
Finite Mixture Models

- Prior of cluster assignment is independent

\[P(c|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta_{c_i} \]

- The mixture model is given by

\[P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(x_i|c_i = k) \theta_k \]

- Define a (symmetric) Dirichlet prior over \(\theta \)

\[D \left(\frac{\alpha}{K}, \cdots, \frac{\alpha}{K} \right) = \frac{\Gamma \left(\frac{\alpha}{K} \right)^K}{\Gamma(\alpha)} \]

- The prior model

\[\theta|\alpha \sim \text{Dirichlet} \left(\frac{\alpha}{K}, \cdots, \frac{\alpha}{K} \right) \]

\[c_i|\theta \sim \text{Discrete}(\theta) \]
finite mixture models (contd.)

- The marginal probability of assignment vector c

$$P(c) = \int_{\Delta_K} \prod_{i=1}^{N} P(c_i|\theta)p(\theta)d\theta$$

$$= \prod_{k=1}^{K} \frac{\Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

Note that $m_k = \sum_{i=1}^{N} \delta(c_i = k)$

Individual assignments are exchangeable, not independent

Distribution is over a partitioning

Have to assume K to be the maximum number of partitions
The marginal probability of assignment vector \(c \)

\[
P(c) = \int_{\Delta_K} \prod_{i=1}^{N} P(c_i | \theta) p(\theta) d\theta
\]

\[
= \prod_{k=1}^{K} \frac{\Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}
\]

Note that \(m_k = \sum_{i=1}^{N} \delta(c_i = k) \)
The marginal probability of assignment vector \(\mathbf{c} \)

\[
P(\mathbf{c}) = \int_{\Delta_K} \prod_{i=1}^{N} P(c_i|\theta)p(\theta)d\theta
\]

\[
= \prod_{k=1}^{K} \frac{\Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}
\]

Note that \(m_k = \sum_{i=1}^{N} \delta(c_i = k) \)

Individual assignments are exchangeable, not independent
The marginal probability of assignment vector \mathbf{c}

$$P(\mathbf{c}) = \int_{\Delta_K} \prod_{i=1}^{N} P(c_i|\theta)p(\theta)d\theta$$

$$= \frac{\prod_{k=1}^{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(\alpha)}{\Gamma(\frac{\alpha}{K})^K \Gamma(N + \alpha)}$$

- Note that $m_k = \sum_{i=1}^{N} \delta(c_i = k)$
- Individual assignments are exchangeable, not independent
- Distribution is over a partitioning
The marginal probability of assignment vector c

$$P(c) = \int_{\Delta^K} \prod_{i=1}^{N} P(c_i|\theta)p(\theta)d\theta$$

$$= \frac{\prod_{k=1}^{K} \Gamma\left(m_k + \frac{\alpha}{K}\right)}{\Gamma\left(\frac{\alpha}{K}\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

- Note that $m_k = \sum_{i=1}^{N} \delta(c_i = k)$
- Individual assignments are exchangeable, not independent
- Distribution is over a partitioning
- Have to assume K to be the maximum number of partitions
Infinite Mixture Models

- Assume infinitely many classes

\[
P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k
\]
Infinite Mixture Models

- Assume infinitely many classes

\[
P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k
\]

- One approach is to use a Dirichlet Process to get \(P(c) \)
Infinite Mixture Models

- Assume infinitely many classes

\[P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k \]

- One approach is to use a Dirichlet Process to get \(P(c) \)
- Alternatively, one can compute \(\lim_{K \to \infty} P(c) \)
Infinite Mixture Models

- Assume infinitely many classes

\[
P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k
\]

- One approach is to use a Dirichlet Process to get \(P(c) \)
- Alternatively, one can compute \(\lim_{K \to \infty} P(c) \)
- Let \(K_+ \) be the number of classes with \(m_k > 0 \), \(K = K_+ + K_0 \)
Infinite Mixture Models

Assume infinitely many classes

\[P(X|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{\infty} p(x_i|c_i = k)\theta_k \]

One approach is to use a Dirichlet Process to get \(P(c) \)

Alternatively, one can compute \(\lim_{K \to \infty} P(c) \)

Let \(K_+ \) be the number of classes with \(m_k > 0 \), \(K = K_+ + K_0 \)

Using \(\Gamma(x) = (x - 1)\Gamma(x - 1) \), we have

\[P(c) = \left(\frac{\alpha}{K} \right)^{K_+} \left(\prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} (j + \frac{\alpha}{K}) \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]
As $K \to \infty$, $P(c) \to 0$ for any particular c
Infinite Mixture Models (Contd.)

- As $K \to \infty$, $P(c) \to 0$ for any particular c
- However, $K_+ \leq N$, hence finitely many equivalence classes

\[
\lim_{K \to \infty} P(\mathcal{C}) = \frac{\alpha^K}{K_+!} \Gamma(\alpha) \Gamma(N + \alpha)
\]
As $K \to \infty$, $P(c) \to 0$ for any particular c

However, $K_+ \leq N$, hence finitely many equivalence classes

Assignments $\{1, 1, 2\}$ and $\{2, 2, 1\}$ are equivalent
Infinite Mixture Models (Contd.)

- As $K \to \infty$, $P(c) \to 0$ for any particular c
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - Assignments $\{1, 1, 2\}$ and $\{2, 2, 1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter
As $K \to \infty$, $P(c) \to 0$ for any particular c

However, $K_+ \leq N$, hence finitely many equivalence classes
- Assignments $\{1, 1, 2\}$ and $\{2, 2, 1\}$ are equivalent
- Induce the same partitioning, the label values do not matter
- Denote the partitioning induced by c as $[c]$
As $K \to \infty$, $P(c) \to 0$ for any particular c
However, $K_+ \leq N$, hence finitely many equivalence classes
 - Assignments $\{1,1,2\}$ and $\{2,2,1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter
 - Denote the partitioning induced by c as $[c]$
With $K = K_+ + K_0$ classes, $[c]$ has $K!/K_0!$ assignment vectors
As $K \to \infty$, $P(c) \to 0$ for any particular c

However, $K_+ \leq N$, hence finitely many equivalence classes

- Assignments $\{1, 1, 2\}$ and $\{2, 2, 1\}$ are equivalent
- Induce the same partitioning, the label values do not matter
- Denote the partitioning induced by c as $[c]$

With $K = K_+ + K_0$ classes, $[c]$ has $K!/K_0!$ assignment vectors

The probability of each assignment vector is the same, so

$$P([c]) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \left(\prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right)\right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$
Infinite Mixture Models (Contd.)

- As $K \to \infty$, $P(c) \to 0$ for any particular c
- However, $K_+ \leq N$, hence finitely many equivalence classes
 - Assignments $\{1, 1, 2\}$ and $\{2, 2, 1\}$ are equivalent
 - Induce the same partitioning, the label values do not matter
 - Denote the partitioning induced by c as $[c]$
- With $K = K_+ + K_0$ classes, $[c]$ has $K!/K_0!$ assignment vectors
- The probability of each assignment vector is the same, so

$$P([c]) = \frac{K!}{K_0!} \left(\frac{\alpha}{K} \right)^{K_+} \left(\prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \frac{j + \alpha}{K} \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$

- Taking limits as $K \to \infty$, we have

$$\lim_{K \to \infty} P([c]) = \alpha^{K_+} \left(\prod_{k=1}^{K_+} (m_k - 1)! \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}$$
Chinese Restaurant Process

- CRP gives a prior over partitions

\[P(c_i = k|c_1, \ldots, c_{i-1}) = \begin{cases} \frac{m_k}{i-1+\alpha} & k \leq K_+ \\ \frac{\alpha}{i-1+\alpha} & \text{otherwise} \end{cases} \]
Chinese Restaurant Process

- CRP gives a prior over partitions

\[P(c_i = k | c_1, \ldots, c_{i-1}) = \begin{cases} \frac{m_k}{i-1+\alpha} & k \leq K_+ \\ \frac{\alpha}{i-1+\alpha} & \text{otherwise} \end{cases} \]

- With \(N \) objects, the probability of a particular partition \([c]\) is

\[\alpha^{K_+} \left(\prod_{k=1}^{K_+} (m_k - 1)! \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]
Chinese Restaurant Process

- CRP gives a prior over partitions

\[P(c_i = k | c_1, \ldots, c_{i-1}) = \begin{cases} \frac{m_k}{i-1+\alpha} & k \leq K_+ \\ \frac{\alpha}{i-1+\alpha} & \text{otherwise} \end{cases} \]

- With \(N \) objects, the probability of a particular partition \([c]\) is

\[\alpha^{K+} \left(\prod_{k=1}^{K+} (m_k - 1)! \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

- Intuitive means of specifying a prior for infinite mixture models
Chinese Restaurant Process

- CRP gives a prior over partitions

 \[P(c_i = k|c_1, \ldots, c_{i-1}) = \begin{cases} \frac{m_k}{i-1+\alpha} & k \leq K_+ \\ \frac{\alpha}{i-1+\alpha} & \text{otherwise} \end{cases} \]

- With \(N \) objects, the probability of a particular partition \([c]\) is

 \[\alpha^{K_+} \left(\prod_{k=1}^{K_+} (m_k - 1)! \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

- Intuitive means of specifying a prior for infinite mixture models
- Sequential process to generate exchangeable class assignments
Figure 3: Feature matrices. A binary matrix Z, as shown in (a), can be used as the basis for sparse infinite latent feature models, indicating which features take non-zero values. Element-wise multiplication of Z by a matrix V of continuous values gives a representation like that shown in (b). If V contains discrete values, we obtain a representation like that shown in (c).
A latent feature has two components
Latent Feature Models (Contd.)

- A latent feature has two components
 - A distribution $P(F)$ over features
A latent feature has two components
 - A distribution $P(F)$ over features
 - A distribution $P(X|F)$ relating observations and features
A latent feature has two components
- A distribution $P(F)$ over features
- A distribution $P(X|F)$ relating observations and features

Consider $F = Z \otimes V$ with $P(F) = P(Z)P(V)$ where
A latent feature has two components
- A distribution $P(F)$ over features
- A distribution $P(X|F)$ relating observations and features

Consider $F = Z \otimes V$ with $P(F) = P(Z)P(V)$ where
- Z is a binary matrix, indicating which features are on
A latent feature has two components

- A distribution $P(F)$ over features
- A distribution $P(X|F)$ relating observations and features

Consider $F = Z \otimes V$ with $P(F) = P(Z)P(V)$ where

- Z is a binary matrix, indicating which features are on
- V is a matrix containing feature values
Latent Feature Models (Contd.)

- A latent feature has two components
 - A distribution $P(F)$ over features
 - A distribution $P(X|F)$ relating observations and features
- Consider $F = Z \otimes V$ with $P(F) = P(Z)P(V)$ where
 - Z is a binary matrix, indicating which features are on
 - V is a matrix containing feature values
- Z determines the effective dimensionality of the model
Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
Finite Feature Models

- Consider \(N \) objects and \(K \) features, \(Z \) is \(N \times K \)
- An object contains feature \(k \) with Bernoulli probability \(\pi_k \)
Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k
- The probability of a binary matrix Z

$$P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1 - \pi_k)^{N-m_k}$$
Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k
- The probability of a binary matrix Z

$$P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1 - \pi_k)^{N-m_k}$$

- Define a Beta prior $B(r, s)$ over π_k

$$p(\pi_k) = \frac{\Gamma(r + s)}{\Gamma(r)\Gamma(s)} \pi_k^{r-1}(1 - \pi_k)^{s-1}$$
Finite Feature Models

- Consider N objects and K features, Z is $N \times K$
- An object contains feature k with Bernoulli probability π_k
- The probability of a binary matrix Z

$$P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1 - \pi_k)^{N-m_k}$$

- Define a Beta prior $B(r, s)$ over π_k

$$p(\pi_k) = \frac{\Gamma(r + s)}{\Gamma(r)\Gamma(s)} \pi_k^{r-1}(1 - \pi_k)^{s-1}$$

- With $r = \alpha/K$, $s = 1$, we have $p(\pi_k) = \alpha/K \pi_k^{\alpha/K-1}$
Finite Feature Models

- Consider \(N \) objects and \(K \) features, \(Z \) is \(N \times K \)
- An object contains feature \(k \) with Bernoulli probability \(\pi_k \)
- The probability of a binary matrix \(Z \)
 \[
P(Z|\pi) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k}(1 - \pi_k)^{N-m_k}
\]

- Define a Beta prior \(B(r, s) \) over \(\pi_k \)
 \[
p(\pi_k) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \pi_k^{r-1}(1 - \pi_k)^{s-1}
\]

- With \(r = \alpha/K, s = 1 \), we have \(p(\pi_k) = \alpha/K \pi_k^{\alpha/K-1} \)
- Generative model
 \[
 \pi_k|\alpha \sim \text{Beta}(\alpha/K, 1) \\
 z_{ik}|\pi_k \sim \text{Bernoulli}(\pi_k)
 \]
The marginal distribution of Z

$$P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} P(z_{ik}|\pi_k) \right) p(\pi_k) d\pi_k$$

$$= \prod_{k=1}^{K} \frac{\alpha \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{K \Gamma(N + 1 + \frac{\alpha}{K})}$$
The marginal distribution of Z

$$P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} P(z_{ik} | \pi_k) \right) p(\pi_k) d\pi_k$$

$$= \prod_{k=1}^{K} \frac{\alpha \Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

The expected number of non-zeroes is bounded for any K
Finite Feature Models (Contd.)

- The marginal distribution of Z

$$P(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} P(z_{ik} | \pi_k) \right) p(\pi_k) d\pi_k$$

$$= \prod_{k=1}^{K} \frac{\alpha \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{\frac{\alpha}{K} \Gamma(N + 1 + \frac{\alpha}{K})}$$

- The expected number of non-zeroes is bounded for any K

- Since each column is independent

$$E[1^T Z 1] = KE[1^T z_k] = K \sum_{i=1}^{N} E(z_{ik}) = KN \frac{\alpha/K}{1 + \alpha/K} \leq N\alpha$$
Equivalence Classes

Figure 4: Binary matrices and the left-ordered form. The binary matrix on the left is transformed into the left-ordered binary matrix on the right by the function \(\text{lof}(\cdot) \). This left-ordered matrix was generated from the exchangeable Indian buffet process with \(\alpha = 10 \). Empty columns are omitted from both matrices.
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class $[Z]$
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class \([Z]\)
 - Two matrices are equivalent if \(\text{lof}(Z) = \text{lof}(Y)\)
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class \([Z]\)
 - Two matrices are equivalent if \(\text{lof}(Z) = \text{lof}(Y)\)
 - Inference w.r.t. \(\text{lof}\) is appropriate for models unaffected by feature ordering
Left-ordering defines an equivalence class $[Z]$

- Two matrices are equivalent if $\text{lof}(Z) = \text{lof}(Y)$
- Inference w.r.t. lof is appropriate for models unaffected by feature ordering
- All linear models belong to this category
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class \([Z]\)
 - Two matrices are equivalent if \(\text{lof}(Z) = \text{lof}(Y)\)
 - Inference w.r.t. \(\text{lof}\) is appropriate for models unaffected by feature ordering
 - All linear models belong to this category

- How to compute cardinality of \([Z]\)
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class \([Z]\)
 - Two matrices are equivalent if \(\text{lof}(Z) = \text{lof}(Y)\)
 - Inference w.r.t. \(\text{lof}\) is appropriate for models unaffected by feature ordering
 - All linear models belong to this category

- How to compute cardinality of \([Z]\)
 - History \(h\) is the decimal equivalent of the column \(z_k\)
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class \([Z]\)
 - Two matrices are equivalent if \(\text{lof}(Z) = \text{lof}(Y)\)
 - Inference w.r.t. \(\text{lof}\) is appropriate for models unaffected by feature ordering
 - All linear models belong to this category

- How to compute cardinality of \([Z]\)
 - History \(h\) is the decimal equivalent of the column \(z_k\)
 - \(K_h\) denote the number of features having history \(h\)
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class $[Z]$
 - Two matrices are equivalent if $lof(Z) = lof(Y)$
 - Inference w.r.t. lof is appropriate for models unaffected by feature ordering
 - All linear models belong to this category

- How to compute cardinality of $[Z]$
 - History h is the decimal equivalent of the column z_k
 - K_h denote the number of features having history h
 - K_0 denote the number of features having $m_k = 0$
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class \([Z]\)
 - Two matrices are equivalent if \(\text{lof}(Z) = \text{lof}(Y)\)
 - Inference w.r.t. \(\text{lof}\) is appropriate for models unaffected by feature ordering
 - All linear models belong to this category

- How to compute cardinality of \([Z]\)
 - History \(h\) is the decimal equivalent of the column \(z_k\)
 - \(K_h\) denote the number of features having history \(h\)
 - \(K_0\) denote the number of features having \(m_k = 0\)
 - Then, \(K_+ = \sum +h = 1^{2^N-1}K_h\) and \(K = K_+ + K_0\)
Equivalence Classes (Contd.)

- Left-ordering defines an equivalence class \([Z]\)
 - Two matrices are equivalent if \(\text{lof}(Z) = \text{lof}(Y)\)
 - Inference w.r.t. \(\text{lof}\) is appropriate for models unaffected by feature ordering
 - All linear models belong to this category

- How to compute cardinality of \([Z]\)
 - History \(h\) is the decimal equivalent of the column \(z_k\)
 - \(K_h\) denote the number of features having history \(h\)
 - \(K_0\) denote the number of features having \(m_k = 0\)
 - Then, \(K_+ = \sum_h +h = 1^{2^N-1}K_h\) and \(K = K_+ + K_0\)

- Then, the cardinality of \([Z]\) is

\[
\binom{K}{K_0 \cdots K_{2^N-1}} = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!}
\]
Infinite Feature Models

- The marginal probability of an equivalence class

\[
P([Z]) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}
\]
The marginal probability of an equivalence class

\[P([Z]) = \frac{K!}{\prod_{h=0}^{2N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})} \]

Taking \(K \to \infty \), with \(H_N = \sum_{j=1}^{N} 1/j \), we get

\[\lim_{K \to \infty} P([Z]) = \frac{\alpha^{K_+}}{\prod_{h=1}^{2N-1} K_h!} \exp(-\alpha H_N) \prod_{k=1}^{K_+} \frac{(N - m_k)! (m_k - 1)!}{N!} \]
The marginal probability of an equivalence class

\[P([Z]) = \frac{K!}{\prod_{h=0}^{2N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{K \Gamma(N + 1 + \frac{\alpha}{K})} \]

Taking \(K \to \infty \), with \(H_N = \sum_{j=1}^{N} 1/j \), we get

\[\lim_{K \to \infty} P([Z]) = \frac{\alpha^{K_+}}{\prod_{h=1}^{2N-1} K_h!} \exp(-\alpha H_N) \prod_{k=1}^{K_+} \frac{(N - m_k)!(m_k - 1)!}{N!} \]

Exchangeable distribution, only depending on \(m_k \) and \(K_h \)
Infinite Feature Models

- The marginal probability of an equivalence class

\[P([Z]) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^{K} \frac{\alpha \Gamma(m_k + \frac{\alpha}{K})\Gamma(N - m_k + 1)}{K \Gamma(N + 1 + \frac{\alpha}{K})} \]

- Taking \(K \to \infty \), with \(H_N = \sum_{j=1}^{N} 1/j \), we get

\[\lim_{K \to \infty} P([Z]) = \frac{\alpha^{K_+}}{\prod_{h=1}^{2^N-1} K_h!} \exp(-\alpha H_N) \prod_{k=1}^{K_+} \frac{(N - m_k)!(m_k - 1)!}{N!} \]

- Exchangeable distribution, only depending on \(m_k \) and \(K_h \)
- The probability does not change by re-ordering objects
Indian Buffet Process

- Consider Indian restaurant with infinite dishes
Indian Buffet Process

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
Indian Buffet Process

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
Indian Buffet Process

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first Poisson(α) dishes
Indian Buffet Process

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first Poisson(α) dishes
 - The i^{th} customer moves along the buffet
Consider Indian restaurant with infinite dishes

Each customer chooses dishes following a sequential process

The generative process
- First customer takes the first Poisson(\(\alpha\)) dishes
- The \(i^{th}\) customer moves along the buffet
 - Let \(m_k\) be the number of previous customers who tried dish \(k\)
Indian Buffet Process

- Consider Indian restaurant with infinite dishes
- Each customer chooses dishes following a sequential process
- The generative process
 - First customer takes the first $\text{Poisson}(\alpha)$ dishes
 - The i^{th} customer moves along the buffet
 - Let m_k be the number of previous customers who tried dish k
 - Samples popular dishes with probability $\frac{m_k}{i}$
Consider Indian restaurant with infinite dishes
Each customer chooses dishes following a sequential process
The generative process
- First customer takes the first $\text{Poisson}(\alpha)$ dishes
- The i^{th} customer moves along the buffet
 - Let m_k be the number of previous customers who tried disk k
 - Samples popular dishes with probability $\frac{m_k}{i}$
 - Samples $\text{Poisson}(\frac{\alpha}{i})$ new dishes
Consider an Indian restaurant with infinite dishes. Each customer chooses dishes following a sequential process. The generative process is as follows:

1. **First customer** takes the first Poisson(α) dishes.
2. **The i^{th} customer** moves along the buffet.
 - Let m_k be the number of previous customers who tried dish k.
 - Samples popular dishes with probability $\frac{m_k}{i}$.
 - Samples Poisson($\frac{\alpha}{i}$) new dishes.

The process generates a binary matrix sequentially.
Consider Indian restaurant with infinite dishes
Each customer chooses dishes following a sequential process
The generative process
 - First customer takes the first $\text{Poisson}(\alpha)$ dishes
 - The i^{th} customer moves along the buffet
 - Let m_k be the number of previous customers who tried disk k
 - Samples popular dishes with probability $\frac{m_k}{i}$
 - Samples $\text{Poisson}(\frac{\alpha}{i})$ new dishes
The process generates a binary matrix sequentially
The lof equivalence class has the distribution $P([Z])$
Figure 5: A binary matrix generated by the Indian buffet process with $\alpha = 10$.
Inference by Gibbs Sampling

For a finite latent feature model, the full conditional

\[P(z_{ik} = 1|Z_{-(i,k)}, X) \propto P(z_{ik} = 1|Z_{-(i,k)})P(X|Z) \]
Inference by Gibbs Sampling

- For a finite latent feature model, the full conditional

\[P(z_{ik} = 1|Z_{-(i,k)}, X) \propto P(z_{ik} = 1|Z_{-(i,k)})P(X|Z) \]

- For the Beta-Bernoulli model

\[P(z_{ik} = 1|z_{-i,k}) = \int_0^1 P(z_{ik}|\pi_k)P(\pi_k|z_{-i,k})d\pi_k = \frac{m_{-i,k} + \alpha/K}{N + \alpha/K} \]
Inference by Gibbs Sampling

- For a finite latent feature model, the full conditional

\[P(z_{ik} = 1|Z_{-(i,k)}, X) \propto P(z_{ik} = 1|Z_{-(i,k)})P(X|Z) \]

- For the Beta-Bernoulli model

\[P(z_{ik} = 1|z_{-i,k}) = \int_0^1 P(z_{ik}|\pi_k)P(\pi_k|z_{-i,k})d\pi_k = \frac{m_{-i,k} + \alpha/K}{N + \alpha/K} \]

- Only depends on the assignments for feature \(k \), since columns are independent
Inference by Gibbs Sampling

- For a finite latent feature model, the full conditional

\[P(z_{ik} = 1 | Z_{-(i,k)}, X) \propto P(z_{ik} = 1 | Z_{-(i,k)})P(X|Z) \]

- For the Beta-Bernoulli model

\[P(z_{ik} = 1 | z_{-i,k}) = \int_0^1 P(z_{ik} | \pi_k)P(\pi_k | z_{-i,k})d\pi_k = \frac{m_{-i,k} + \alpha / K}{N + \alpha / K} \]

- Only depends on the assignments for feature \(k \), since columns are independent

- For the infinite case, for \(m_k > 0 \)

\[P(z_{ik} = 1 | z_{-i,k}) = \frac{m_{-i,k}}{N} \]
Inference by Gibbs Sampling

- For a finite latent feature model, the full conditional

\[P(z_{ik} = 1|Z_{-(i,k)}, X) \propto P(z_{ik} = 1|Z_{-(i,k)})P(X|Z) \]

- For the Beta-Bernoulli model

\[P(z_{ik} = 1|z_{-i,k}) = \int_0^1 P(z_{ik}|\pi_k)P(\pi_k|z_{-i,k})d\pi_k = \frac{m_{-i,k} + \alpha/K}{N + \alpha/K} \]

- Only depends on the assignments for feature \(k \), since columns are independent

- For the infinite case, for \(m_k > 0 \)

\[P(z_{ik} = 1|z_{-i,k}) = \frac{m_{-i,k}}{N} \]

- New features should be drawn from \(\text{Poisson}(\frac{\alpha}{N}) \)
Finite Linear Gaussian Model

- Observation $x_i \in \mathbb{R}^d$ is generated from a latent model
Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i \mathbf{A}$ and covariance $\Sigma_X = \sigma_X^2 I$
Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i \mathbf{A}$ and covariance $\Sigma_X = \sigma_X^2 \mathbf{I}$
 - \mathbf{z}_i is a $1 \times K$ binary vector, \mathbf{A} is $K \times D$ matrix
Finite Linear Gaussian Model

- Observation $x_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $z_i A$ and covariance $\Sigma_X = \sigma_X^2 I$
 - z_i is a $1 \times K$ binary vector, A is $K \times D$ matrix
- In matrix notation $E[X] = ZA$, so that

$$P(X|Z, A, \sigma_X) = \frac{1}{(2\pi \sigma_X^2)^{ND/2}} \exp \left\{ -\frac{1}{2\sigma_X^2} \text{tr}((X - ZA)^T(X - ZA)) \right\}$$
Finite Linear Gaussian Model

- Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
 - Gaussian distribution with mean $\mathbf{z}_i \mathbf{A}$ and covariance $\Sigma_X = \sigma_X^2 \mathbf{I}$
 - \mathbf{z}_i is a $1 \times K$ binary vector, \mathbf{A} is $K \times D$ matrix

- In matrix notation $E[\mathbf{X}] = \mathbf{Z} \mathbf{A}$, so that

$$P(\mathbf{X}|\mathbf{Z}, \mathbf{A}, \sigma_X) = \frac{1}{(2\pi \sigma_X^2)^{ND/2}} \exp \left\{ -\frac{1}{2\sigma_X^2} \text{tr}((\mathbf{X} - \mathbf{Z} \mathbf{A})^T(\mathbf{X} - \mathbf{Z} \mathbf{A})) \right\}$$

- Bayesian model with Gaussian prior over \mathbf{A}

$$P(\mathbf{A}|\sigma_A) = \frac{1}{(2\pi \sigma_A^2)^{KD/2}} \exp \left\{ -\frac{1}{\sigma_A^2} \text{tr}(\mathbf{A}^T \mathbf{A}) \right\}$$
Observation $\mathbf{x}_i \in \mathbb{R}^d$ is generated from a latent model
- Gaussian distribution with mean $\mathbf{z}_i \mathbf{A}$ and covariance $\Sigma_X = \sigma_X^2 \mathbf{I}$
- \mathbf{z}_i is a $1 \times K$ binary vector, \mathbf{A} is $K \times D$ matrix

In matrix notation $E[\mathbf{X}] = \mathbf{Z}\mathbf{A}$, so that

$$P(\mathbf{X}|\mathbf{Z}, \mathbf{A}, \sigma_X) = \frac{1}{(2\pi \sigma_X^2)^{ND/2}} \exp \left\{ -\frac{1}{2\sigma_X^2} \text{tr}((\mathbf{X} - \mathbf{Z}\mathbf{A})^T(\mathbf{X} - \mathbf{Z}\mathbf{A})) \right\}$$

Bayesian model with Gaussian prior over \mathbf{A}

$$P(\mathbf{A}|\sigma_A) = \frac{1}{(2\pi \sigma_A^2)^{KD/2}} \exp \left\{ -\frac{1}{\sigma_A^2} \text{tr}(\mathbf{A}^T \mathbf{A}) \right\}$$

The model remains well defined when $K \to \infty$
Results
Results (Contd.)

- Log $P(x, z)$
- K_+
- σ^2
- σ_x
- α

Iteration vs. Log $P(x, z)$, K_+, σ^2, σ_x, α.