
Adaptive Boosting for Spatial Functions with
Unstable Driving Attributes*

Aleksandar Lazarevic1, Tim Fiez2, Zoran Obradovic1

1 School of Electrical Engineering and Computer Science, Washington State University,
Pullman, WA 99164-2752, USA

{alazarev, zoran}@eecs.wsu.edu
2 Department of Crop and Soil Sciences, Washington State University,

Pullman, WA 99164-2752, USA
tfiez@wsu.edu

Abstract. Combining multiple global models (e.g. back-propagation based
neural networks) is an effective technique for improving classification accuracy
by reducing a variance through manipulating training data distributions.
Standard combining methods do not improve local classifiers (e.g. k-nearest
neighbors) due to their low sensitivity to data perturbation. Here, we propose an
adaptive attribute boosting technique to coalesce multiple local classifiers each
using different relevant attribute information. In addition, a modification of
boosting method is developed for heterogeneous spatial databases with unstable
driving attributes by drawing spatial blocks of data at each boosting round. To
reduce the computational costs of k-nearest neighbor (k-NN) classifiers, a novel
fast k-NN algorithm is designed. The adaptive attribute boosting applied to real
life spatial data and artificial spatial data show observable improvements in
prediction accuracy for both local and global classifiers when unstable driving
attributes are present in the data. The “spatial” variant of boosting applied to the
same data sets resulted in highly significant improvements for the k-NN
classifier, making it competitive to boosted neural networks.

Keywords: multi-strategy learning, boosting, attribute representation, spatial
databases, fast k-NN classifier.

1. Introduction

Many large-scale data analysis problems involve an investigation of relationships
between attributes in heterogeneous databases. Large data sets very often exhibit
attribute instability, such that the set of relevant attributes is not the same through the
entire data space. This is especially true in spatial databases, where different spatial
regions may have completely different characteristics.

It is known in machine learning theory that combining multiple classifiers is an
effective technique for improving prediction accuracy. There are many general
combining algorithms such as bagging [1], boosting [2], or Error Correcting Output

* Partial support by the INEEL University Research Consortium project No. C94-175936 to

T. Fiez and Z. Obradovic is gratefully acknowledged.

Codes (ECOC) [3] that significantly improve global classifiers like decision trees,
rule learners, and neural networks. These algorithms may manipulate the training
patterns individual classifiers use (bagging, boosting) or the class labels (ECOC). An
ensemble of classifiers must be both diverse and accurate in order to improve
accuracy of the whole. Diversity is required to ensure that all the classifiers do not
make the same errors. In order to increase the diversity of combined classifiers for
spatial heterogeneous databases with attribute instability, one cannot assume that the
same set of attributes is appropriate for each single classifier. For each training
sample, drawn in a bagging or boosting iteration, a different set of attributes is
relevant and therefore the appropriate attribute set should be used by each single
classifier in an iteration. In addition, the application of different classifiers on spatial
databases, where the data are highly spatially correlated, may produce spatially
correlated errors. In such situations the standard combining methods might require
different schemes for manipulating the training instances in order to keep the diversity
of classifiers.

In this paper, we propose a modification of the AdaBoost algorithm [2] for
combining multiple classifiers to improve overall classification accuracy. In each
boosting round we try to maximize the local information for a drawn sample by
changing attribute representation through attribute selection, attribute extraction and
appropriate attribute weighting methods [4]. In order to exploit the spatial data
knowledge, a modification of the boosting method appropriate for heterogeneous
spatial databases is proposed, where at each boosting round spatial data blocks are
drawn instead of the standard approach of sampling single instances.

The influence of these adjustments to single classifiers is not the same for local
classifiers (e.g. k–nearest neighbor) and global classifiers (e.g. artificial neural
networks). It is known that standard combining methods do not improve simple local
classifiers due to correlated predictions across the outputs from multiple combined
classifiers [1, 3]. We show that prediction of combined nearest neighbor classifiers
can be decorrelated by selecting different attribute representations for each sample
and by sampling spatial data blocks. The nearest neighbor classifier is often criticized
for slow run-time performance and large memory requirements, and using multiple
nearest neighbor classifiers could further worsen the problem. Therefore, we used a
novel fast method for k-nearest neighbor classification to speed up the boosting
process. We also test the influence of changing attribute representation on global
classifiers like neural networks.

2. Related Work

The nearest neighbor classifier [6] is one of the oldest and simplest methods for
performing general, non-parametric classification. A common extension is to choose
the most common class among the k nearest neighbors. Despite its simplicity, the k-
nearest neighbor classifier (k-NN) can often provide similar accuracy to more
sophisticated methods such as decision trees or neural networks. It’s advantages
include ability to learn from a small set of examples, and to incrementally add new
information at runtime.

Recently, researchers have begun testing methods for improving classification
accuracy by combining multiple versions of a single classifier, also known as an
ensemble approach. Unfortunately, many combining methods do not improve the k-
NN classifier. For example, when experimenting with bagging, Breiman [1] found no
difference in accuracy between the bagged k-NN classifier and the single model
approach. It is also shown that ECOC will not improve classifiers that use local
information due to high error correlation [3].

A popular alternative to bagging is boosting, which uses adaptive sampling of
patterns to generate the ensemble. In boosting [2], the classifiers in the ensemble are
trained serially, with the weights on the training instances set adaptively according to
the performance of the previous classifiers. The main idea is that the classification
algorithm should concentrate on the difficult instances. Boosting can generate more
diverse ensembles than bagging does, due to its ability to manipulate the input
distributions. However, it is not clear how one should apply boosting to the k-NN
classifier for the following reasons: (1) boosting stops when a classifier obtains 100%
accuracy on the training set, but this is always true for the k-NN classifier, (2)
increasing the weight on a hard to classify instance does not help to correctly classify
that instance as each prototype can only help classify its neighbors, not itself. Freund
and Schapire [2] applied a modified version of boosting to the k-NN classifier that
worked around these problems by limiting each classifier to a small number of
prototypes. However, their goal was not to improve accuracy, but to improve speed
while maintaining current performance levels.

Although there is a large body of research on multiple model methods for
classification, very little specifically deals with combining k-NN classifiers. Ricci and
Aha [5] applied ECOC to the k-NN classifier (NN-ECOC). Normally, applying
ECOC to k-NN would not work since the errors in two-class problems would be
perfectly correlated. However, they found that applying attribute selection to the two-
class problems decorrelated errors if different attributes were selected. Unlike this
approach, Bay’s Multiple Feature Subsets (MFS) method [6] uses random attributes
when combining individual classifiers by simple voting. Each time a pattern is
presented for classification, a new random subset of attributes is selected for each
classifier.

Although it is known that boosting works well with global classifiers like neural
networks, there have been several experiments in selecting different attribute subsets
as an attempt to force the classifiers to make different and hopefully uncorrelated
errors. Tumer and Ghosh [7] found that with neural networks, selectively removing
attributes could decorrelate errors. Unfortunately, the error rates in the individual
classifiers increased, and as a result there was little or no improvement in the
ensemble. Cherkauer [8] was more successful, and was able to combine neural
networks that used different hand selected attributes to achieve human expert level
performance in identifying volcanoes from images.

3. Methodology

3.1 Adaptive Boosting for k-NN Classifiers

We follow the generalized procedure of AdaBoost.M2 [2]. The modified algorithm is
shown in Fig. 1. It maintains a distribution Dt over the training examples, which can
be initially uniform. The algorithm proceeds in a series of T rounds. In each round,
the entire weighted training set is given to the weak learner to compute weak
hypothesis ht. The distribution is updated to give wrong classifications higher weights
than correct classifications.

Fig. 1. The scheme of modified AdaBoost.M2 algorithm

Since at each boosting iteration t we have different training samples drawn
according to the distribution Dt, at the beginning of the “ for loop” in Fig. 1 we modify
the standard algorithm by adding step 0., wherein we choose a different attribute
representation for each sample. Different attribute representations are realized through
attribute selection, attribute extraction and attribute weighting processes through
boosting iterations. This is an attempt to force individual classifiers to make different
and hopefully uncorrelated errors.

Error correlation is related to Breiman's [1] concept of stability in classifiers.
Nearest neighbor classifiers are stable to the patterns, so bagging and boosting
generate poor k-NN ensembles. Nearest neighbor classifiers, however, are extremely
sensitive to the attributes used. Our approach attempts to use this instability to
generate a diverse set of local classifiers with uncorrelated errors. At each boosting
round, we perform one of the following methods to determine a suitable attribute
space for use in classification.

To eliminate irrelevant and highly correlated attributes, regression-based attribute
selection was performed through performance feedback [4] forward selection and
backward elimination search techniques based on linear regression mean square error

• Given: Set S { (x1, y1), … , (xm, ym)} xi ∈X, with labels yi ∈Y = { 1, …, k}
• Initialize the distribution D1 over the examples, such that D1(i) = 1/m.
• For t = 1, 2, 3, 4, … T

0. Find relevant feature information for distribution Dt

1. Train weak learner using distribution Dt

2. Compute weak hypothesis ht: X × Y → [0, 1]
3. Compute the pseudo-loss of hypothesis ht:

 εt =)),(),(1)(,(
2

1

),(

yxhyxhyiD itiit
Byi

t +−⋅ ∑
∈

4. Set βt = εt / (1 - εt)

5. Update Dt : Dt+1 (i, y) =)),(),(1()2/1()/),((iitiit yxhyxh
ttt ZyiD +−⋅⋅ β

 where Zt is a normalization constant chosen such that Dt+1 is a distribution.

• Output the final hypothesis:),()
1

(logmaxarg
1

yxhh t

T

t tYy
fn ⋅= ∑

=
∈ β

(MSE) minimization. The r most relevant attributes are selected according to the
selection criterion at each round of boosting, and are used by the k-NN classifiers.

In contrast to attribute selection where a decision is target-based, variance-based
dimensionality reduction through attribute extraction is also considered. Here, linear
Principal Components Analysis (PCA) [4] was employed. Each of the k-NN
classifiers uses the same number of new transformed attributes. Another possibility is
to choose an appropriate number of newly transformed attributes which will retain
some predefined part of the variance.

The attribute weighting method used in the proposed method is based on a 1-layer
feedforward neural network. First, we try to perform target value prediction for the
drawn sample with defined a 1-layer feedforward neural network using all attributes.
It turns out that this kind of neural network can discriminate relevant from irrelevant
attributes. Therefore, the neural networks interconnection weights are taken as
attribute weights for the k-NN classifier.

To further experiment with attribute stability properties, miscellaneous attribute
selection algorithms [4] were applied on the entire training set and the most stable
attributes were selected. Then the standard boosting method was applied to the k-NN
classifiers using the identified fixed set of attributes at each boosting iteration. When
boosting is applied with attribute selection at each boosting round, the attribute
occurrence frequency is monitored in order to compare the most stable selected
attributes. When attribute subsets selected through boosting iterations become stable,
this can be an indication to stop the boosting process.

3.2 Spatial Boosting for k-NN Classifiers

Spatial data represent a collection of attributes whose dependence is strongly related
to a spatial location where observations close to each other are more likely to be
similar than observations widely separated in space. Explanatory attributes, as well as
the target attribute in spatial data sets are very often highly spatially correlated. As a
consequence, applying different classification techniques on such data is likely to
produce errors that are also spatially correlated [12]. Therefore, when applied to
spatial data, the boosting method may require different partitioning schemes than
simple weighted selection which doesn’ t take into account the spatial properties of the
data. Rather than drawing n data points according to the distribution Dt (Fig. 1), the
proposed method draws (n/M2) spatial data blocks (squares of size M points × M
points) according to the new distribution SDt. The distribution SDt is modified in such
a way that all data points dp inside the same spatial block have the same SDt(dp). This
is done through simple median M × M filtering over the data points inside the spatial
block. Using this approach we hope to achieve more decorrelated classifiers whose
integration can further improve model generalization capabilities for spatial data.

3.3 Adaptive Attribute and Spatial Boosting for Neural Network Classifiers

Although standard boosting can increase prediction accuracy of artificial neural
network classifiers, we experimented with changing attribute representation and

spatial block drawing to see if adaptive attribute and spatial boosting can further
improve accuracy of an ensemble of classifiers. The most stable attributes used in
standard boosting of k-NN classifiers were also used here for the same purpose. At
each boosting round we performed attribute selection and attribute extraction
processes, since the attribute weighting method seemed to be “redundant” when
training neural network classifiers. We trained multilayer (2-layered) feedforward
neural network classification models with the number of hidden neurons equal to the
number of input attributes. We also experimented with different numbers of hidden
neurons. The neural network classification models had the number of output nodes
equal to the number of classes (3 in our experiments), where the predicted class is
from the output with largest response. We used two learning algorithms: resilient
propagation [10] and Levenberg-Marquardt [11]. The experiments for testing attribute
stability through the boosting were repeated as well, and they were used to determine
the proper number of boosting iterations.

3.4 The Fast k-NN Algorithm

The quality of k-NN generalization depends on which k instances are deemed least
distant, which is determined by its distance function. We consider two distance
functions in our work: standard Euclidean and Mahalanobis distance.

To speed up the long-lasting boosting process, a fast k-NN classifier is proposed.
For n training examples and d attributes our approach requires preprocessing which
takes O(d⋅ n⋅ log n) steps to sort each attribute separately. However, this is performed
only once, and we trade off this initial time for later speedups.

The main idea of the proposed algorithm will be presented is as follows.

Fig. 2. The used hyper-rectangle, hypersphere and hypercubes in the fast k-NN

f1

f2

k closest
values in f1

k closest
values in f2

dstmin

2⋅dstmin

dst√d

test point
X

cdp

Initially, we form a hyper-rectangle with boundaries defined by the extreme values
of the k closest values for each attribute (Fig. 2 – small dotted lines). If the number of
training instances inside the identified hyper-rectangle is less than k, we compute the
distances from the test point to all of d⋅k data points which correspond to the k closest
values for each of d attributes, and sort them into non-decreasing array sx. We take
the nearest training example cdp with the distance dstmin, and form a hypercube with
boundaries defined by this minimum distance dstmin (Fig. 2 - larger dotted lines). If the
hypercube doesn’ t contain enough (k) training points, form the hypercube of a side
2⋅sx(k+1). Although this hypercube contains more than k training examples, we need
to find the one which contains the minimal number of training examples greater than
k. Therefore, if needed, we search for a minimal hypercube by binary halving the
index in non-decreasing array sx. This can be executed at most log k times, since we
are reducing the size of the hypercube from 2⋅sx(k+1) to 2⋅sx(1). Therefore the total
time complexity of our algorithm is O(d⋅log k ⋅log n), under the assumption that n >
d⋅k, which is always true in practical problems.

If the number of training instances inside the identified hyper-rectangle is greater
than k, we also search for a minimal hypercube that contains at least k and at most 2⋅k
training instances inside the hypercube. This was accomplished through binary
halving or incrementing the side of a hypercube. After each modification of a
hypercube’s side, we compute the number of enclosed training instances and modify
the hypercube accordingly. By analogous reasoning as in the previous case, it can be
shown that binary halving or incrementing the hypercube’s side will not take more
than log k time, and therefore the total time complexity is still O(d⋅log k ⋅log n).

When we find a hypercube which contains the appropriate number of points, it is
not necessary that all k nearest neighbors are in the hypercube, since some of the
closer training instances to the test points could be located in a hypersphere of

identified radius dst d (Fig. 2). Since there is no fast way to compute the number of
instances inside the sphere without computing all the distances, we embed the
hypersphere in a minimal hypercube and compute the number of the training points
inside this surrounding hypercube. The number of points inside the surrounding
hypercube is much less than the total number of training instances and therefore
classification speedups of our algorithm.

4. Experimental results

Our experiments were performed using spatial data from a 220 ha field located near
Pullman, WA. All attributes were interpolated to a 10x10 m grid resulting in 24,598
patterns. The Pullman data set contained x and y coordinates, 19 soil and topographic
attributes and the corresponding crop yield. We also performed the experiments on an
artificial data set made using our spatial data simulator [13] corresponding to 5
heterogeneous data distributions, each having different relevant attributes for yield
generation. The data set had 5 relevant and 5 irrelevant attributes.

For the Pullman data set the miscellaneous attribute selection methods were used to
identify the 4 most relevant attributes (Table 1) and the most stable attributes (4, 7, 9,
20) were used for the standard boosting method.

Table 1. Attribute selection methods used to identify 4 most stable attributes

Attribute Selection Methods

Forward Selection
Selected

Attributes
Branch and Bound

Selected
Attributes

1 7, 9, 10, 11 Bhatacharya 4, 7, 10, 14Minkowski
order 3 3, 4, 5, 7 Mahalanobis 7, 9, 11, 20

Euclidean 3, 4, 5, 7
Inter-class
distance

Chebychev 3, 4, 5, 7

Proba-
bilistic
distance

Patrick-
Fischer 13,17,20,21

Bhatacharya 3, 4, 8, 9
Mahalanobis 7, 9, 11, 20

Backward Elimination
Selected

Attributes

Divergence metric 3, 4, 8, 9 Bhatacharya 4, 7, 9, 14
Probabilistic

distance
Patrick-Fischer 13,16,20,21 Mahalanobis 7, 9, 11, 20

Minimal Error Probability,
k-NN with Resubstitution

4, 7, 11, 19

Proba-
bilistic
distance Patrick-

Fischer
13,17,20,21

Linear Regression
Performance Feedback

5, 9, 7, 18 Linear Regression
Performance Feedback

7, 9, 11, 20

For the k-NN classifier experiments, the value of k was set using cross validation
performance estimates on the entire training set. The selected attributes during the
boosting iterations were monitored and their frequency was computed. The attribute
frequency during the boosting rounds for backward elimination is shown in Fig. 3.
PCA was also used to reduce data dimensionality at each boosting round. Here,
projections to 4 dimensions explained most of the variance and there was little
improvement from additional dimensions. For the attribute weighting method, we
used the attribute weights given by a neural network. For each of these attribute
representation changing methods, boosting was applied to k-NN classifiers and the
classification accuracies for 3 equal size classes are given in Table 2.

Fig. 3. Attribute stability during
boosting on k-NN classifiers

Fig. 4. Attribute stability during
boosting on Levenberq-Marquardt algorithm

0 5 10 15 20 25 30 35 40
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Boosting Iterations

S
el

ec
te

d
at

tri
bu

te
s

0 5 10 15 20 25 30 35 40
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Boosting Iterations

S
el

ec
te

d
at

tri
bu

te
s

Table 2. Comparative analysis of overall classification test accuracies for 3-class problems

Attribute Boosting on k-NN with Boosting on

Levenberg-Marquardt
Number

of
Boosting
Rounds

Standard
Boosting
on k-NN

Forward
Selection

Backward
Elimination

PCA Attribute
Weighting Standard

Boosting
Backward

Elimination

8 38.2 40.9 38.5 42.4 43.0 43.6 47.5
16 39.5 41.3 38.8 42.4 43.9 44.1 47.8
24 38.8 41.9 42.1 44.5 44.8 44.8 48.3
32 38.5 41.8 43.5 45.1 46.1 45.5 48.8
40 39.3 42.1 42.8 43.4 44.3 44.9 48.5

Analyzing the data from Table 2, the methods of adaptive attribute boosting
outperformed the standard boosting model. The results indicate that 30 boosting
rounds were usually sufficient to maximize prediction accuracy. After this many
iterations, attribute selection somewhat stabilized although attribute selection during
boosting was less stable for k-NN (Fig. 3) than for neural networks (Fig. 4). For k-NN
after approximately 30 boosting rounds the attributes became fairly stable with
attributes 7, 11 and 20 obviously more stable than attributes 3 and 9 which also
appeared in later iterations. The prediction accuracies for k-NN classifier experiments
using Mahalanobis distance were worse than those using k-NN classifier with
Euclidean distance, and are not reported here. The results show that our approach is
promising. For each method of changing attribute representation, we achieve better
prediction accuracy than using the standard boosting method.

The frequency of selected attributes during the boosting rounds when boosting was
applied to neural network classification models is presented in Fig. 4. The best results
were obtained with applied backward elimination attribute selection using the
Levenberq-Marquardt algorithm (Table 2). It appears that monitoring selected
attributes can be a good criterion for early stopping of boosting, since after the
selected attribute subsets become stable no significant improvements in prediction
accuracy was noticed. In this case it was even more evident that attributes stabilized
after approximately 30 boosting rounds. During the boosting iterations we were
selecting the 4 and 5 most important attributes, and the number of hidden neurons in a
2-layer feedforward neural network was equal to the number of input attributes. We
noticed that further increasing the number of hidden neurons did not improve
prediction accuracy probably because of overfitting.

Since our data have a spatial dimension, we also performed experiments with a
modified spatial boosting method. Applying the spatial boosting method to a k-NN
classifier, we achieved much better prediction than using the previous two boosting
methods on a k-NN classifier (Table 3). Furthermore, when applying spatial boosting
with attribute selection at each round, the prediction accuracy was increased slightly
as the size (M) of the spatial block was increased (Table 3). No such improvements
were noticed for spatial boosting with fixed attributes or with the attribute weighting
method, and therefore the classification accuracies for just M = 5 are given.

Applying spatial boosting on neural network classifiers resulted in no
enhancements in classification accuracies. Moreover, for pure spatial boosting

without attribute selection we obtained slightly worse classification accuracies than
using “non-spatial” boosting. This phenomenon is due to spatial correlation of our
attributes, which means that data points close in the attribute space are probably close
in real space. Since k-NN examines this local information, it gains from spatial data
blocks unlike neural networks which do not consider any kind of spatial information
during the training. Therefore, one of our current concerns will be to find a technique
to include spatial knowledge into the training of neural networks classifiers.

Table 3. Overall accuracy of spatial boosting on a 3-class real-life test data using k-NN

Spatial Boosting for k-NN with

Fixed
Attribute Set Backward Elimination Attribute Selection Attribute

Weighting

Number of
Boosting
Rounds

M = 5 M = 2 M = 3 M = 4 M = 5 M = 5
8 46.4 45.8 47.7 48.1 47.8 45.2
16 46.6 46.2 47.6 48.1 47.7 45.6
24 46.7 46.7 47.9 48.2 48.2 45.8
32 46.9 46.9 48.1 48.4 47.9 46.3
40 47.0 47.2 48.1 47.9 47.8 45.9

Although we achieved promising results on the real life data, we repeated all
experiments for the more controllable artificial data set, which had 5 clusters similar
in attribute space. Each of these clusters had a different set of relevant attributes used
for yield generation. The best results for boosting of k-NN and neural network
classifiers are shown in Table 4.

Table 4. Comparative analysis of overall classification accuracies for 3-class problems on
artificial test data set with 5 clusters (BE stands for Backward Elimination, LM for Levenberg-
Marquardt algorithm)

Spatial Boosting for k-NN withBoosting
Applied to k-
NN Classifier

Boosting Applied
to LM Neural

Networks
Fixed

Attribute Set
Backward Elimination

Attribute Selection

Number
of

Boosting
Rounds Standard BE Standard BE M = 5 M=2 M=3 M=4 M=5

8 57.9 57.5 65.3 66.1 65.6 64.6 65.3 65.4 66.0
16 59.1 59.1 66.7 67.2 65.5 65.2 65.9 65.2 66.7
24 57.6 58.7 67.1 69.3 65.8 65.5 65.9 65.8 67.0
32 58.3 58.5 68.8 69.2 66.0 65.4 66.2 66.1 67.6
40 58.2 59.2 69.8 69.4 66.1 65.3 66.4 66.7 68.1

The adaptive attribute boosting results show no improvements in prediction
accuracy, which was due to properties of the artificial data set. Each different region
has not only different relevant attributes related to yield class but also a different
number of relevant attributes. Since we are not sure of the number of relevant
attributes for each region, we need to select at least the 4 or 5 most important
attributes at each boosting round. However, the total number of relevant attributes in
the data set is 5 as well, and therefore we could not achieve any attribute instability.

To avoid forcing the standard boosting method to be inferior to our method, we used
all 5 relevant attributes from the data set for standard boosting. If we select the 5 best
attributes during each boosting iteration, it is obvious that we will achieve similar
results. Therefore, we were selecting the 4 most relevant attributes knowing that for
some drawn samples we would lose beneficial information. Nevertheless, we obtained
similar classification accuracies as the standard boosting method, but reached the
“bounded” final prediction accuracy in a smaller number of boosting iterations. This
could be very important in order to reduce the time needed for the latest boosting
rounds. Instead of post-pruning the boosted classifiers [14] we can try to on-line settle
the appropriate number of boosting iterations.

Classification accuracies of spatial boosting for k-NN on the artificial data set were
again much better than without using spatial information and comparable to neural
networks. Here, the classification accuracy improvements from increasing the size
(M) of the spatial blocks were more apparent than for real-life data due to the higher
spatial correlation of the artificial data.

5. Conclusions and Future Work

Results from two spatial data sets indicate that the proposed algorithm for combining
multiple classifiers can result in significantly better predictions over existing classifier
ensembles, especially for heterogeneous data sets with attribute instabilities. By
manipulating the attribute representation used by individual classifiers at each
boosting round, we showed that classifiers could be more decorrelated thus leading to
higher prediction accuracy. The attribute stability test served as a good indicator for
proper stopping of further boosting iterations. Testing of the proposed method seems
to indicate that a smaller number of iterations is needed in order to achieve the same
final prediction accuracy. The new boosting method proposed for spatial data showed
promising results for k-NN classifiers making it competitive with highly non-linear
and powerful models like neural networks.

In this paper, we concentrated on improving the accuracy of the global classifier.
Although the new fast k-NN classifier significantly reduces the computational
requirements, an open research question is to further increase the speed of ensembles
of k-NN classifiers for high-dimensional data.

Although the performed experiments provide evidence that the proposed approach
can improve predictions of ensemble of classifiers, further work is needed to examine
the method for more heterogeneous data sets with more diverse attributes. In addition,
we are working to extend the method to regression based problems.

References

1. Breiman, L.: Bagging predictors, Machine Learning 24, 123-140, (1996)
2. Freund, Y., and Schapire, R. E.: Experiments with a new boosting algorithm, Machine

Learning: Proceedings of the Thirteenth International Conference, pp. 325-332, (1996)
3. Kong, E. B., Dietterich, T. G.: Error-correcting output coding corrects bias and variance,

In Proc. of the twelfth National Conference on Artificial Intelligence, 725-730, (1996)

4. Liu, L. and Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining,
Kluwer Academic Publishers, Boston (1998)

5. Ricci, F., and Aha, D. W.: Error-correcting output codes for local learners, In Proceedings
of the 10th European Conference on Machine Learning (1998)

6. Bay, S. D.: Nearest Neighbor Classification from Multiple Feature Subsets. Intelligent
Data Analysis. 3(3):191-209, (1999)

7. Tumer, K., and Ghosh, J.: Error correlation and error reduction in ensemble classifiers,
Connection Science 8, 385-404, (1996)

8. Cherkauer, K. J.: Human expert-level performance on a scientific image analysis task by a
system using combined artificial neural networks. In P. Chan, (Ed.): Working Notes of the
AAAI Workshop on Integrating Multiple Learned Models, 15-21, (1996)

9. Bishop, C., Neural Networks for Pattern Recognition, Oxford University Press, (1995)
10. Riedmiller, M., Braun, T.: A Direst Adaptive Method for Faster Backpropagation

Learning: The RPROP Algorithm, Proceedings of the IEEE International Conf. on Neural
Networks, San Francisco, (1993)

11. Hagan, M., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm.
IEEE Transactions on Neura Networks 5 (1994) 989-993

12. Vucetic, S., Fiez, T., Obradovic, Z.: A Data Partitioning Scheme for Spatial Regression,
Proceedings of the IEEE/INNS Int’l Conf. on Neural Networks, Washington, D.C., (1999)

13. Pokrajac, D., Fiez, T. and Obradovic, Z.: A Spatial Data Simulator for Agriculture
Knowledge Discovery Applications, in preparation.

14. Margineantu, D. D., and Dietterich, T. G.: Pruning adaptive boosting, In Proceedings of
the 14th International Conference on Machine Learning, (1997)

