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Abstract. Combining multiple global models (e.g. back-propagation based neural 
networks) is an effective technique for improving classification accuracy. This technique 
reduces variance by manipulating the distribution of the training data. In many large scale 
data analysis problems involving heterogeneous databases with attribute instability, 
standard boosting methods can be improved by coalescing multiple classifiers. Each 
classifier uses different germane attribute information that is identified through the 
attribute selection process. We propose a new technique of boosting localized classifiers 
when heterogeneous data sets contain more homogeneous data distributions. Instead of a 
single global classifier for each boosting round, we have localized classifiers responsible 
for each homogeneous region. The number of regions is identified through a clustering 
algorithm performed at each boosting iteration. A new boosting method applied to real 
life spatial data and synthetic spatial data shows improvements in prediction accuracy 
when unstable driving attributes and heterogeneity are present in the data. In addition, 
boosting localized experts significantly reduces the number of iterations needed for 
achieving the maximal prediction accuracy. 

1 Introduction 

Many large-scale data analysis problems involve an investigation of relationships 
between attributes in heterogeneous databases, where different prediction models can be 
responsible for different regions. In addition, large data sets very often exhibit attribute 
instability, such that the set of relevant attributes is not the same through the entire data 
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space. This is especially true in spatial databases, where different spatial regions may 
have completely different characteristics [1]. 
 One of the most effective recent techniques for improving prediction accuracy in 
machine learning theory and pattern classification is combining multiple classifiers. 
There are many general combining algorithms such as bagging [2], boosting [3], or Error 
Correcting Output Codes (ECOC) [4] that significantly improve global classifiers like 
decision trees, rule learners, and neural networks. These algorithms may manipulate the 
training patterns that individual classifiers use (bagging, boosting) or the class labels 
(ECOC). In most of the algorithms the weights of different classifiers are the same for all 
the patterns within the data set to which they are applied. 
 In order to improve the global accuracy of the whole, an ensemble of classifiers must 
be both accurate and diverse. In heterogeneous databases there usually exist several more 
homogeneous regions. To improve the accuracy of the ensemble of classifiers for these 
databases, instead of applying a global classification model across entire data sets, the 
models are varied to better match site-specific needs thus improving prediction 
capabilities [5]. Therefore, in such an approach there is a local classification expert 
responsible for each region that strongly dominates the others from the pool of local 
experts. 
 Diversity of the ensemble is also required to ensure that all the classifiers do not make 
the same errors. In order to increase the diversity of combined classifiers for spatial 
heterogeneous databases with attribute instability, one cannot assume that the same set of 
attributes is appropriate for each single classifier. For each training sample, drawn in a 
bagging or boosting iteration, a different set of attributes is relevant and therefore the 
appropriate attribute set should be used by local classification experts built at each 
iteration.  
 In this paper, we extend the framework for the construction of composite classifiers 
through the AdaBoost algorithm [3]. Work by several authors [6, 7, 8, 9] has provided a 
rather general approach to boosting, through an incremental greedy minimization of some 
empirical cost function. In our approach, in each boosting round we try to maximize the 
local information for a drawn sample by allowing the weights of the different weak 
classifiers to depend on the input. Rather than having constant weights attached to each 
of the classifiers (as in standard approaches), we allow weights to be functions over the 
input domain. In order to determine these weights, at each boosting iteration we identify 
local regions having similar characteristics using a clustering algorithm and then build 
local classification experts on each of these regions describing the relationship between 
the data characteristics and the target class [1]. Therefore, instead of a single classifier 
built on a sample drawn in each boosting iteration, there are several local classification 
experts responsible for each of the regions identified through the clustering process. All 
data points belonging to the same region and hence to the same classification expert will 
have the same weights when all classification experts are combined. In addition, the local 
information is also emphasized with changing attribute representation through attribute 
selection methods at each boosting iteration [10]. 
 In the next section, we discuss current ensemble approaches and work related to 
localized experts and changing attribute representations of combined classifiers. In 
Section 3 we describe the proposed method and investigate its advantages and 
limitations. In Section 4, we evaluate the proposed method on real-life and synthetic data 
sets by comparing it with standard boosting and other methods for dealing with 
heterogeneous databases. Finally, section 5 concludes the paper and suggests further 
directions in current research. 



2 Related Work 

Recently, researchers have begun experimenting with general algorithms for improving 
classification accuracy by combining multiple versions of a single classifier, also known 
as a multiple model or an ensemble approach [2, 3, 4]. Unfortunately, it seems that none 
of these combining methods can be very successful in improving the prediction accuracy 
for heterogeneous databases [11]. Several recent approaches for analyzing heterogeneous 
data are based on changing attribute representation for each of the coalesced classifiers. 
 FeatureBoost [12] is a recently proposed variant of boosting where attributes are 
boosted rather than examples. While standard boosting algorithms alter the distribution 
by emphasizing particular training examples, FeatureBoost alters the distribution by 
emphasizing particular attributes. The goal of FeatureBoost is to search for alternate 
hypotheses amongst the attributes. A distribution over the attributes is updated at each 
boosting iteration by conducting a sensitivity analysis on the attributes used by the model 
learned in the current iteration. The distribution is used to increase the emphasis on 
unused attributes in the next iteration in an attempt to produce different sub-hypotheses. 
 Only a few months earlier, a considerably different algorithm exploring a similar idea 
for an adaptive attribute boosting technique was published [11]. The technique coalesces 
multiple local classifiers each using different relevant attribute information. The related 
attribute representation is changed through attribute selection, attribute extraction and 
attribute weighting processes performed at each boosting round. In addition, a 
modification of the boosting method is developed for heterogeneous spatial databases 
with unstable driving attributes by drawing spatial blocks of data at each boosting round. 
This method was mainly motivated by the fact that standard combining methods do not 
improve local classifiers (e.g. k-nearest neighbors) due to their low sensitivity to data 
perturbation, although the method was also used with global classifiers like neural 
networks. 
 In addition to the previous method, there were a few more experiments in selecting 
different feature subsets as an attempt to force the neural network classifiers to make 
different and hopefully uncorrelated errors. Although there is no guarantee that using 
different attribute sets will decorrelate error, Tumer and Ghosh [13] found that with 
neural networks, selectively removing attributes could decorrelate errors. Unfortunately, 
the error rates in the individual classifiers increased, and as a result there was little or no 
improvement in the ensemble. Cherkauer [14] was more successful, and was able to 
combine neural networks that used different hand selected attributes to achieve human 
expert level performance in identifying volcanoes from images. 
 Opitz [15] has investigated the notion of an ensemble feature selection with the goal 
of finding a set of attribute subsets that will promote disagreement among the component 
members of the ensemble. A genetic algorithm approach was used for searching an 
appropriate set of attribute subsets for ensembles. First, an initial population of classifiers 
is created, where each classifier is generated by randomly selecting a different subset of 
attributes. Then, the new candidate classifiers are continually produced, by using the 
genetic operators of crossover and mutation on the attribute subsets. The algorithm 
defines the overall fitness of an individual to be a combination of accuracy and diversity. 
 Unlike the approaches that change attribute representation, there is another group of 
methods for analyzing heterogeneous databases based on building different local 
classification experts, each responsible for a particular data region. Our recent approach 
[5] belongs to this category and is designed for analysis of spatially heterogeneous 
databases. It first clusters the data in the space of observed attributes, with an objective of 



identifying similar spatial regions. This is followed by local prediction aimed at learning 
relationships between driving attributes and the target attribute inside each cluster. The 
method was also extended for learning when the data are distributed at multiple sites.  
 A similar method is based on a combination of classifier selection and fusion by using 
statistical inference to switch between these two [16]. Selection is applied in regions of 
the attribute space where one classifier strongly dominates the others from the pool 
(clustering-and-selection step), and fusion is applied in the remaining regions. Decision 
templates (DT) are adopted for classifier fusion, where all classifiers are trained over the 
entire attribute space and thereby considered as competitive rather than complementary. 
 Some researchers also have tried to combine boosting techniques with building single 
classifiers in order to improve prediction in heterogeneous databases. One such approach 
is based on a supervised learning procedure, where outputs of predictors are trained on 
different distributions followed by a dynamic classifier combination [17]. This algorithm 
applies principles of both boosting and the mixture of experts [18] and shows high 
performance on classification or regression problems. The proposed algorithm may be 
considered either as a boost wise initialized Mixture of Experts, or as a variant of 
Boosting which uses a dynamic model for combining the output of the classifiers. The 
main characteristic of boosting included in this scheme is the ability to initialize a split of 
the training set to different experts. This split is based on a difficulty criterion. Unlike 
standard boosting where this difference depends on the errors of the first classifier or the 
disagreement between the first two classifiers, this method uses a confidence measure as 
the difficulty criterion. The algorithm is designed for an arbitrary number of experts as 
the ensemble is constructed gradually by adding a new expert and repartitioning the data. 
The first expert is trained on the entire training set. The patterns on which the current 
experts are not confident are assigned to the initial training set of a new expert and used 
for its learning. This procedure is repeated until no more experts are required. When all 
experts are constructed, the entire training data set is repartitioned according to the 
current confidence level of each expert on each pattern. 

3 Boosting Localized Experts 

It is known that boosting is an effective technique for improving prediction accuracy in 
many real life data sets [2, 7, 19]. However, our previous research indicated that in 
heterogeneous databases, where several more homogeneous regions exist, boosting does 
not enhance the prediction capabilities as well as for homogeneous databases [11]. In 
such cases it is more useful to have several local experts responsible for each region of 
the data set. A possible way to approach this problem is to cluster the data first and then 
to assign a single classifier to each discovered cluster. In this paper we try to combine 
this approach with the standard boosting technique in order to further improve 
generalization capabilities of local classification models. 
 We follow the generalized analysis of AdaBoost.M2 algorithm [3]. Our boosting 
extension, described in Figure 1, models a scenario in which the relative significance of 
each expert advisor is a function of the attributes from the specific input patterns. This 
extension seems to better model real life situations where particularly complex tasks are 
split among experts, each with expertise in a small spatial region. 
 In this work as in many boosting algorithms, the final composite hypothesis is 
constructed as a weighted combination of base classifiers. The coefficients of the 
combination in the standard boosting, however, do not depend on the position of the point 
x whose label is of interest. Since the boosting procedure filters data successively through 



re-weighting, it is possible that some of the classifiers ht(x) were not exposed during 
training to any data in the vicinity of the point x. Moreover, greater flexibility can be 
achieved by having each classifier operate only in a localized region. Therefore, it would 
seem more suitable to weight each classifier ht at point x by a local weight βt(x) 
depending on the point x. 

Figure 1.  The scheme for boosting localized classifiers with performing attribute 
selection (step 1) in each boosting iteration 
 
The algorithm proceeds in a series of T rounds. In each round, the entire weighted 
training set is given to the set of local weak learners to compute a unique weak 
hypothesis ht. The distribution is updated to give wrong classifications higher weights 
than correct classifications.  

• Given: Set S = {(x1, y1), … , (xm, ym)} xi ∈ X, with labels yi ∈ Y = {1, …, k} 
• Let B = {(i, y): i ∈  {1,2,3,4,…m}, y ≠ yi} 
• Initialize the distribution D1 over the examples, such that D1(i) = 1/m. 
• While (t < T ) or (global accuracy on set S starts to decrease) 

1. Find relevant attribute information for distribution Dt. 

2. Obtain c distributions Dt,j, j = 1, …c and corresponding sets Sj = {(x1,j, y1,j), … ,
( j,mj,m jj

y,x )}       xi,j
 ∈  Xj, with labels yi,j

 ∈ Yj = {1, …, k} from clusters

discovered in an unsupervised wrapper approach around clustering performed in
step 1. Clustering was performed using the most relevant attributes also identified
in step 1. Let Bj = {(ij, yj): ij ∈  {1,2,3,4,…mj}, yj ≠ yi

j}. 

3. For j = 1 … c (For each of c clusters) 

3.1. Find relevant attribute representation for distribution Dt,j  using supervised
feature selection 
3.2. Train a weak learner using distribution Dt,j 
3.3. Compute weak hypothesis ht,j: Xj × Yj → [0, 1] 
3.4. Compute convex hulls Ht,j for each of c clusters from the entire set S 
3.5. Compute the pseudo-loss of hypothesis ht,j: 
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3.6. Set βt,j = εt,j / (1 - εt,j) 
3.7. Determine clusters on the entire training set according to the convex hull

mapping. All points inside the convex hull Ht,j belong to the j-th cluster Tt,j

from iteration t. 

4. Merge all ht,j, j = 1,… c into a unique weak hypothesis ht and all βt,j, j = 1,… c
into an unique βt according to convex hull belonging (example fitting in the j-th
convex hull has the hypothesis ht,j and the value βt,j). 
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 Since at each boosting iteration t we have different training samples drawn according 
to the distribution Dt, at the beginning of the “for loop” in Figure 1 we include step 1, 
wherein we choose different attribute subsets for each sample. Different attribute 
representations are realized through a feature selection process in the boosting iterations. 
Regression-based attribute selection was carried out through performance feedback [10] 
forward selection and backward elimination search based on linear regression mean 
square error (MSE) minimization. The r most relevant attributes are chosen according to 
the selection criterion at each round of boosting, and are used by the clustering algorithm 
and classification models. Thus, for each round of boosting we have different relevant 
attribute subsets representing the drawn sample, in an attempt to force the single global 
classifiers to make different and hopefully uncorrelated errors. 
 In addition to attribute instability in a sample drawn from a heterogeneous database 
there are usually several more homogeneous regions. Therefore, at each boosting 
iteration we perform clustering in order to find those homogeneous regions. As a result of 
the clustering, we obtain several distributions Dt,j (j = 1,…,c), where c is the number of 
discovered clusters. For each of c clusters discovered in the data sample, we first identify 
relevant attributes using supervised feature selection procedure. Then, we train a weak 
learner using the corresponding data distribution and compute a weak hypothesis ht,j. 
Furthermore, for every cluster from the data sample, we identify its convex hull in the 
attribute space used for clustering, and map these convex hulls to the entire training set in 
order to find the corresponding clusters where the local classifiers will be applied (Figure 
2) [20]. All data points inside the convex hull Ht,j belong to the j-th cluster discovered at 
iteration t. Data points outside the convex hulls are attached to the cluster containing the 
closest data pattern. Therefore, instead of a single global classifier constructed in every 
iteration by the standard boosting approach, there are c classifiers and each of them is 
applied to the corresponding mapped cluster. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Mapping convex hulls H1,j of clusters C1,j, j = 1, …,c, (discovered in the data 
sample), to the entire training set in order to find corresponding clusters. For example, 
all data points inside the contours of the convex hull H1,1 (corresponding to the cluster 
C1,1 discovered on the data sample) belong to the new cluster T1,1 identified on the 
entire training set. 
 

In standard boosting all data points have the same pseudo-loss εt and the parameter βt 
when combining the classifiers from the boosting iterations. In our approach data points 
from different clusters have different pseudo-loss values and different parameter values 
βt. For each cluster j, (j =1,…,c) from iteration t, defined with the convex hull Ht,j, there 
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is a pseudo-loss εt,j and the corresponding parameter βt,j. Each pseudo-loss value εt,j is 
computed independently for each cluster where a particular classifier is responsible. The 
value of the parameter βt,j is also computed separately for each cluster using the 

corresponding pseudo-loss value εt,j. Before updating the distribution Dt, the parameters 
βt,j for c clusters are merged into a unique vector βt such that the i-th pattern from the data 
set that belongs to the j-th cluster specified by the convex hull Ht,j, corresponds to the 
parameter βt,j at the i-th position in the vector βt. Analogously, the hypotheses ht,j are 
merged into a single hypothesis ht. Since we merged βt,j and ht,j into βt and ht 
respectively, the updating of the distribution Dt can be performed as in the standard 
boosting algorithm. However, in making the final hypothesis hfn the local classifiers from 
each iteration are first applied to the corresponding clusters and integrated into a 
composite classifier responsible for that iteration. These composite classifiers are then 
combined using the standard AdaBoost.M2 algorithm. 
 The clustering technique is an important part of the proposed algorithm. Using 
attributes derived from feature selection at step 0 of each boosting iteration, two 
clustering algorithms were employed to partition the spatial data set into “similar” 
regions. The first one called DBSCAN relies on a density-based notion of clusters and 
was designed to discover clusters of an arbitrary shape efficiently [21]. The key idea of 
density-based clustering is that for each point of a cluster its Eps-neighborhood for a 
given Eps > 0 has to contain at least a minimum number of points (MinPts), (i.e. the 
density in the Eps-neighborhood of points has to exceed some threshold). Furthermore, 
the typical density of points inside clusters is considerably higher than outside of clusters. 
DBSCAN uses a simple but effective heuristic for determining the parameters Eps and 
MinPts for the smallest cluster in the database. 
 The second clustering algorithm used in our proposed method is the standard k-means 
algorithm [22]. Here, data set S = {(x1, y1), … , (xm, ym)}, xi ∈ X, is partitioned into k 

clusters by finding k points k
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is minimized, where d2(xi, mj) usually denotes the Euclidean distance between xi and mj, 

although other distance measures can be used. The points k
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centroids. 
 When performing clustering during boosting iterations, it is possible that some of the 
discovered clusters are relatively small and therefore there is an insufficient number of 
data points needed for training a local classifier. Several techniques for handling these 
scenarios were considered. 
 The first technique denoted as simple halts the boosting process when a cluster with a 
small number of data points is detected. This number of data patterns is defined as a 
function of the number of patterns in the entire training set. When the boosting procedure 
is terminated, only the classifiers from the previous iterations are combined in order to 
create the final hypothesis hfn. 
 A more sophisticated technique for addressing small clusters does not stop the 
boosting process, but instead of training the local classifier on the detected cluster with 
insufficient amount of the data, it employs the local classifiers constructed in previous 
iterations. When a cluster with an insufficient number of data points is identified, its 
corresponding cluster from previous iterations is detected using the convex hull matching 



(Figure 2) and the model constructed on the corresponding cluster is applied on the 
cluster discovered in the current iteration. The most effective method for determining the 
model that should be applied is to take the classification model constructed in the 
iteration where the local prediction accuracy for the corresponding cluster was maximal. 
This technique represented as best_local will be compared to the simple method as well 
as to two similar techniques: previous and best_global. The previous method always 
takes the classifiers constructed on the corresponding cluster from the previous iteration, 
while the best_global technique uses the classification models constructed on the 
corresponding cluster from the iteration where the global prediction accuracy, achieved 
by applying final hypothesis hfn, was maximal. In all these sophisticated techniques, the 
boosting procedure ceases when the prespecified number of iterations is reached or there 
is a significant drop in the prediction accuracy for the training set. 
 We used multilayer (2-layered) feedforward neural network classification models 
with the number of hidden neurons equal to the number of input attributes. We also 
experimented with different numbers of hidden neurons. The neural network 
classification models had the number of output nodes equal to the number of classes (3 in 
our experiments), where we predicted the class given by the output with largest response. 
We used two learning algorithms: resilient propagation [23] and Levenberg-Marquardt 
[24]. 
 To further experiment with attribute stability properties, miscellaneous attribute 
selection algorithms [10] were applied to the entire training set and the most stable 
attributes were selected. The standard boosting method was applied to the global and 
local classifiers using the identified fixed set of attributes at each boosting iteration. 
When boosting is applied with attribute selection at each boosting round, the attribute 
occurrence frequency is monitored in order to identify the most stable selected attributes. 
The hypothesis considered in the next section was that when attribute subsets selected 
through boosting iterations become stable, it is appropriate to stop the boosting process. 

4 Experimental Results 

Our experiments were first performed on two synthetic data sets corresponding to 5 
homogeneous data distributions made using our spatial data simulator [25]. The attributes 
f4 and f5 were simulated to form five clusters in their attribute space (f4, f5) using the 
technique of feature agglomeration [25]. Furthermore, instead of using one model for 
generating the target attribute on the entire spatial data set, a different data generation 
process using different relevant attributes was applied per each cluster, such that the 
distributions of generated data resembled the distributions of real life data. The degree of 
relevance was also different for each distribution. Both data sets had 6561 patterns with 5 
relevant (f1, ..., f5) and 5 irrelevant attributes (f6, ..., f10), where one was used for 
training, and another one for out of sample testing. The histograms of all 5 attributes for 
all 5 distributions are shown in Figure 3. 
 We also performed experiments using spatial data from a 220 ha field located near 
Pullman, WA. All attributes were interpolated to a 10x10 m grid resulting in 24,598 
patterns. The Pullman data set contained x and y coordinates (attributes 1-2), 19 soil and 
topographic attributes (attributes 3-21) and the corresponding crop yield. The field was 
spatially partitioned into training and test set (left half of the field was the training set, 
while right half served as the test set). The attributes used were: baresoil, soil type, 
elevation, primal sketch, solar radiation, compound topographic index, aspect east-west, 
aspect north-south, distance to long flow, flow direction, flow width, slope, plan 
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Figure 3. Histograms of all 5 relevant attributes for all 5 clusters of a synthetic data set 
 
For the synthetic data set we performed standard boosting, adaptive attribute boosting 
(boosting with attribute selection at each iteration) and all proposed variants of boosting 
localized experts (boosting with clustering). For each of these methods, the reported 
classification accuracies for 3 equal size classes were obtained by averaging over 10 trials 
of all proposed boosting algorithms applied to neural network classifiers (Figure 4 and 
Table 1). For all reported results, the best prediction accuracies were achieved when 
using the Levenberq-Marquardt algorithm for training neural networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Overall classification accuracies for 3-class predictors on out of sample (test) 
synthetic data set with 5 relevant and 5 irrelevant attributes and five clusters defined by 
2 of 5 relevant attributes. 
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* - Adaptive Attribute Boosting  
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algorithm (best_local technique) 



Table 1. Final classification accuracies for the 3-class problems. Different boosting 
algorithms are applied on out of sample synthetic data with 5 relevant and 5 irrelevant 
attributes and 5 clusters. 

Method Classification accuracy (%) 
Global Approach 61.0 ± 2.2 

DBSCAN Clustering with specialized classifiers 71.3 ± 0.9 
Standard Boosting 69.8 ± 1.1 

Adaptive Attribute Boosting 69.4 ± 1.1 
k-means clustering 72.6 ± 1.1 

simple 73.9 ± 1.7 
previous 74.4 ± 1.5 

best_global 74.9 ± 1.4 

Boosting 
Localized 

Experts with 
Clustering 

 
DBSCAN 
clustering 

 best_local 76.6 ± 1.2 
 
Analyzing the data in Table 1 and the charts in Figure 4, the method of adaptive attribute 
boosting was not significantly better than the standard boosting model, but the all variants 
of boosting localized experts considerably outperformed both the standard boosting and 
the adaptive attribute boosting. 
 Observe that the adaptive attribute boosting results showed no improvements in 
prediction accuracy. This was due to properties of the synthetic data set, where each 
spatial region had not only different relevant attributes related to yield class but also a 
different number of relevant attributes. In such a scenario with uncertainty regarding the 
number of relevant attributes for each region, we needed to select at least the 4 or 5 most 
important attributes at each boosting round, since selecting 3 most relevant attributes may 
be insufficient for successful learning. However, the total number of relevant attributes in 
the data set was 5 as well, and therefore it was meaningless to select 5 attributes during 
the boosting rounds since we cannot achieve any attribute instability. Therefore, we were 
selecting the 4 most relevant attributes for adaptive attribute boosting, knowing that for 
some drawn samples we would lose beneficial information. In the standard boosting 
method we used all 5 relevant attributes from the data set. Nevertheless, we obtained 
similar classification accuracies for both the adaptive attribute boosting and the standard 
boosting method, but adaptive attribute boosting reached the “bounded” final prediction 
accuracy in fewer boosting iterations. This property could be useful for reducing the time 
needed for the latest boosting rounds. Instead of post-pruning the boosted classifiers [26] 
we can try to set the appropriate number of boosting iterations at the beginning of the 
procedure. 
 All methods of boosting localized experts resulted in improved generalization of 
approximately 10 % as compared to standard and adaptive attribute boosting. It was also 
evident that the boosting of localized experts required fewer iterations in order to reach 
the maximal prediction accuracy. After the prediction accuracy was maximized, the 
overall prediction accuracy on the training set, as well as the total classification accuracy 
on the test set, started to decline. This phenomenon was probably due to the fact that in 
the later iterations only data points that were difficult for learning were drawn and 
therefore the prediction accuracy of the local models built in those iterations began to 
deteriorate. As a consequence, the total prediction accuracy decreased too. 
 The data distribution of discovered clusters was monitored at each boosting iteration 
by performing DBSCAN clustering algorithm (Figure 5). Unlike the previous adaptive 
attribute boosting method when around 30 boosting iterations were needed to achieve 



good generalization results, here typically only a few iterations (5 – 10) were sufficient 
for reaching the maximum prediction accuracy on the training set. As could be observed 
in Figure 5, data samples drawn in initial iterations (iteration 1) clearly included data 
points from all five clusters while samples drawn in later iterations (iterations 4, 5) 
contained very small number of data points from the clusters where the prediction 
accuracy was good. Therefore, as one of the criteria for stopping boosting early, we 
accepted the following rule: the boosting procedure stops when the size of any of the 
discovered clusters is less than some predefined number (usually less than 50). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Changing the distributions of drawn samples during boosting on the neural 
network classifier. Samples from initial iterations contain points from all clusters, 
while samples from later iterations contain a small number of points from the central 
clusters where the accuracy was good. 
 
An additional criterion for stopping the boosting algorithm early is to observe the 
classification accuracy on the entire training set and to stop the procedure when it starts 
to decline. Figure 4 shows the iterations when we stop the boosting procedure. This is the 
moment when the classification accuracy on the training set starts to decline. Although in 
practice the prediction accuracy on the test set does not necessarily start to drop in the 
same iteration, this difference is usually up to two boosting iterations and does not 
significantly affect the total generalizability of the proposed method. 
 However, when using the k-means clustering algorithm during the boosting 
procedure, we did not notice the phenomenon of reducing the number of data points in 
discovered clusters. Therefore, for the k-means variant of boosting localized experts we 
did not perform the modifications of the proposed algorithm. In addition, it was evident 
that boosting localized experts when using k-means clustering algorithm was not as 
successful as boosting localized experts with the DBSCAN algorithm, due to better 
quality clusters identified by DBSCAN which was designed to discover spatial clusters of 
arbitrary shape. 
 Nevertheless, when using the DBSCAN algorithm at each boosting round, the 
best_local technique provided the best prediction accuracy (Table 1), while the other 
methods were not significantly better than the boosting localized experts with k-means 



clustering. The simple technique failed to achieve improved prediction results, since it 
did not reach enough boosting iterations to develop the most appropriate classifiers for 
each cluster that need to be combined. On the other hand, the previous method had 
boosting cycle that was long enough, but did not combine appropriate models. Therefore, 
both methods coalesced the classifiers that could not generalize well or they were built on 
clusters without enough training data. Finally, the best_global and best_local combined 
the most accurate models for each cluster taken in some of the earlier iterations, and 
hence achieved the best generalizability. However, the prediction accuracy of all models 
deteriorated in later boosting iterations, due to drawing only data points that were 
difficult to learn. 
 Experiments with all proposed boosting modifications were repeated for training and 
test sets of real life spatial data. The goal was to predict 3 equal size classes of wheat 
yield as a function of soil and topographic attributes. For real life data (Pullman data set) 
17 miscellaneous attribute selection methods were used to identify the 4 most relevant 
attributes on the training data set (Table 2) and the histograms for the most stable 
attributes (4, 7, 9, 20) are shown in Figure 6. These attributes were used for the global 
prediction method when a single model is learned on the entire training set and applied 
on the test data set, for the standard boosting method, and for variants of the boosting 
localized experts without performing attribute selection at each boosting round. 

Table 2. Attribute selection methods used to identify 4 most stable attributes on 
training data set 

Attribute Selection Methods Selected attributes 

 Mahalanobis distance 7, 9, 11, 20 
 Bhatacharya distance 4, 7, 10, 14 

Branch & 
Bound 

methods 

Probabilistic 
distance 

 Patrick-Fisher distance 13,17, 20, 21 
 Minkowski (order = 1) 7, 9, 10, 11 
 Minkowski (order = 3) 3, 4, 5, 7 
 Euclidean distance 3, 4, 5, 7 

Inter-class 
distance 

 Chebychev distance 3, 4, 5, 7 
 Bhatacharya distance 3, 4, 8, 9 
 Mahalanobis distance 7, 9, 11, 20 
 Divergence distance metric 3, 4, 8, 9 

Probabilistic 
distance 

 Patrick-Fisher distance 13,16, 20, 21 
 Minimal Error Probability, k-NN with resubstitution 4, 7, 11, 19 

Forward 

Selection 

methods 

 Linear regression performance feedback 5,  9, 7, 18 
 Mahalanobis distance 7, 9, 11, 20 
 Bhatacharya distance 4, 7, 9, 14 

Probabilistic 
distance 

 Patrick-Fisher distance 13,17, 20,21 

Backward 
Elimination 

methods 
 Linear regression performance feedback 7, 9, 11, 20 

 
When performing attribute selection during boosting, the selected attributes were 
monitored and their frequency was computed. The frequency of selected attributes during 
the boosting rounds, when the adaptive attribute boosting without performing clustering 
at each iteration was applied to neural network classification models, is presented in 
Figure 7. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Histograms of 4 most relevant   Figure 7. Attribute stability during boosting 
attributes of real life data set on the Levenberq-Marquardt algorithm on 

real life data (* denotes that the attribute is 
selected in  boosting iteration; - denotes that 
the attribute is not selected) 

 
The results in Figure 8 were obtained by the backward elimination attribute selection 
technique using the Levenberq-Marquardt algorithm for optimizing neural network 
parameters. When using the method of boosting localized experts, the best experimental 
results were achieved again with the best_local technique and the Levenberq-Marquardt 
algorithm and only these results are reported in Figure 8 and Table 3. The same stopping 
criteria for the boosting procedure, as for the synthetic data sets, were used. In these 
experiments adaptive attribute boosting outperformed the standard boosting model, while 
all 4 variants of boosting localized experts with clustering through iterations were more 
successful than the standard boosting, the adaptive attribute boosting and the method of 
building specialized classifiers on clusters identified using DBSCAN algorithm (Table 3). 

Table 3. Final classification test accuracies for the 3-class problems. Different 
boosting algorithms are applied to the out of sample real life data set with 19 soil and 
topographic attributes. 

Method Classification accuracy (%) 

Global Approach 42.4 ± 2.2 
DBSCAN Clustering with specialized classifiers 49.7 ± 0.9 

Standard Boosting 45.5 ± 1.1 
Adaptive Attribute Boosting 48.8 ± 1.1 

without attribute selection 50.3 ± 1.2 k-means 
clustering WITH attribute selection 50.6 ± 1.1 

without attribute selection 52.2 ± 1.3 

Boosting 
Localized 

Experts with 
Clustering 

DBSCAN 
clustering WITH attribute selection 52.4 ± 1.4 
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Figure 8. Overall classification accuracies for the 3-class predictors on out of sample 
(test) real life data set 
 
It appeared that for pure adaptive attribute boosting with only attribute selection, 
monitoring selected attributes could be a good criterion for stopping boosting early, since 
after the selected attribute subsets had became stable, no significant improvements in 
prediction accuracy were noticed. The results indicate that 30 boosting rounds were 
usually sufficient to maximize prediction accuracy. During the boosting iterations we 
were selecting the 4 and 5 most important attributes, and the number of hidden neurons in 
a 2-layer feedforward neural network was equal to the number of input attributes. We 
noticed that further increasing the number of hidden neurons did not improve prediction 
accuracy probably due to overfitting. 
 The boosting localized experts on a real life heterogeneous data set is not as superior 
to the adaptive attribute boosting as for the synthetic data set, since higher attribute 
instability was apparently beneficial for the adaptive attribute boosting. Similar to 
experiments on synthetic data, the best_local technique of boosting localized experts was 
the most successful among all the proposed methods. 

5 Conclusion 

Results from two spatial data sets indicate that the proposed algorithm for combining 
multiple classifiers can result in significantly better predictions over existing classifier 
ensembles, especially for heterogeneous data sets with attribute instabilities. First, this 
study provides evidence that by manipulating the attribute representation used by 
individual classifiers at each boosting round, classifiers could be more decorrelated thus 
leading to higher prediction accuracy. The attribute stability test also served as a good 
indicator for stopping further boosting iterations properly. Second, boosting localized 
experts with applied clustering at each boosting round further significantly improved the 
achieved prediction accuracy on highly heterogeneous databases. Boosting localized 
experts also significantly reduces the number of boosting iterations needed for achieving 
maximal prediction accuracy. 
 Although boosting localized experts required order of magnitude less boosting rounds 
to achieve the maximum prediction accuracy than the standard and adaptive attribute 
boosting, the number of constructed prediction models increases drastically through the 
iterations. This number depends on the number of discovered clusters and on the number 
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of boosting rounds needed for making the final classifier. In our case, this drawback was 
alleviated by the fact that we were experimenting with small numbers of clusters (4, 5) 
and that only a few boosting iterations were sufficient to maximize the prediction 
accuracy. Therefore, the memory needed for storing all prediction models is comparable 
or even less than for the standard boosting technique. 
 In addition to the prediction accuracy of the proposed method, the time required for 
building the model is also an important issue when developing a novel algorithm. Albeit 
the number of learned classifiers per iteration for the proposed method was much larger 
than for the standard boosting, the cluster data sets on which the classification models 
were built were smaller. The computation time for learning by the proposed model 
therefore was comparable to learning the models on the entire training data. Hence, the 
total computation time depends only on the number of iterations, and is much smaller for 
the proposed boosting localized experts than for the standard boosting or the adaptive 
attribute boosting. 
 Although the performed experiments provide evidence that the proposed approaches 
can improve predictions of classifier ensembles, further work is needed to examine the 
method for more heterogeneous data sets with more diverse attributes. We are currently 
working on extending the combining of the adaptive attribute boosting and the boosting 
localized experts such that other attribute representation methods (attribute extraction, 
attribute weighting) are applied on each cluster discovered during the boosting rounds. 
Furthermore, identifying attributes using supervised learning may not be appropriate for 
performing clustering algorithm. Therefore, finding the smallest attribute subsets that best 
uncover “natural” groupings (clusters) from the data according to some criterion is 
needed [27]. We are also investigating modifying the proposed algorithm for spatial data 
sets in which observations close to each other are more likely to be similar than 
observations widely separated in space. 
 The other classification models (C4.5 decision trees, k-Nearest Neighbors) will also 
be examined in order to further improve the generalization capabilities of the proposed 
method. In addition, we are working to extend the method to regression based problems. 
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