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Abstract

Precision agriculture is a new approach to farming in
which environmental characteristics at a sub-field level
are used to guide crop production decisions.  Instead of
applying management actions and production inputs
uniformly across entire fields, they are varied to match
site-specific needs. A first step in this process is to define
spatial regions having similar characteristics and to build
local regression models describing the relationship
between field characteristics and yield. From these yield
prediction models, one can then determine optimum
production input levels. Discovery of “similar” regions in
fields is done by applying the DBSCAN clustering
algorithm on data from more than one field ignoring
spatial attributes (x and y coordinates) and the
corresponding yield values. Using these models,
constructed on training field regions of obtained clusters,
we aim to achieve better prediction on identified regions
than using global prediction models. The experimental
results on real life agriculture data show observable
improvements in prediction accuracy, although there are
many unresolved issues in applying the proposed method
in practice.

Purpose

Technological advances, such as global positioning
systems, combine-mounted on-the-go yield monitors, and
computer controlled variable rate application equipment,
provide an opportunity for improving upon the traditional
approach of treating agricultural fields as homogenous data
distributions.  In precision agriculture, environmental
characteristics at a sub-field level are used to guide crop

production decisions [6]. Instead of applying management
actions and production inputs uniformly across entire
fields, they are varied to better match site-specific needs
thus increasing economic returns and improving
environmental stewardship. Lower costs and new sensor
technologies are enabling agriculture producers to collect
large quantities of site-specific data from which future site-
specific management decisions can be derived. However,
methodologies to efficiently interpret the meaning of these
large and multi-featured data sets are lacking. Site-specific
variability in crop yield and optimum management actions
can arise in two primary ways.  First, levels of various
driving variables almost always change throughout a field
(e.g. weed density, soil N content, and soil depth).
Second, the response to a given level of a driving variable
can change within a field because of interactions with
other driving variables. This results in poor site-specific
recommendations when one uses a global recommendation
equation that considers the variability of a single or a few
driving variables [3,6].

The problem of yield prediction in agriculture is extremely
complex since large number of attributes influence yield.
In addition, there are differences in data distributions and
significant amounts of noise can exist in data. Therefore, it
appears necessary to develop local recommendation
models that are adapted to specific subsets of the wide
range of environments that can exist in fields even in a
small geographic area. One recent approach towards such a
modeling is to develop a sequence of local regressors each
having a good fit on a particular training data subset.
Distribution models are constructed for identified subsets,
and are used to decide which regressor is most appropriate
for each test data point [8].



A new approach for developing locally adapted models is
explored in this paper. Given training and test fields, we
first define more homogenous spatial regions in both
fields. Spatial regions on the training field will have
similar characteristics in attribute space to corresponding
spatial regions in the test field. The next step is to build
local regression models on spatial regions inside the
training field, describing the relationship between field
characteristics and yield.  Using these models locally on
corresponding spatial test field regions, we hope to achieve
better prediction on identified regions than using global
prediction models.

More precisely, this paper suggests clustering followed by
local regression in order to identify site-specific yield
prediction models from which optimum production input
levels could be computed.  This is followed by similarity-
based competency ordering, which is used to identify the
appropriate local regression model when making
predictions for unseen fields.

Method

Given a rich feature set, partitioning a field into spatial
regions having similar attributes (driving variables) should
result in regions of similar yield response. Hence, the data
from all fields were analyzed in order to define spatial
regions having similar characteristics. Next, regression
models were built to describe the relationship between
attributes and yield on the training field subset of identified
spatial regions.

To eliminate irrelevant and highly correlated features,
regression-based feature selection was used for continuous
target values and classification-based feature selection for
discrete target values. The regression based feature
selection process was performed through performance
feedback forward selection and backward elimination
search techniques based on linear regression mean square
error (MSE) minimization. The classification based feature
selection algorithms involved inter-class and probabilistic
selection criteria using Euclidean and Mahalanobis
distance, respectively [4]. In addition to sequential
backward and forward search applied with both criteria,
the branch and bound search was also used with
Mahalanobis distance. To test feature stability, feature
selection algorithms were applied to different data subsets,
and the most stable features were selected.

In contrast to feature selection where a decision is target-
based, variance-based dimensionality reduction through
feature extraction is also considered. Here, linear Principal
Components Analysis [4] and non-linear dimensionality
reduction using 4-layer feedforward neural networks (NN)
[1] was employed. The targets used to train these NNs
were the input vectors themselves, so that the network is

attempting to map each input vector onto itself. We can
view this NN as two successive functional mappings. The
first mapping, defined by the first two layers, projects the
original d-dimensional data into a r-dimensional sub-space
(r < d) defined by the activations of the units in the second
hidden layer with r neurons. Similarly, the last two layers
of the NN define an inverse functional mapping from the
r-dimensional sub-space back into the original d-
dimensional space.

Using the features derived through the feature selection
and extraction procedures, the DBSCAN clustering
algorithm [2,9] was used to partition fields into “similar”
regions ignoring the spatial attributes (x and y coordinates)
and the yield value.  The DBSCAN algorithm was applied
to merged training and testing field data.  These fields need
not be adjacent as the x and y coordinates were ignored in
the clustering process.  The DBSCAN algorithm relies on
a density-based notion of clusters and was designed to
discover clusters of arbitrary shape efficiently. The key
idea of a density-based cluster is that for each point of a
cluster its Eps-neighborhood for some given Eps > 0 has to
contain at least a minimum number of points (MinPts),
(i.e. the density in the Eps-neighborhood of points has to
exceed some threshold). Furthermore, the typical density
of points inside clusters is considerably higher than outside
of clusters. DBSCAN uses a simple but effective heuristic
for determining the parameters Eps and MinPts of the
smallest cluster in the database.

We used the DBSCAN algorithm in an unsupervised
manner, using different variations of attributes obtained
through feature selection and extraction or through
normalization of the original data.  As a result, we have the
partitions Pi, which are generally spread in both training
and test field parts. Since the resulting partitions Pi are
constructed without considering spatial information, the
next step is to identify the largest contiguous clusters Ci

inside the training part of partitions Pi, and also the largest
contiguous clusters Ti inside the test field part of partitions
Pi (Figure 1). The identification of Ci and Ti is performed
by collecting all the neighboring (x, y) points belonging to
Pi. Note there may be 2 or more such regions in the fields.

To further specialize prediction, in each training cluster Ci

we also identified subsets Li, Ai and Hi by assigning Ci data
into three equal-size parts according to the yield. Hence,
the subset Li corresponds to the lowest 33% of the yield in
Ci (Figure 2) while subsets Ai and Hi represent the average
33% and the highest 33% of the yield in cluster Ci.

For each Ci, Li, Ai and Hi we ordered corresponding test-
field data (Ti) in the Pi according to their distance from the
Ti, Li, Ai and Hi center points determined by mean (see
Figure 2). This is measured based on Euclidean or
Mahalanobis distance among the various subsets of



attributes obtained through the preprocessing steps. Due to
possible feature instability, we performed an independent
feature selection process for each cluster Ci and used
region-specific features for computing distance.

Figure 1.   A spatial cluster P1, obtained by DBSCAN on
merged fields, is split into a training cluster C1 and a
corresponding test cluster T1

An alternative to ordering the test field data, the weighted
majority k-Nearest Neighbor algorithm with weights
inversely proportional to the distances from the center
point was also considered [4].

Figure 2.   Low yield subset L1 of training cluster C1 and
corresponding test data identified through Euclidean
distance-based ordering

Finally, linear regression models and multilayer (2-
layered) feedforward neural network (NN) regression
models, with back-propagation learning [11], were trained
on each spatial part Ci, Li, Ai and Hi, and were applied to
the corresponding neighborhood parts in the test field. For
each of these models, we measured the Mean Square Error
(MSE) of yield prediction on identified test parts.

Results

Our experiments were performed using spatial data from a
280 ha wheat field located in southern Idaho [7].  All
features were interpolated to a 10x10 m grid resulting in
7036 patterns. The data set contained 17 soil attributes and
the corresponding crop yield. The soil attributes included
levels of boron, calcium, copper, iron, magnesium,
manganese, nitrate nitrogen, potassium, sodium, organic
matter, organic nitrogen, phosphorus, salts, sulfur, and zinc
and soil cation exchange capacity (CEC) and soil pH.

The feature selection processes were used to select the 2,
3, and 4 most relevant features (Table 1).

Number of features List of selected features
2 CEC, Iron
3 CEC, Iron, Manganese
4 CEC, Iron, Manganese, Salts

Table 1. The selected features

The PCA and non-linear Feature Extraction procedures
were also used to reduce data dimensionality.  Here,
projections to 2 dimensions explained most of the variance
and there was little improvement from additional
dimensions.

A typical way to test generalization capabilities of
regression models is to split the data into a training and a
test set at random. However, for spatial domains such an
approach is likely to results in overly optimistic estimates
of prediction error [10]. Therefore, the test field was
spatially separated from the training field such that both
were of an equal area, as shown in Figure 1.

We clustered the train and test patterns using each of the
feature subsets obtained through the feature selection
procedures. Changing the Eps and MinPts parameters of
DBSCAN algorithm changed the size of resulting clusters.
By increasing the MinPts parameter, which generally
means increasing the Eps parameter too, we can reduce the
number of resulting clusters. The results shown in Table 2
represent clusters obtained with Eps and MinPts values
which minimized the number of clusters and the largest
cluster size. The best clustering result as measured by
relative cluster sizes and number of clusters was obtained
using the 2 feature data set containing only CEC and iron

Train fieldTest field

Cluster C1

Cluster T1

Train fieldTest field

Low yield
part L1

Test data corresponding
to L1



levels (Table 2). Using 3 or 4 features for the clustering
process usually resulted in a huge first cluster and a
number of small clusters.  This was even more pronounced
when clustering with more than 4 features.

Numbers of used features 2 3 4
Number of clusters 6 7 7

First cluster size (percentage
of the entire field)

44% 69% 75%

Table 2. Obtained clusters

Applying the DBSCAN algorithm using features obtained
through PCA and non-linear feature extraction resulted in
an even larger first cluster and many small ones. For
example, when clustering data projected to 2 dimensions,
the minimal size of the largest cluster was 77% of the
entire field, and the total number of clusters was 11.

Therefore, all reported prediction modeling was performed
on the 6 clusters identified using only 2 features (CEC and
iron levels). Prediction models were developed for the
entire training field, each cluster in the training field, and
each part, Li, Ai, and Hi, of each cluster in the training
field.  Test field data were ordered by Euclidean and
Mahalanobis distance to determine the appropriate model
to use to predict wheat yield.

We developed neural network models with 2, 3 and 4
features, and it turned out that neural network models
trained with only 2 features gave the best prediction
results. The MSE for these models applied to the largest
cluster and using Euclidean distance to determine the
appropriate model is shown in Table 3. Results for the
other clusters are comparable to those for the largest
cluster.

Models trained  with 2 features MSE on test

Trained on Tested on
NN

model
Linear
model

Entire train field Entire test field 458 397
Entire train field 389 395

Cluster C1
Cluster T1 354 341

Entire train field 472 405
Cluster C1 491 351

Low yield part L1

Test data
corresponding

to L1 318 388

Entire train field 415 399
Cluster C1 404 346

Average yield part A1

Test data
corresponding

to A1 387 390

Entire train field 478 382
Cluster C1 461 416

High yield part H1

Test data
corresponding

to H1 943 964

Table 3. MSE on site specific regions identified using
Euclidean distance

Analyzing the data from Table 3, the method of building
local site-specific regression models outperformed the
global models for the low and the average yield fractions
of the largest cluster. It can be noticed, that a model built
on the entire training field and tested on cluster T1 does not
have a MSE equal to the average of the MSE, when the
same model is applied to test data corresponding to L1, A1

and H1. This phenomenon is due to the overlapping of
identified test data parts, which when aggregated do not
form the cluster Ti. The linear model resulted in a lower
MSE than that of the NN for the average yield partition,
A1, of the cluster apparently because of the small yield
variance in that partition. The large MSE of site specific
models (almost twice of that for global models, last part of
Table 3) observed for the high yield cluster component Hi

indicates a poor mapping of test fields points to the
appropriate model.  The training results for the H1 data
were similar to that for the L1 and A1 data.  Thus, the
Euclidean distance metric does not appear to be a good
measure of similarity between test points and high yield
training points.

Models trained  with 2 features MSE on test

Trained on Tested on
NN

model
Linear
model

Entire train field 445 356
Cluster C1 438 375

Low yield part L1

Test data
corresponding

to L1 278 348

Entire train field 367 332
Cluster C1 365 353

Average yield part A1

Test data
corresponding

to A1 363 342

Entire train field 417 353
Cluster C1 541 394

High yield part H1

Test data
corresponding

to H1 808 819

Table 4. MSE on regions identified using Mahalanobis
distance

The MSE resulting from using Mahalanobis distance
instead of Euclidean distance to determine the appropriate
model is shown in Table 4. The use of Mahalanobis
distances has shown an observable improvement in
prediction accuracy in each part, but the MSE on the test
part corresponding to H1 is still unacceptably high when
compared to the global model. In a final attempt to find a
better distance measurement for the high yield patterns, we
also tried a weighted majority k-Nearest Neighbor
approach. However, results were even worse than using
the Euclidean or Mahalanobis distances.  To overcome
overlapping problem, additional distance metrics may need
to be examined like Bhatacharya [4] and the distance
metric proposed by Hand and Henley [5].

To further examine our similarity metrics and to assess
cluster homogeneity, we ordered the points within a single



cluster in test regions Ti, according to the Euclidean or
Mahalanobis distance from the center of the corresponding
training cluster Ci. It might be expected that errors for test
points close to the training cluster center would be less
than that for more distant test points. Error data from one
of clusters is shown in Figure 3. The test-set data for
Figure 3 were sorted according to their Euclidean distances
from the center of the training cluster, and split into 6
equal size groups, from the nearest group 1 to the most
distant group 6. This experiment clearly demonstrates that
even better prediction may be possible with further site-
specific localization.

Figure 3. Test error analysis within a single test cluster

New aspects of work

A new method for analyzing field information in precision
agriculture is proposed. A sequence of non-spatial and
spatial clustering steps followed by local regression
modeling combined with ordering-based competency
identification is proposed for spatial knowledge discovery.
The new approach is successfully applied to precision
agriculture management.

Conclusions

Results from actual precision agriculture data indicate that
the process of density-based clustering followed by cluster
specific model development can result in better yield
prediction than a single global model in some cases.
Further work is needed to refine the clustering process
such that it does not digress to identifying one large cluster
with most of the data and many small clusters containing
the rest of the data. To overcome this problem, we are
currently exploring a hierarchical clustering (i.e.
repeatedly re-cluster the largest cluster until satisfactory
cluster sizes are obtained).

Additionally, the distance metrics used to identify which
model should be used for a test pattern were not uniformly

adequate across low, average, and high yield data.  The
failure to properly associate patterns to high yield models
needs to be addressed.

All the prediction models applied in this project exhibited
a limited capability for yield prediction and there was little
benefit from using neural networks over simple linear
models.  However, these results are probably due to the
lack of appropriate driving variables to explain the yield
variability.
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