CSci 8980: Advanced Topics in Graphical Models

Dirichlet Processes

Instructor: Arindam Banerjee

October 4, 2007
Given a set X, let 2^X be the power set.
Measurable Space

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if

A set \mathcal{A} is called a σ-algebra if:

1. \mathcal{A} contains X.
2. \mathcal{A} is closed under complements.
3. \mathcal{A} is closed under countable unions.
4. Hence, \mathcal{A} is closed under countable intersections.

Examples:

- Let $X = \{a, b, c, d\}$ and $\mathcal{A} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$.
- Let $X = \mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}.

Tuple (X, \mathcal{A}) is called a measurable space.

One can define a measure μ on a measurable space.
Measurable Space

- Given a set X, let 2^X be the power set.
- $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if:
 - \mathcal{A} contains X.

Measurable Space

Given a set X, let 2^X be the power set.

$\mathcal{A} \subseteq 2^X$ is called a σ-algebra if

1. \mathcal{A} contains X
2. \mathcal{A} is closed under complements
Given a set X, let 2^X be the power set

A $\subseteq 2^X$ is called a σ-algebra if

1. A contains X
2. A is closed under complements
3. A is closed under countable unions
Measurable Space

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if
 1. \mathcal{A} contains X
 2. \mathcal{A} is closed under complements
 3. \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
Measurable Space

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if
 1. \mathcal{A} contains X
 2. \mathcal{A} is closed under complements
 3. \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
- Examples
Measurable Space

- Given a set X, let 2^X be the power set.
- $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if:
 1. \mathcal{A} contains X.
 2. \mathcal{A} is closed under complements.
 3. \mathcal{A} is closed under countable unions.
- Hence, \mathcal{A} is closed under countable intersections.
- Examples:
 - $X = \{a, b, c, d\}$, and $\mathcal{A} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$.
Measurable Space

Given a set X, let 2^X be the power set. $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if:

1. \mathcal{A} contains X
2. \mathcal{A} is closed under complements
3. \mathcal{A} is closed under countable unions

Hence, \mathcal{A} is closed under countable intersections

Examples

- $X = \{a, b, c, d\}$, and $\mathcal{A} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$
- $X = \mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}
Measurable Space

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if
 1. \mathcal{A} contains X
 2. \mathcal{A} is closed under complements
 3. \mathcal{A} is closed under countable unions
- Hence, \mathcal{A} is closed under countable intersections
- Examples
 - $X = \{a, b, c, d\}$, and $\mathcal{A} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$
 - $X = \mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}
- Tuple (X, \mathcal{A}) is called a measurable space
Measurable Space

- Given a set X, let 2^X be the power set
- $\mathcal{A} \subseteq 2^X$ is called a σ-algebra if
 1. \mathcal{A} contains X
 2. \mathcal{A} is closed under complements
 3. \mathcal{A} is closed under countable unions

- Hence, \mathcal{A} is closed under countable intersections

- Examples
 - $X = \{a, b, c, d\}$, and $\mathcal{A} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$
 - $X = \mathbb{R}$, and \mathcal{A} is open intervals in \mathbb{R}

- Tuple (X, \mathcal{A}) is called a measurable space

- One can define a measure μ on a measurable space
Measurable Space (Contd.)

- Measurable function
Measurable Space (Contd.)

- Measurable function
 - Function between two measurable spaces
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces \((X, \mathcal{A})\) and \((Y, \mathcal{B})\)

A measurable function \(f: X \mapsto Y\) is measurable if

\[
\forall b \in \mathcal{B}, f^{-1}(b) \in \mathcal{A}
\]

Example: Random variables are measurable functions

For real-valued random variables, \(Y = \mathbb{R}\)

A measure is a function \(\mu: \mathcal{A} \mapsto [0, \infty]\) such that

\[
\mu(\emptyset) = 0, \quad \text{and}
\]

For a countable sequence of pairwise disjoint sets \(E_1, E_2, \ldots\)

\[
\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)
\]

A probability measure satisfies

\[
P(X) = 1
\]

\((X, \mathcal{A}, P)\) is called a probability space
Measurable Space (Contd.)

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces \((X, \mathcal{A})\) and \((Y, \mathcal{B})\)
 - \(f : X \mapsto Y\) is measurable if \(\forall b \in \mathcal{B}, f^{-1}(b) \in \mathcal{A}\)

Example

Random variables are measurable functions

For real-valued random variables, \(Y = \mathbb{R}\)

A measure is a function \(\mu : \mathcal{A} \mapsto [0, \infty]\) such that

- \(\mu(\emptyset) = 0\)
- For a countable sequence of pairwise disjoint sets \(E_1, E_2, \ldots\)
 \(\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)\)

A probability measure satisfies \(P(X) = 1\)

\((X, \mathcal{A}, P)\) is called a probability space
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces \((X, A)\) and \((Y, \mathcal{B})\)
 - \(f : X \mapsto Y\) is measurable if \(\forall b \in \mathcal{B}, f^{-1}(b) \in A\)

- **Example**
Measurable Space (Contd.)

- Measurable function
 - Function between two measurable spaces
 - Consider two spaces \((X, A)\) and \((Y, B)\)
 - \(f : X \mapsto Y\) is measurable if \(\forall b \in B, f^{-1}(b) \in A\)

- Example
 - Random variables are measurable functions
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces \((X, A)\) and \((Y, B)\)
 - \(f : X \mapsto Y\) is measurable if \(\forall b \in B, f^{-1}(b) \in A\)

- **Example**
 - Random variables are measurable functions
 - For real-valued random variables, \(Y = \mathbb{R}\)
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces \((X, \mathcal{A})\) and \((Y, \mathcal{B})\)
 - \(f : X \leftrightarrow Y\) is measurable if \(\forall b \in \mathcal{B}, f^{-1}(b) \in \mathcal{A}\)

- **Example**
 - Random variables are measurable functions
 - For real-valued random variables, \(Y = \mathbb{R}\)

- A measure is a function \(\mu : \mathcal{A} \leftrightarrow [0, \infty]\) such that

Measurable function

- Function between two measurable spaces
- Consider two spaces \((X, \mathcal{A})\) and \((Y, \mathcal{B})\)
- \(f : X \leftrightarrow Y\) is measurable if \(\forall b \in \mathcal{B}, f^{-1}(b) \in \mathcal{A}\)

Example

- Random variables are measurable functions
- For real-valued random variables, \(Y = \mathbb{R}\)

A measure is a function \(\mu : \mathcal{A} \leftrightarrow [0, \infty]\) such that
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces \((X, \mathcal{A})\) and \((Y, \mathcal{B})\)
 - \(f : X \mapsto Y\) is measurable if \(\forall b \in \mathcal{B}, f^{-1}(b) \in \mathcal{A}\)

- **Example**
 - Random variables are measurable functions
 - For real-valued random variables, \(Y = \mathbb{R}\)

- A measure is a function \(\mu : \mathcal{A} \mapsto [0, \infty]\) such that
 - \(\mu(\emptyset) = 0\), and
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces \((X, \mathcal{A})\) and \((Y, \mathcal{B})\)
 - \(f : X \mapsto Y\) is measurable if \(\forall b \in \mathcal{B}, f^{-1}(b) \in \mathcal{A}\)
- **Example**
 - Random variables are measurable functions
 - For real-valued random variables, \(Y = \mathbb{R}\)
- A measure is a function \(\mu : \mathcal{A} \mapsto [0, \infty]\) such that
 - \(\mu(\emptyset) = 0\), and
 - For a countable sequence of pairwise disjoint sets \(E_1, E_2, \ldots\)

\[
\mu \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} \mu(E_i)
\]
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces (X, \mathcal{A}) and (Y, \mathcal{B})
 - $f : X \mapsto Y$ is measurable if $\forall b \in \mathcal{B}, f^{-1}(b) \in \mathcal{A}$

- **Example**
 - Random variables are measurable functions
 - For real-valued random variables, $Y = \mathbb{R}$

- **A measure is a function** $\mu : \mathcal{A} \mapsto [0, \infty]$ such that
 - $\mu(\emptyset) = 0$, and
 - For a countable sequence of pairwise disjoint sets E_1, E_2, \ldots

$$
\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)
$$

- A probability measure satisfies $P(X) = 1$
Measurable Space (Contd.)

- **Measurable function**
 - Function between two measurable spaces
 - Consider two spaces \((X, A)\) and \((Y, B)\)
 - \(f : X \rightarrow Y\) is measurable if \(\forall b \in B, f^{-1}(b) \in A\)

- **Example**
 - Random variables are measurable functions
 - For real-valued random variables, \(Y = \mathbb{R}\)

- **A measure is a function** \(\mu : A \rightarrow [0, \infty]\) such that
 - \(\mu(\emptyset) = 0\), and
 - For a countable sequence of pairwise disjoint sets \(E_1, E_2, \ldots\)
 \[
 \mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)
 \]

- A probability measure satisfies \(P(X) = 1\)
- \((X, A, P)\) is called a probability space
Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
How to define random probability measures P over (X, \mathcal{A})

Consider any sequence of sets $A_1, \ldots, A_m (A_i \in \mathcal{A})$
How to define random probability measures P over (X, \mathcal{A})
Consider any sequence of sets $A_1, \ldots, A_m (A_i \in \mathcal{A})$
Define joint distribution $(P(A_1), \ldots, P(A_m))$
How to define random probability measures P over (X, \mathcal{A})

Consider any sequence of sets $A_1, \ldots, A_m (A_i \in \mathcal{A})$

Define joint distribution $(P(A_1), \ldots, P(A_m))$

Show $\exists \mathcal{P}$ on $([0, 1]^\mathcal{A}, \mathcal{F}^\mathcal{A})$
Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_1, \ldots, A_m (A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P}$ on $([0, 1]^\mathcal{A}, \mathcal{F}^\mathcal{A})$
 - \mathcal{P} yields the distributions P
Distribution Over Distributions

- How to define random probability measures P over (X, A)
- Consider any sequence of sets $A_1, \ldots, A_m (A_i \in A)$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P}$ on $([0, 1]^A, \mathcal{F}^A)$
 - \mathcal{P} yields the distributions P
 - $[0, 1]^A$ is the space of all functions P from $A \mapsto [0, 1]$
Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_1, \ldots, A_m (A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P}$ on $([0, 1]^A, \mathcal{F}^A)$
 - \mathcal{P} yields the distributions P
 - $[0, 1]^A$ is the space of all functions P from $\mathcal{A} \mapsto [0, 1]$
 - With $P(X) = 1$ these functions are probability distributions
Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_1, \ldots, A_m (A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P}$ on $([0, 1]^\mathcal{A}, \mathcal{F}^\mathcal{A})$
 - \mathcal{P} yields the distributions P
 - $[0, 1]^\mathcal{A}$ is the space of all functions P from $\mathcal{A} \mapsto [0, 1]$
 - With $P(X) = 1$ these functions are probability distributions
- Goal: To construct such a \mathcal{P} over probability distributions
Distribution Over Distributions

- How to define random probability measures P over (X, \mathcal{A})
- Consider any sequence of sets $A_1, \ldots, A_m (A_i \in \mathcal{A})$
- Define joint distribution $(P(A_1), \ldots, P(A_m))$
- Show $\exists \mathcal{P}$ on $([0, 1]^A, \mathcal{F}^A)$
 - \mathcal{P} yields the distributions P
 - $[0, 1]^A$ is the space of all functions P from $\mathcal{A} \mapsto [0, 1]$
 - With $P(X) = 1$ these functions are probability distributions
- Goal: To construct such a \mathcal{P} over probability distributions
- Parametric vs non-parametric Bayes
Constructing \mathbb{P}

- It is convenient to work with a partition of X
Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i$; $B_i \cap B_j = \emptyset, \forall i \neq j$; $\bigcup_{i=1}^{k} B_i = X$
Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i$; $B_i \cap B_j = \emptyset, \forall i \neq j$; $\cup_{i=1}^{k} B_i = X$
- Define random probability P as follows:
Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i$; $B_i \cap B_j = \emptyset, \forall i \neq j$; $\bigcup_{i=1}^{k} B_i = X$
- Define random probability P as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$
Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i$; $B_i \cap B_j = \emptyset, \forall i \neq j$; $\cup_{i=1}^{k} B_i = X$
- Define random probability P as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$
 - Use this to define joint distribution $(P(A_1), \ldots, P(A_m))$
Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i$; $B_i \cap B_j = \emptyset, \forall i \neq j$; $\bigcup_{i=1}^k B_i = X$
- Define random probability P as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$
 - Use this to define joint distribution $(P(A_1), \ldots, P(A_m))$
- For arbitrary sets A_1, \ldots, A_m, with $\gamma_j = 0$ or 1, define
 $$B_{\gamma_1, \ldots, \gamma_m} = \bigcap_{j=1}^m A_j^{\gamma_j}$$
Constructing \mathcal{P}

- It is convenient to work with a partition of X
- For any k, (B_1, \ldots, B_k) is a partition if
 - $B_i \in \mathcal{A}, \forall i$; $B_i \cap B_j = \emptyset, \forall i \neq j$; $\bigcup_{i=1}^{k} B_i = X$
- Define random probability P as follows:
 - Define joint distribution $(P(B_1), \ldots, P(B_k))$
 - Use this to define joint distribution $(P(A_1), \ldots, P(A_m))$
- For arbitrary sets A_1, \ldots, A_m, with $\gamma_j = 0$ or 1, define
 $$B_{\gamma_1, \ldots, \gamma_m} = \bigcap_{j=1}^{m} A_{j}^{\gamma_j}$$
- Then $\{B_{\gamma_1, \ldots, \gamma_m}\}$ is a valid partition of X
Constructing \mathcal{P} (Contd.)

- We have a valid partition $\{B_{\gamma_1, \ldots, \gamma_m}\}$
Constructing \mathcal{P} (Contd.)

- We have a valid partition $\{B_{\gamma_1, \ldots, \gamma_m}\}$
- Now, define a joint distribution over partitions

\[
\{P(B_{\gamma_1, \ldots, \gamma_m}); \gamma_j = 0 \text{ or } 1, j = 1, \ldots, m\}
\]
Constructing \mathcal{P} (Contd.)

- We have a valid partition \(\{B_{\gamma_1, \ldots, \gamma_m}\} \)
- Now, define a joint distribution over partitions

\[
\{P(B_{\gamma_1, \ldots, \gamma_m}); \gamma_j = 0 \text{ or } 1, j = 1, \ldots, m\}
\]

- The joint distribution over \((P(A_1), \ldots, P(A_m))\)

\[
P(A_i) = \sum_{(\gamma_1, \ldots, \gamma_m) \atop \gamma_i = 1} P(B_{\gamma_1, \ldots, \gamma_m})
\]
A Consistency Requirement

- There is one consistency requirement we need for $P(B_1, \cdots, B_k)$
A Consistency Requirement

- There is one consistency requirement we need for $P(B_1, \cdots, B_k)$
- Consider two partitions $B' = (B'_1, \cdots, B'_{k'})$ and $B = (B_1, \cdots, B_k)$
A Consistency Requirement

- There is one consistency requirement we need for $P(B_1, \cdots, B_k)$
- Consider two partitions $B' = (B'_1, \cdots, B'_k)$ and $B = (B_1, \cdots, B_k)$
- Let B' be a refinement of B, i.e.,

\[
B_1 = \bigcup_1^{r_1} B'_i, \quad B_2 = \bigcup_{r_1+1}^{r_2} B'_i, \quad \cdots, \quad B_k = \bigcup_{r_{k-1}+1}^{k'} B'_i
\]
A Consistency Requirement

- There is one consistency requirement we need for
 \(P(B_1, \cdots, B_k) \)

- Consider two partitions \(B' = (B'_1, \cdots, B'_k) \) and \(B = (B_1, \cdots, B_k) \)

- Let \(B' \) be a refinement of \(B \), i.e.,
 \[
 B_1 = \bigcup_{i=1}^{r_1} B'_i, \quad B_2 = \bigcup_{i=r_1+1}^{r_2} B'_i, \cdots, \quad B_k = \bigcup_{i=r_{k-1}+1}^{k'} B'_i
 \]

- Then the distribution of \((P(B_1), \cdots, P(B_k))\) is identical to that of
 \[
 \left(\sum_{i=1}^{r_1} P(B'_i), \sum_{i=r_1+1}^{r_2} P(B'_i), \cdots, \sum_{i=r_{k-1}+1}^{k'} P(B'_i) \right)
 \]
A Key Lemma

Lemma: If the joint distribution \((P(B_1), \cdots, P(B_k)) \) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m)\), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P} \) which yields these distribution.
A Key Lemma

- Lemma: If the joint distribution \((P(B_1), \cdots, P(B_k)) \) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m) \), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P} \) which yields these distribution.

- Samples \(P \) from \(\mathcal{P} \) are distributions on \((X, \mathcal{A}) \)
A Key Lemma

- **Lemma**: If the joint distribution \((P(B_1), \cdots, P(B_k))\) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m)\), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P}\) which yields these distribution.
- **Samples** \(P\) from \(\mathcal{P}\) are distributions on \((X, \mathcal{A})\)
- **We will focus on a specific** \(\mathcal{P}\): Dirichlet processes
A Key Lemma

- Lemma: If the joint distribution \((P(B_1), \cdots, P(B_k))\) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m)\), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P}\) which yields these distribution.

- Samples \(P\) from \(\mathcal{P}\) are distributions on \((X, \mathcal{A})\)

- We will focus on a specific \(\mathcal{P}\): Dirichlet processes

- Based on the above construction
A Key Lemma

- Lemma: If the joint distribution \((P(B_1), \ldots, P(B_k))\) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m)\), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P}\) which yields these distribution.
- Samples \(P\) from \(\mathcal{P}\) are distributions on \((X, \mathcal{A})\)
- We will focus on a specific \(\mathcal{P}\): Dirichlet processes
- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets
A Key Lemma

- Lemma: If the joint distribution \((P(B_1), \ldots, P(B_k))\) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m)\), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P}\) which yields these distribution.

- Samples \(P\) from \(\mathcal{P}\) are distributions on \((X, \mathcal{A})\)

- We will focus on a specific \(\mathcal{P}\): Dirichlet processes

- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets
 - Can maintain distribution over distributions (non-parametric Bayes)
A Key Lemma

- Lemma: If the joint distribution \((P(B_1), \cdots, P(B_k))\) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m)\), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P}\) which yields these distribution.

- Samples \(P\) from \(\mathcal{P}\) are distributions on \((X, \mathcal{A})\)

- We will focus on a specific \(\mathcal{P}\): Dirichlet processes

- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets
 - Can maintain distribution over distributions (non-parametric Bayes)
 - So far, we have only seen distribution over parameters
A Key Lemma

- Lemma: If the joint distribution \((P(B_1), \cdots, P(B_k))\) satisfies the consistency condition, and, if for arbitrary sets \((A_1, \ldots, A_m)\), the joint distribution is constructed as outlined earlier, then there exists \(\mathcal{P}\) which yields these distribution.

- Samples \(P\) from \(\mathcal{P}\) are distributions on \((X, \mathcal{A})\)

- We will focus on a specific \(\mathcal{P}\): Dirichlet processes

- Based on the above construction
 - Sufficient to focus on partitions, rather than arbitrary sets
 - Can maintain distribution over distributions (non-parametric Bayes)
 - So far, we have only seen distribution over parameters

- Can inference be tractably done over such models?
Dirichlet Distribution

- Distribution over finite discrete distributions

\[f(x_1, \ldots, x_k | \alpha_1, \ldots, \alpha_k) = \frac{\Gamma(\sum_{i=1}^k \alpha_i)}{\prod_{i=1}^k \Gamma(\alpha_i)} x_1^{\alpha_1 - 1} \cdots x_k^{\alpha_k - 1} \]
Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

\[
D(\alpha_1, \ldots, \alpha_k) = f(x_1, \ldots, x_k|\alpha_1, \ldots, \alpha_k) = \frac{\Gamma \left(\sum_{i=1}^{k} \alpha_i \right)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i - 1}
\]
Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by
 \[
 D(\alpha_1, \ldots, \alpha_k) = f(x_1, \ldots, x_k | \alpha_1, \ldots, \alpha_k) = \frac{\Gamma \left(\sum_{i=1}^{k} \alpha_i \right)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i-1}
 \]
- Well defined on the unit simplex \(\sum_{i=1}^{k} x_i = 1 \)
Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

\[D(\alpha_1, \ldots, \alpha_k) = f(x_1, \ldots, x_k|\alpha_1, \ldots, \alpha_k) = \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i - 1} \]

- Well defined on the unit simplex \(\sum_{i=1}^{k} x_i = 1 \)
- Key Property: If \((X_1, \ldots, X_k) \sim D(\alpha_1, \ldots, \alpha_k)\), and \(r_1, \ldots, r_\ell\) are integers such that \(0 < r_1 < \cdots < r_\ell\) then

\[
\left(\sum_{1}^{r_1} X_i, \sum_{r_1+1}^{r_2} X_i, \ldots, \sum_{r_{\ell-1}+1}^{k} X_i\right) \sim D\left(\sum_{1}^{r_1} \alpha_i, \sum_{r_1+1}^{r_2} \alpha_i, \ldots, \sum_{r_{\ell+1}}^{k} \alpha_i\right)
\]
Dirichlet Distribution

- Distribution over finite discrete distributions
- The density function is given by

\[
D(\alpha_1, \ldots, \alpha_k) = f(x_1, \ldots, x_k | \alpha_1, \ldots, \alpha_k) = \frac{\Gamma \left(\sum_{i=1}^{k} \alpha_i \right)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i-1}
\]

- Well defined on the unit simplex \(\sum_{i=1}^{k} x_i = 1 \)
- Key Property: If \((X_1, \ldots, X_k) \sim D(\alpha_1, \ldots, \alpha_k)\), and \(r_1, \ldots, r_\ell\) are integers such that \(0 < r_1 < \cdots < r_\ell\) then

\[
\left(\sum_{1}^{r_1} X_i, \sum_{r_1+1}^{r_2} X_i, \cdots, \sum_{r_\ell-1+1}^{k} X_i \right) \sim D \left(\sum_{1}^{r_1} \alpha_i, \sum_{r_1+1}^{r_2} \alpha_i, \cdots, \sum_{r_\ell+1}^{k} \alpha_i \right)
\]

- In particular, the marginal distribution of \(X_j \sim B(\alpha_j, \sum_{1}^{k} \alpha_i - \alpha_j)\) where

\[
B(\alpha, \beta) = f(x | \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1 - x)^{\beta-1}
\]
Gamma and Dirichlet

- Gamma distribution, with \(x > 0, \alpha, \theta > 0 \), is

\[
\Gamma(\alpha, \theta) = f(x|\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha-1}
\]
Gamma and Dirichlet

- Gamma distribution, with $x > 0, \alpha, \theta > 0$, is

$$
\Gamma(\alpha, \theta) = f(x|\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^\alpha \Gamma(\alpha)} x^{\alpha-1}
$$

- Key property: If $X_i \sim \Gamma(\alpha_i, \theta), i = 1, \ldots, k$, then

$$
\sum_{i=1}^{k} X_i \sim \Gamma \left(\sum_{i=1}^{k} \alpha_i, \theta \right)
$$
Gamma and Dirichlet

- Gamma distribution, with \(x > 0, \alpha, \theta > 0 \), is

\[
\Gamma(\alpha, \theta) = f(x|\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^\alpha \Gamma(\alpha)} x^{\alpha-1}
\]

- Key property: If \(X_i \sim \Gamma(\alpha_i, \theta), i = 1, \ldots, k \), then

\[
\sum_{i=1}^{k} X_i \sim \Gamma \left(\sum_{i=1}^{k} \alpha_i, \theta \right)
\]

- Let \(Z_i = \frac{X_i}{\sum_{i=1}^{k} X_i} \), then

\[
(Z_1, \ldots, Z_k) \sim D(\alpha_1, \ldots, \alpha_k)
\]
Gamma, Exponential, Geometric

- Recall Gamma distribution

\[
\Gamma(\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^\alpha \Gamma(\alpha)} x^{\alpha-1}
\]
Gamma, Exponential, Geometric

- Recall Gamma distribution

\[\Gamma(\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^\alpha \Gamma(\alpha)} x^{\alpha-1} \]

- With \(\alpha = 1, \theta = 1/\lambda \), we get exponential distribution

\[f(x|\lambda) = G(1, 1/\lambda) = \lambda \exp(-\lambda x) \]
Gamma, Exponential, Geometric

- Recall Gamma distribution

\[\Gamma(\alpha, \theta) = \frac{\exp(-x/\theta)}{\theta^\alpha \Gamma(\alpha)} x^{\alpha-1} \]

- With \(\alpha = 1, \theta = 1/\lambda \), we get exponential distribution

\[f(x|\lambda) = G(1, 1/\lambda) = \lambda \exp(-\lambda x) \]

- Discrete version of exponential is the geometric distribution

\[f(k|q) = (1 - q)^{k-1} q \]
Properties of Dirichlet Distribution

\((X_1, \ldots, X_k) \sim D(\alpha_1, \cdots, \alpha_k), \alpha = \sum_{i=1}^{k} \alpha_i\)
Properties of Dirichlet Distribution

\((X_1, \ldots, X_k) \sim D(\alpha_1, \cdots, \alpha_k), \alpha = \sum_{i=1}^{k} \alpha_i \)

- Expectation \(E[X_i] = \frac{\alpha_i}{\alpha} \)
Properties of Dirichlet Distribution

- \((X_1, \ldots, X_k) \sim D(\alpha_1, \ldots, \alpha_k), \alpha = \sum_{i=1}^{k} \alpha_i\)
 - Expectation \(E[X_i] = \frac{\alpha_i}{\alpha}\)
 - Variance \(E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha+1)}\)
Properties of Dirichlet Distribution

- \((X_1, \ldots, X_k) \sim D(\alpha_1, \cdots, \alpha_k), \alpha = \sum_{i=1}^{k} \alpha_i\)
 - Expectation \(E[X_i] = \frac{\alpha_i}{\alpha}\)
 - Variance \(E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha + 1)}\)
 - Covariance \(E[X_iX_j] = \frac{-\alpha_i \alpha_j}{\alpha^2(\alpha + 1)}, i \neq j\)
Properties of Dirichlet Distribution

- \((X_1, \ldots, X_k) \sim D(\alpha_1, \cdots, \alpha_k), \alpha = \sum_{i=1}^{k} \alpha_i\)
 - Expectation \(E[X_i] = \frac{\alpha_i}{\alpha}\)
 - Variance \(E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha + 1)}\)
 - Covariance \(E[X_iX_j] = \frac{-\alpha_i\alpha_j}{\alpha^2(\alpha + 1)}, i \neq j\)
 - \(X_1\) is independent of \(X_2/(1 - X_1), \cdots, X_k/(1 - X_1)\)
Properties of Dirichlet Distribution

- $(X_1, \ldots, X_k) \sim D(\alpha_1, \cdots, \alpha_k), \alpha = \sum_{i=1}^{k} \alpha_i$
 - Expectation $E[X_i] = \frac{\alpha_i}{\alpha}$
 - Variance $E[X_i^2] = \frac{\alpha_i(\alpha-\alpha_i)}{\alpha^2(\alpha+1)}$
 - Covariance $E[X_iX_j] = \frac{-\alpha_i\alpha_j}{\alpha^2(\alpha+1)}, i \neq j$
 - X_1 is independent of $X_2/(1-X_1), \cdots, X_k/(1-X_1)$
 - Similarly for each X_i
Properties of Dirichlet Distribution

- \((X_1, \ldots, X_k) \sim D(\alpha_1, \ldots, \alpha_k), \alpha = \sum_{i=1}^{k} \alpha_i\)
- Expectation \(E[X_i] = \frac{\alpha_i}{\alpha}\)
- Variance \(E[X_i^2] = \frac{\alpha_i(\alpha - \alpha_i)}{\alpha^2(\alpha + 1)}\)
- Covariance \(E[X_i X_j] = \frac{-\alpha_i \alpha_j}{\alpha^2(\alpha + 1)}, i \neq j\)
- \(X_1\) is independent of \(X_2/(1 - X_1), \ldots, X_k/(1 - X_1)\)
- Similarly for each \(X_i\)

- If prior distribution is \(D(\alpha_1, \ldots, \alpha_k)\), then posterior

\[
P(X_1, \ldots, X_k|X = j) = D(\alpha_1^{(j)}, \ldots, \alpha_k^{(j)})
\]

where

\[
\alpha_i^{(j)} = \begin{cases}
\alpha_i & \text{if } i \neq j \\
\alpha_j + 1 & \text{if } i = j
\end{cases}
\]
Definition: Let α be a non-negative finite measure on (X, \mathcal{A}). Then P is a Dirichlet Process on (X, \mathcal{A}) with parameter α if for every $k = 1, 2, \cdots$, and a partition (B_1, \cdots, B_k) of X, the distribution of $(P(B_1), \cdots, P(B_k))$ is Dirichlet $D(\alpha(B_1), \cdots, \alpha(B_2))$.
Dirichlet Processes

- **Definition:** Let α be a non-negative finite measure on (X, \mathcal{A}). Then P is a Dirichlet Process on (X, \mathcal{A}) with parameter α if for every $k = 1, 2, \ldots$, and a partition (B_1, \cdots, B_k) of X, the distribution of $(P(B_1), \cdots, P(B_k))$ is Dirichlet $D(\alpha(B_1), \cdots, \alpha(B_k))$.

- For any $A \in \mathcal{A}$, $E[P(A)] = \frac{\alpha(A)}{\alpha(X)}$
Dirichlet Processes

- Definition: Let α be a non-negative finite measure on (X, \mathcal{A}). Then P is a Dirichlet Process on (X, \mathcal{A}) with parameter α if for every $k = 1, 2, \cdots$, and a partition (B_1, \cdots, B_k) of X, the distribution of $(P(B_1), \cdots, P(B_k))$ is Dirichlet $D(\alpha(B_1), \cdots, \alpha(B_k))$.

- For any $A \in \mathcal{A}$, $E[P(A)] = \frac{\alpha(A)}{\alpha(X)}$

- Let Q be a fixed probability measure on (X, \mathcal{A}) with $Q \ll \alpha$. Then for any m, and any A_1, \ldots, A_m, and $\epsilon > 0$,

$$\mathcal{P}\{|P(A_i) - Q(A_i)| < \epsilon, i = 1, \ldots, m\} > 0$$
Properties of Dirichlet Processes

- Three main properties for DPs
Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on \([0, 1]^A, \mathcal{F}^A\)
Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on \([0, 1]^A, \mathcal{F}^A\)
 - Samples from a DP are distributions \(P\) on \((X, \mathcal{A})\)
Properties of Dirichlet Processes

- Three main properties for DPs
 - Prop 1: DP is a probability measure on \([0, 1]^A, \mathcal{F}^A\)
 - Samples from a DP are distributions \(P\) on \((X, \mathcal{A})\)
 - Here \(P\) acts as the “parameter,” DP is the prior
Properties of Dirichlet Processes

- Three main properties for DPs
- Prop 1: DP is a probability measure on \([0, 1]^A, \mathcal{F}^A\)
 - Samples from a DP are distributions \(P\) on \((X, \mathcal{A})\)
 - Here \(P\) acts as the “parameter,” DP is the prior
- Prop 2: DP gives probability 1 to discrete measures on \((X, \mathcal{A})\)
Properties of Dirichlet Processes

- Three main properties for DPs
 - Prop 1: DP is a probability measure on \([0, 1]^A, \mathcal{F}^A\)
 - Samples from a DP are distributions \(P\) on \((X, \mathcal{A})\)
 - Here \(P\) acts as the “parameter,” DP is the prior
 - Prop 2: DP gives probability 1 to discrete measures on \((X, \mathcal{A})\)
 - Easy to show using a constructive definition of DP
Properties of Dirichlet Processes

- Three main properties for DPs
 - Prop 1: DP is a probability measure on \([0, 1]^A, \mathcal{F}^A\)
 - Samples from a DP are distributions \(P\) on \((X, A)\)
 - Here \(P\) acts as the “parameter,” DP is the prior
 - Prop 2: DP gives probability 1 to discrete measures on \((X, A)\)
 - Easy to show using a constructive definition of DP
 - Prop 3: The posterior distribution given \(X\) is the DP with parameter \(\alpha + \delta_X\)
Three main properties for DPs

Prop 1: DP is a probability measure on \([0, 1]^A, \mathcal{F}^A\)
- Samples from a DP are distributions \(P\) on \((X, A)\)
- Here \(P\) acts as the “parameter,” DP is the prior

Prop 2: DP gives probability 1 to discrete measures on \((X, A)\)
- Easy to show using a constructive definition of DP

Prop 3: The posterior distribution given \(X\) is the DP with parameter \(\alpha + \delta_X\)
- Posterior given \(X_1, \ldots, X_n\) is the DP with parameter \(\alpha + \sum_{i=1}^n \delta_{X_i}\)
Stick Breaking Construction

- A constructive definition of DP
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, A)
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
Stick Breaking Construction

- A constructive definition of DP
- Let \(\alpha \) be a finite measure on \((X, \mathcal{A}) \)
- Let \(N = \{1, 2, \ldots\} \) and \(\mathcal{F} = 2^N \)
- Construct a probability space \((\Omega, S, Q) \)
 - Random variables \((\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \ldots, I) \)
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on $(\mathcal{X}, \mathcal{A})$
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space $(\Omega, \mathcal{S}, \mathcal{Q})$
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \ldots, I)$
 - Taking values in $(([0, 1] \times \mathcal{X})^\infty \times N, (\mathcal{B} \times \mathcal{A})^\infty)$
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, S, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \ldots, I)$
 - Taking values in $(([0, 1] \times \mathcal{X})^\infty \times N, (\mathcal{B} \times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \ldots, I)$
 - Taking values in $([0, 1] \times X)^\infty \times N, (B \times \mathcal{A})^\infty$
 - Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $N = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^N$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \ldots, I)$
 - Taking values in $(([0, 1] \times \mathcal{X})^\infty \times N, (\mathcal{B} \times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
 - (π_1, π_2, \ldots) are i.i.d. with distribution $B(1, \alpha(X))$
Stick Breaking Construction

- A constructive definition of DP
- Let α be a finite measure on (X, \mathcal{A})
- Let $\mathcal{N} = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^\mathcal{N}$
- Construct a probability space (Ω, \mathcal{S}, Q)
 - Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \ldots, I)$
 - Taking values in $(([0, 1] \times \mathcal{X})^\infty \times \mathcal{N}, (\mathcal{B} \times \mathcal{A})^\infty)$
 - Recall that a r.v. is a measurable function
- The distribution of the r.v. is defined as follows
 - (π_1, π_2, \ldots) are i.i.d. with distribution $B(1, \alpha(X))$
 - (Y_1, Y_2, \ldots) are i.i.d. with distribution $\beta(A) = \alpha(A)/\alpha(X)$
A constructive definition of DP

Let α be a finite measure on $(\mathcal{X}, \mathcal{A})$

Let $\mathcal{N} = \{1, 2, \ldots\}$ and $\mathcal{F} = 2^\mathcal{N}$

Construct a probability space (Ω, \mathcal{S}, Q)

- Random variables $(\pi, Y, I) = ((\pi_j, Y_j), j = 1, 2, \ldots, I)$
- Taking values in $(([0, 1] \times \mathcal{X})^\infty \times \mathcal{N}, (\mathcal{B} \times \mathcal{A})^\infty)$
- Recall that a r.v. is a measurable function

The distribution of the r.v. is defined as follows

- (π_1, π_2, \ldots) are i.i.d. with distribution $B(1, \alpha(\mathcal{X}))$
- (Y_1, Y_2, \ldots) are i.i.d. with distribution $\beta(A) = \alpha(A)/\alpha(\mathcal{X})$
- $Q(I = n|(\pi, Y)) = p_n = \pi_n \prod_{1 \leq m \leq (n-1)}(1 - \pi_m)$ so that

$$\sum_{1 \leq m \leq n} p_n = 1 - \prod_{1 \leq m \leq n} (1 - \pi_m) \to 1 \text{ w.p. 1}$$
Now, we have a probability space \((\Omega, \mathcal{S}, Q)\)
Now, we have a probability space \((\Omega, \mathcal{S}, Q)\)

For any \(A \in \mathcal{A}\), define

\[
P_{(\theta, \gamma)}(A) = \sum_{n=1}^{\infty} p_n \delta_{\gamma_n}(A)
\]
Now, we have a probability space \((\Omega, \mathcal{S}, Q)\)

For any \(A \in \mathcal{A}\), define

\[
P(\theta, Y)(A) = \sum_{n=1}^{\infty} p_n \delta_{Y_n}(A)
\]

\(P\) is a random measure over \((X, \mathcal{A})\), due to \((\theta, Y)\)
Now, we have a probability space \((\Omega, \mathcal{S}, Q)\)

For any \(A \in \mathcal{A}\), define

\[
P_{(\theta, Y)}(A) = \sum_{n=1}^{\infty} p_n \delta_{Y_n}(A)
\]

- \(P\) is a random measure over \((X, \mathcal{A})\), due to \((\theta, Y)\)
- \(P\) is a sample from a Dirichlet process with parameter \(\alpha\)
Now, we have a probability space \((\Omega, \mathcal{S}, Q)\)

For any \(A \in \mathcal{A} \), define

\[
P(\theta, \gamma)(A) = \sum_{n=1}^{\infty} p_n \delta_{\gamma_n}(A)
\]

- \(P \) is a random measure over \((X, \mathcal{A})\), due to \((\theta, \gamma)\)
- \(P \) is a sample from a Dirichlet process with parameter \(\alpha \)
- By construction, clearly \(P \) can only be discrete
Dirichlet Process Mixtures

- \((X, \mathcal{A})\) is the space on which DP was defined
Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on \mathcal{A}
Dirichlet Process Mixtures

- \((X, \mathcal{A})\) is the space on which DP was defined
- Based on a fixed measure \(\alpha\) on \(\mathcal{A}\)
- Consider a probability space \((U, \mathcal{B}, H)\)
(X, A) is the space on which DP was defined

Based on a fixed measure α on A

Consider a probability space (U, B, H)

Define a transition measure α(u, A) on U × A
Dirichlet Process Mixtures

- (X, \mathcal{A}) is the space on which DP was defined
- Based on a fixed measure α on \mathcal{A}
- Consider a probability space (U, \mathcal{B}, H)
- Define a transition measure $\alpha(u, A)$ on $U \times \mathcal{A}$
- For any $A_1, \ldots, A_m \in \mathcal{A}$, we have

$$
(P(A_1), \ldots, P(A_m)) \sim \int_u D(\alpha(u, A_1), \ldots, D(u, A_m))dH(u)
$$
(X, A) is the space on which DP was defined
Based on a fixed measure α on A
Consider a probability space (U, B, H)
Define a transition measure α(u, A) on U × A
For any A_1, . . . , A_m ∈ A, we have

(P(A_1), . . . , P(A_m)) \sim \int_u D(\alpha(u, A_1), . . . , D(u, A_m))dH(u)

In “practice” DPM is a infinite mixture model
DPM (Contd.)

- Mike Jordan’s NIPS’05 Tutorial
Model-Based Clustering

- A generative approach to clustering:
 - pick one of K clusters from a distribution $\pi = (\pi_1, \pi_2, \ldots \pi_K)$
 - generate a data point from a cluster-specific probability distribution

- This yields a finite mixture model:

$$p(x | \phi, \pi) = \sum_{k=1}^{K} \pi_k \ p(x | \phi_k),$$

where π and $\phi = (\phi_1, \phi_2, \ldots \phi_K)$ are the parameters, and where we’ve assumed the same parameterized family for each cluster (for simplicity)

- Data $\{x_i\}_{i=1}^{n}$ are assumed to be generated conditionally IID from this mixture
Finite Mixture Models (cont)

• Another way to express this: define an underlying measure

\[G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k} \]

where \(\delta_{\phi_k} \) is an atom at \(\phi_k \)

• And define the process of obtaining a sample from a finite mixture model as follows. For \(i = 1, \ldots, n \):

\[\theta_i \sim G \]

\[x_i \sim \ p(\cdot \mid \theta_i) \]

• Note that each \(\theta_i \) is equal to one of the underlying \(\phi_k \)
 – indeed, the subset of \(\{ \theta_i \} \) that maps to \(\phi_k \) is exactly the \(k \)-th cluster
Finite Mixture Models (cont)

\[G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k} \]

\[\theta_i \sim G \]

\[x_i \sim p(\cdot \mid \theta_i) \]
Bayesian Finite Mixture Models
(e.g., Lo; Ferguson; Escobar & West; Robert; Green & Richardson; Neal; Ishwaran & Zarepour)

- Need to place priors on the parameters ϕ and π

- The choice of prior for ϕ is model-specific; e.g., we might use conjugate normal/inverse-gamma priors for a Gaussian mixture model
 - let’s denote this prior as G_0

- Place a symmetric Dirichlet prior, $\text{Dir}(\alpha_0/K, \ldots, \alpha_0/K)$, on the mixing proportions π
 - the symmetry accords with the (usual) assumption that we could scramble the labels of the mixture components and not change the model
 - the scaling (α_0/K) gives α_0 the semantics of a concentration parameter; the prior mean of ϕ_k is equal to $1/K$
Bayesian Finite Mixture Models (cont)

\[\phi_k \sim G_0 \]
\[\pi_k \sim \text{Dir}(\alpha_0/K, \ldots, \alpha_0/K) \]
\[G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k} \]
\[\theta_i \sim G \]
\[x_i \sim p(\cdot | \theta_i) \]

- Note that \(G \) is now a \textit{random measure}
Going Nonparametric—A First Perspective
(e.g., Kingman; Waterson; Patil & Taillie; Liu; Ishwaran & Zarepour)

• Define a countably infinite mixture model by taking K to infinity and hoping that \(G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k} \) means something, where

\[
\begin{align*}
\phi_k & \sim G_0 \\
\pi_k & \sim \text{Dir}(\alpha_0/K, \ldots, \alpha_0/K) \text{ as } K \to \infty
\end{align*}
\]

• Several mathematical hurdles to overcome:
 – What is the distribution of any given π_k as $K \to \infty$? Does it stabilize at some fixed distribution?
 – Is $\sum_{k=1}^{\infty} \pi_k = 1$ under some suitable notion of convergence?
 – Do we get a few large mixing proportions, or are they all of similar “size”?
 – Do we get any “clustering” at all?

• This seems hard; let’s approach the problem from a different point of view
A Second Perspective—Stick-Breaking
(e.g., Connor & Mosimann; Doksum; Freedman; Kingman; Pitman; Sethuraman)

• Define an infinite sequence of Beta random variables:

\[\beta_k \sim \text{Beta}(1, \alpha_0) \quad k = 1, 2, \ldots \]

• And then define an infinite sequence of mixing proportions as:

\[
\begin{align*}
\pi_1 &= \beta_1 \\
\pi_k &= \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \quad k = 2, 3, \ldots
\end{align*}
\]

• This can be viewed as breaking off portions of a stick:

\[
\begin{array}{c|c|c|c|c}
\beta_1 & \beta_2 (1-\beta_1) & \ldots \\
\hline
\end{array}
\]
Stick-Breaking (cont)

• We now have an explicit formula for each π_k: $\beta_k \prod_{l=1}^{k-1} (1 - \beta_l)$

• We can also easily see that $\sum_{k=1}^{\infty} \pi_k = 1$ (wp1):

$$1 - \sum_{k=1}^{K} \pi_k = 1 - \beta_1 - \beta_2 (1 - \beta_1) - \beta_3 (1 - \beta_1)(1 - \beta_2) - \cdots$$

$$= (1 - \beta_1)(1 - \beta_2 - \beta_3 (1 - \beta_2) - \cdots)$$

$$= \prod_{k=1}^{K} (1 - \beta_k)$$

$$\rightarrow 0 \quad \text{(wp1 as } K \rightarrow \infty)$$

• So now $\mathcal{G} = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ has a clean definition as a random measure
Graphical Model Representation
The Posterior Dirichlet Process

• Suppose that we sample G from a Dirichlet process and then sample θ_1 from G. What is the posterior process?

• For a fixed partition, we get a standard Dirichlet update (for the cell that contains θ_1 the exponent increases by one; stays the same for all other cells)
 – this is true for even the tiniest cell
 – suggests that the posterior is a Dirichlet process in which the base measure has an atom at θ_1

• Indeed, we have (for a proof, see, e.g., Schervish, 1995):

\[G \mid \theta_1 \sim \text{DP}(\alpha_0 G_0 + \delta_{\theta_1}) \]

• Iterating the posterior update yields:

\[G \mid \theta_1, \ldots, \theta_n \sim \text{DP}(\alpha_0 G_0 + \sum_{i=1}^{n} \delta_{\theta_i}) \]
Relationship to Stick-Breaking

- Recalling the formula for the expectation of a Dirichlet random variable, for any set $A \subseteq \Omega$, we have:

$$\mathbb{E}[G(A) | \theta_1, \ldots, \theta_n] = \frac{\alpha_0 G_0(A) + \sum_{i=1}^{n} \delta_i(A)}{\alpha_0 + n} \rightarrow \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}(A)$$

where ϕ_k are the unique values of the θ_i, where $\pi_k = \lim_{n \to \infty} n_k / n$, and where n_k is the number of repeats of ϕ_k in the sequence $(\theta_1, \ldots, \theta_n)$

- assuming that the posterior concentrates, this suggests that the random measures $G \sim \text{DP}(\alpha_0 G_0)$ are discrete (wp1)

- Is there an infinite sum of the form $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ that obeys the definition of the Dirichlet process?

 - yes, the stick-breaking random measure!

 - this important result is not hard to prove; it follows from elementary facts about the Dirichlet distribution (Sethuraman, 1994)
Dirichlet Process Mixture Models

\[
\begin{align*}
G & \sim \text{DP}(\alpha_0 G_0) \\
\theta_i | G & \sim G & i \in 1, \ldots, n \\
x_i | \theta_i & \sim F(x_i | \theta_i) & i \in 1, \ldots, n
\end{align*}
\]
Marginal Probabilities

- To obtain the marginal probability of the parameters $\theta_1, \theta_2, \ldots$, we need to integrate out G.

$$\alpha_0 \rightarrow G \rightarrow \theta_i \rightarrow x_i$$

$$\ldots$$

$$G_0$$

$$\alpha_0 \rightarrow \theta_i \rightarrow x_i$$
Marginal Probabilities (cont)

- Recall the formula

\[
\mathbb{E}[G(A) \mid \theta_1, \ldots, \theta_n] = \frac{\alpha_0 G_0(A) + \sum_{k=1}^{K} n_k \delta_{\phi_k}(A)}{\alpha_0 + n}
\]

- Let \(A \) be a singleton set equal to one of the \(\phi_k \). The formula says that the marginal probability of observing \(\phi_k \) again is proportional to \(n_k \).

- And the marginal probability of observing a new \(\phi \) vector is proportional to \(\alpha_0 \).

- This is just the Pólya urn scheme!

- I.e., integrating over the random measure \(G \), where \(G \sim \text{DP}(\alpha_0 G_0) \), yields the Pólya urn
Chinese Restaurant Process (CRP)

- A random process in which \(n \) customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - \(m \)th subsequent customer sits at a table drawn from the following distribution:

\[
P(\text{previously occupied table } i \mid \mathcal{F}_{m-1}) \propto n_i
\]
\[
P(\text{the next unoccupied table} \mid \mathcal{F}_{m-1}) \propto \alpha_0
\]

where \(n_i \) is the number of customers currently at table \(i \) and where \(\mathcal{F}_{m-1} \) denotes the state of the restaurant after \(m - 1 \) customers have been seated
The CRP and Clustering

- Data points are customers; tables are clusters
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables

- This prior can be completed with:
 - a likelihood—e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters—the first customer to sit at table k chooses the parameter vector for that table (ϕ_k) from the prior

- So we now have a distribution—or can obtain one—for any quantity that we might care about in the clustering setting
CRP Prior, Gaussian Likelihood, Conjugate Prior

\[\phi_k = (\mu_k, \Sigma_k) \sim N(a, b) \otimes IW(\alpha, \beta) \]
\[x_i \sim N(\phi_k) \quad \text{for a data point } i \text{ sitting at table } k \]