NetMine: Mining Tools for Large Graphs

Deepayan Chakrabarti
Yiping Zhan
Daniel Blandford
Christos Faloutsos
Guy Blelloch
Introduction

Graphs are ubiquitous

Internet Map [lumeta.com]

Food Web [Martinez ’91]

Protein Interactions [genomebiology.com]

Friendship Network [Moody ’01]
Graph “Patterns”

- Given a large graph dataset, what do we focus on?
- Patterns ➔ Aspects of graphs that show up frequently, in datasets from diverse domains.
 - Degree distributions

![Power Laws Graph](image)

Count vs Outdegree
Graph “Patterns”

Given a large graph dataset, what do we focus on?

Patterns ➔ Aspects of graphs that show up frequently, in datasets from diverse domains.

- Degree distributions
- Hop-plots
- “Scree” plots
- and others…

Effective Diameter

Hop-plot
Graph “Patterns”

- **Why do we like them?**
 - They capture interesting properties of graphs.
 - They provide “condensed information” about the graph.
 - They are needed to build/test realistic graph generators (useful for simulation studies).
 - They help detect abnormalities and outliers.
Our Work

The NetMine toolkit

→ contains all the patterns mentioned before, and adds:

- The “min-cut” plot
 - a novel pattern which carries interesting information about the graph.

- A-plots
 - a tool to quickly find suspicious subgraphs/nodes.
Outline

- Problem definition
- “Min-cut” plots (+experiments)
- A-plots (+experiments)
- Conclusions
“Min-cut” plot

- What is a min-cut?

 Minimizes the number of edges cut

 Size of mincut = 2

 Two partitions of almost equal size
“Min-cut” plot

- Do min-cuts recursively.

Min-cut size = \sqrt{N}

log (mincut-size / #edges)

log (# edges)

N nodes
“Min-cut” plot

- Do min-cuts recursively.

N nodes

New min-cut

log (mincut-size / #edges)

log (# edges)
“Min-cut” plot

- Do min-cuts recursively.

For a d-dimensional grid, the slope is $-1/d$.
“Min-cut” plot

- Min-cut sizes have important effects on graph properties, such as
 - efficiency of divide-and-conquer algorithms
 - compact graph representation
 - difference of the graph from well-known graph types
 - for example, slope = 0 for a random graph
Experiments

- **Datasets:**
 - **Google Web Graph:** 916,428 nodes and 5,105,039 edges
 - **Lucent Router Graph:** Undirected graph of network routers from www.isi.edu/scan/mercator/maps.html; 112,969 nodes and 181,639 edges
 - **User ➔ Website Clickstream Graph:** 222,704 nodes and 952,580 edges
Experiments

- Used the METIS algorithm [Karypis+, 1995]

- Google Web graph
- Values along the y-axis are averaged
- We observe a “lip” for large edges
- Slope of -0.4, corresponds to a 2.5-dimensional grid!
Experiments

- Same results for other graphs too…

![Graph 1: Lucent Router graph](image1.png)
Slope~ -0.57

![Graph 2: Clickstream graph](image2.png)
Slope~ -0.45
Observations

- Linear slope for some range of values
- “Lip” for high #edges
- Far from random graphs (because slope ≠ 0)
Outline

- Problem definition
- “Min-cut” plots (+experiments)
- A-plots (+experiments)
- Conclusions
A-plots

- How can we find abnormal nodes or subgraphs?
 - Visualization
 - but most graph visualization techniques do not scale to large graphs!
A-plots

- However, humans are pretty good at “eyeballing” data 😊

- Our idea:
 - Sort the adjacency matrix in novel ways
 - and plot the matrix
 - so that patterns become visible to the user

- We will demonstrate this on the Lucent Router graph (112,969 nodes and 181,639 edges)
A-plots

- Three types of such plots for undirected graphs...
 - RV-RV (RankValue vs RankValue) ➔ Sort nodes based on their “network value” (~first eigenvector)
 - RD-RD (RankDegree vs RankDegree) ➔ Sort nodes based on their degree
 - D-RV (Degree vs RankValue) ➔ Sort nodes according to “network value”, and show their corresponding degree
RV-RV plot (RankValue vs RankValue)

- We can see a “teardrop” shape
- and also some blank “stripes”
- and a strong diagonal
- (even though there are no self-loops)!
The “teardrop” structure can be explained by degree-1 and degree-2 nodes.

\[NV_1 = \frac{1}{\lambda} \times NV_2 \]
RV-RV plot (RankValue vs RankValue)

- Strong diagonal
 - nodes are more likely to connect to “similar” nodes
RD-RD (RankDegree vs RankDegree)

- Isolated dots ➔ due to 2-node isolated components
D-RV (Degree vs Rank Value)

Spikes
Explanation of “Spikes” and “Stripes”

- RV-RV plot had stripes; D-RV plot shows spikes. Why?

 “Spike” nodes ➞ high degree, but all edges to “Stripe” nodes

 “Stripe” nodes ➞ degree-2 nodes connecting only to the “Spike” nodes

External connections

Stripes
A-plots

- They helped us detect a buried abnormal subgraph
- in a large real-world dataset
- which can then be taken to the domain experts.
Outline

- Problem definition
- “Min-cut” plots (+experiments)
- A-plots (+experiments)
- Conclusions
Conclusions

- We presented
 - “Min-cut” plot
 - A novel graph pattern
 - with relevance for many algorithms and applications
 - A-plots
 - which help us find interesting abnormalities
- All the methods are scalable
- Their usage was demonstrated on large real-world graph datasets
RV-RV plot (RankValue vs RankValue)

- We can see a “teardrop” shape
- and also some blank “stripes”
- and a strong diagonal.
RD-RD (RankDegree vs RankDegree)

• Isolated dots ➔ due to 2-node isolated components