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Motivation

The WWW traffic makes up a large fraction of
traffic on the internet, which has become a significant

part of the national (and international) economy and
Infrastructure.

An understanding of how the WWW responds to
Imposed changes, such as an attack, Is therefore of
significant economic/national security interest.
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Graph model of the web:

= (V.E)
Where V is set of vertices (i,},k,.....) or nodes or pages
And E Is the set of edges (1,))




The “Random Surfer”

We postulate a notional “clock”.

At each tick of this clock, each web surfer clicks on
One of the outlinks from the page he/she is browsing.

For simplicity let us initially assume that G is strongly
connected (i.e. there Is a directed path between every
pair of pages in the set V)



The “Markov Random Surfer”

et
A; = probability that a surfer at page 1 will click
through to page |
(It is often assumed these probabilities are uniform, i.e. if
d; = out degree (number of outlinks) of page I,
then
A = Ud,  forall jsuchthat(ij) E
This is the usual assumption in computing PageRank)

M = [4;] defines a Markov chain. The stochastic vector
W =<wy, ..., W>, where w; + ....+w_=1Isa
stationary state of the Markov chain if

wl =wTM



Beyond Markov Chains
- A Network Flow Model

et us maintain the graph G as our basic model, and
the assumption that each user clicks through to a
page at each tick of the “clock”, but define

flow variables:

Yij = flow per unit time from page 1 to page j.

Where Z yi; =Y (const) (*)

(L) E

(We will usually find it convenient to work with the
normalized values Pij = Yij /'Y (probabilities) )



The flows must satisfy conservation equations (Kirchoff
Conditions)

2y - ZYij =0 Y
(hi) E (ij E
as well as
yij 20
and (*).

The y;; can take any values which satisfy these
constraints. What should we estimate them to be?



The PageRank (Markov) assumption is that:

(hi) E

(Where d; is the out-degree of page 1)

or more generally:

(hi) E

IS IS easy to see, by direct substitution, that these flows,
suitably scaled to satisfy (*), satisfy the conservation
equations.



Now, using normalized values (probabilities), so that:

Z phl = 2 p” =0 | _V

(hi) E () E

Z p; =1

(L) E
pjj 20
where p;; = y;;/ Y

The Pij form a probability distribution we wish to
estlmate What should we estimate them to be?



Max Entropy Solution

Both statistical mechanics and information theory tell us
that the correct estimate (given only knowledge

of the network topology) is the solution of the maximum
entropy problem:

Maximize - 2 pjj In pjj
_ (ij) E
subject to the constraints.

The solution is of the form:

pij = expl-xo- k5 +x5]  for (ij) E



and If we define:
Z = K0 :__Z_Eexp{- K + 1 }
and also define ()

o; — e K

then

pij = expl- 1o~ K + 1] for (i,j) E

may be written as:

pij = 2% o ot for (i,j) E



Letting P= [pij] , d=diag(ey , ..., o)

and
CIJ :{Z-l for (l,J) E
0 otherwise,
then
. p=dcd
subject to
(h.i)ZEphi (i,j)ZEpij =0 LV

Z_pij =1

(ij) E
This Is a matrix balancing (iterative scaling) problem,
which can be solved relatively efficiently.



General 1dea:

0. Guess the value of Z1
Start with initial values for the ¢ (e.g. 1), denoted (),
and let p;0 =z 9/ 9. At each iteration:

1. Compute };¥0 =2 p¥ o =20 py®
2. Let 50 = (p;® / }i(k))llz

3. Update o**D & 50 ® | for some orall i
4. Stopif 1-e@ 40 @ 1+ ¢ |, elsestep kand go to
1

5. Check If sum of the final p;; Is 1.0. If not, adjust

Noteztﬁg g/v%?kt%elr' Inner Iteration iIs about twice an iteration

of power iteration (or Gauss-Seidel).



However, In practice:

Many pages have no in-links or no out-links.
The “random surfer” can never reach the green pages
or escape from the red pages. G Is not strongly connected



A Modified Network Formulation

With with frequency (1 — o), let surfers make a random jump.

Define an additional node n+1 and add it to V to get V’.
We then construct edges from every node in V to n+1 and
from n+1 to every other node.

The total traffic through this node Is required to be
Z P n+1 — (1 OL) — jz pn+1,j

The new edge set E’ is E plus the new edges and also a self
loop at each dead-end page.



(All nodes should be linked to and from n+1
but all such links are not drawn)



The extended model is how:

Maximize S = - 2_ plj In p”

(L)) E
Subject to:
2 py - Z_pij =0
(hi) E Gj) E
2 Pipsy = (1-0)



The extended model still corresponds to a (hybrid) matrix
balancing problem, but with some row and column sums
required to take particular values — a simple extension.

Note that if we know the flow through any node we can write
down the equations, just as we did for the “artificial” node,

and treat them in the same way. In other words we can reduce
the uncertainty in the model by applying additional information.

The solution algorithm requires only minor modification, and
produces not only the “traffic” primal variables (p,) but as an
essential by-product the exponentials of the Lagrange multipliers:



A more general model is obtained if we allow a
priori estimates w;; of the y;;, and cost or ben-
efit values ¢;; to be associated with the links
(7,7) and add the constraint:

> ciipij = C,
(1,7)€E
where C' is the total cost or benefit available.
Assigning a Lagrange multiplier 8 to this con-
straint, we obtain the solution to this more
general form of the model as:

pij = wij exp[—=Ao — A+ A; — B¢l V(,j) €EE



A Kinetic/Dynamic Model

We now consider how the flows y;; (or the p;)
might change over time.

We introduce transition coefficients a; ing defined as

the rate at which (random, not individual) surfers
will switch from link (1,)) to link (p,q).



Then In an open system the rate of change of
the Yij IS given by:

dz] = > (apgij¥pq — @ijpqyij) + fis
(pq)

Where dy;:/dt denotes the total rate of change of the y;;
from all cahses while f i denotes the contribution to thls
change from exogenous’sources.

When the f are zero we have a closed system (which we
assume from now on).

These are forms of the Boltzmann transport equations.



Form of the aiqu

The model is determined by the form of the a; ing

coefficients. It is often useful to separate these
Into two parts — an “escape” rate &jj and a

“capture” rate Ppg , SO that :
%ijpg = “ij Ppa,

In what follows we will be assuming &;; = 1



Equilibrium Solution

If we choose the transition coefficients to be of the
special form:

L — —1 —Bc
Ajjpg = QpQy “wWpge 711

(which are independent of the link (1,]), we obtain
the same solution:

Yi; = Z_1sz'jai0éj_16_ﬁcij

as we did for the entropy maximization model
above.



General Form of Solution

To examine more general solutions it is conve-
nient to enumerate the links by a single index
k=1,..., N, where N = |E|, so that each k cor-
responds to a link (z,5) (denoted k < (4,7)),
and if k < (4,7) and | <~ (p,q), then if k < I
then ¢+ < p, and if : = p, then 5 < g.




Corresponding to this numbering, if k£ «— (4,7)
and we denote

Ll
U

Yij
wijaiaj_le_ﬁc’ij
then after some algebraic manipulation the DE’s

can be rewritten as:

d
ﬂ == uk(eTX) — Z.CCk. Vk
dt
or in matrix form:
dX T
— = (ue® — Z1)x 1
= ) (L)
where ul = (uq,...,un) and e is the vector of

1's of conforming dimension. Note in particu-
lar that

/= eTu.



Following standard methods for simultaneous
ordinary differential equations, we look for a
fundamental matrix ® = ®(t) that satisfies

dP(t)
dt

When u is constant, this is obtained by ob-

serving that the eigensystem of the rank-one
matrix uel may be derived from the identity

= (ue! — ZD® (1), d(0)=1 (1)

(uel)V=vVJ



Defining Gl = (uo, ..., un):

uy | —e7
V = : (1)
ua I
and
Z | ot
J =
0o O

the eigenvalues of (ue! — ZI) are then simply
shifted by Z, so that

(vel — ZDV =VJ (2)
with V as above, and
O
J = . (3)



The fundamental matrix is how given by
d = e(ueT—ZI)t — Vejtv—l

where

(1 )

Jt e~ 4t

\ e,

Thus if we are given an initial condition x(0) =
x0 the solution at time ¢ is given by

x(t) = PxY



Suppose that we have an equilibrium solution
for the web traffic, and that a disturbance is
induced—say the disabling of a major host or
site. The evolution of traffic over time from
an initial state x° to a final state x/ after the
disturbance can be obtained from:

x(t) = &x° = Velty—1x0
and can be shown to be:
x(t) = x! + e 2H(x0 — x/)

The critical quantity is the final value of the
partition function 2



Computational results

1. IBM Intranet crawls (made in 2002)
(a) 19 million pages , ~200 million links
(b) 17 million pages.
Z~ 05

2. Partial internet crawl (made in 2001).
173 million pages (constraints)
2 Dbillion links (variables)
Z ~0.25

3. Host Graph (from 2003)
~20 million pages
~1.1 billion links

Z ~0.65



Additional possible approaches

One alternative model is to take the solution
implied by the PageRank assumption, i.e.

dy;;

T = Hij > Yni — Yij V(i,j) € E

(h)EE

Unfortunately, instead of a system of dimen-
sion |E| which reduces to a shifted rank one
system this leads to a shifted system of rank

n (the number of pages).

Another alternative approach is to look at “com-
partmental models” as used in other disciplines.



Future Research

. Accelerated methods for the matrix balancing problem

Massively parallel implementation (on Blue Gene/L ?)
Further work on forms of the transition coefficients

Mapping the changes in web traffic onto the underlying
Internet (or vice-versa)



Maximize

Subject to:

Generalized Equilibrium Model

2. {Gij pij - Pij In Pij I = -« Z Bjj In (pIJ/CIJ)

(IJ) E

e T )

™M ™M
- 2
| I
T T

ZEpij =0
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