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Abstract 
 
Neural network ensemble techniques have been shown to be 
very accurate classification techniques. However, in some 
real-life applications a number of classifiers required to 
achieve a reasonable accuracy is enormously large and 
hence very space consuming. This paper proposes several 
methods for pruning neural network ensembles. The 
clustering based approach applies k-means clustering to 
entire set of classifiers in order to identify the groups of 
similar classifiers and then eliminates redundant classifiers 
inside each cluster. Another proposed approach contains 
the sequence of the depth-first building the tree of 
classifiers according to their diversity followed by the 
process of tree pruning. The novel proposed methods 
applied to several data sets have shown that by selecting an 
optimal subset of neural network classifiers, it is possible to 
obtain significantly smaller ensemble of classifiers while 
achieving the same or even slightly better generalizability 
as when using the entire ensemble.  
 
 
1 Purpose 
 
Recently, neural network ensemble techniques have gained 
widespread interest among researchers in machine learning 
community. Among many varieties, the most popular 
include bagging [1], arcing [2] or boosting [3]. The main 
idea of these techniques is to generate multiple versions of a 
predictor. When predictions from these versions are 
combined, more stable and smother predictions are 
generated. When applied to neural networks, these 
techniques can yield dramatic improvements in 
generalization performance [4, 5]. The reason for this is 
because neural networks are inherently unstable [1, 6], i.e. 
small changes in training set and/or parameter selection 
may produce large changes in performance. 
 
The most of combination methods for classifiers assume 
that the classifiers forming the classifier ensemble have to 
be both diverse and accurate. The “diversity” assumption 
means that the classifiers have to make independent 
classification errors, in order to improve overall prediction 

accuracy. Both theoretical [7, 8] and empirical work [9, 10] 
has shown that a good neural network ensemble is one 
where the individual networks are both accurate and make 
errors on different parts of the input space. For example, 
Hansen and Salamon [7] have shown that a multiple 
classifier system based on a simple majority combination 
rule can provide very good improvements in accuracy if 
combined classifiers make independent errors. In addition, 
Tumer and Ghosh [11] pointed out that the increase of the 
accuracy depends much more on error uncorrelation than on 
the particular adopted combination method.  
 
All above mentioned work indicated that the fundamental 
need for effective combining methods is to design an 
ensemble of independent classifiers. However, most of the 
previous work has either focused on combining the outputs 
of multiple trained networks or only indirectly addressed 
the necessity for generating a good set of networks. In 
addition, in some real life applications a number of 
classifiers in an ensemble required to achieve a reasonable 
accuracy may be enormously large [12, 13]. 
 
Margineantu and Dietterich [13] observed that in some 
domains the boosting algorithm, although effective at 
generating diverse set of classifiers, requires a large amount 
of memory for storing all the classifiers in order to lower 
the prediction error. More specifically, they have noticed 
that in the letter dataset, AdaBoost algorithm [3] requires 
about 200 C4.5 trees [14] to achieve very good 
generalization accuracy. They asked if all 200 decision 
trees are necessary, and according to their findings, by 
examining the diversity and accuracy of the available 
classifiers, it is possible to find a subset of classifiers that 
achieves similar level of performance as the entire set. They 
proposed an interesting method of pruning the boosting 
ensemble using a statistics called the Kappa measure [15, 
16]. Tamon and Xiang [12] offered a slight modification to 
the Kappa method, such that the weights of unpruned 
classifiers are modified with the weights of the pruned ones. 
 
In this paper, a novel method for pruning classifiers from 
ensembles based on a clustering approach is proposed. For 
pruning classifiers, a method of distributing their voting 



•  Given: Set S {(x1, y1), … , (xm, ym)} xi ∈ X, with labels 
yi ∈ Y = {1, …, C} 

•  Let B = {(i,y): i = 1,…,m, y ≠ yi} 
•  Initialize the distribution D1 over the examples, such 

that D1(i) = 1/m. 
•  For t = 1, 2, 3, 4, … T 

1. Train a weak learner Lt using distribution Dt  
2. Compute weak hypothesis ht: X × Y → [0, 1] 
3. Compute the pseudo-loss of hypothesis ht:   
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where Zt is a normalization constant chosen such 
that Dt+1 is a distribution. 
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weights is implemented. In addition, a depth-first technique 
of building a tree with the most “independent” classifiers is 
proposed. The proposed pruning methods applied to several 
data sets indicate that by selecting an optimal subset of 
neural network classifiers, it is possible to obtain the same 
or even slightly better generalizability as when using the 
entire ensemble. 
 
2 Method 
 
2.1. Classifier Ensembles 
In order to improve the global accuracy, an ensemble of 
classifiers must be both accurate and diverse. To create an 
ensemble of classifiers in this study, two approaches are 
used.  
 
The first one is based on bagging, where a very popular 
statistical re-sampling technique called bootstrap [17] is 
used to generate multiple training sets on which the 
individual networks from an ensemble are constructed. 
However, the diversity of individual classifiers were tuned 
not only by varying samples of the training set, but also 
through different initial weight settings, learning 
algorithms, number of hidden neurons and number of 
training epochs. 

Figure 1. The AdaBoost.M2 algorithm 
 
A second approach used standard AdaBoost.M2 procedure 
[3], since the additional randomization techniques used in 
bagging did not significantly improve the ensemble 
performance. The AdaBoost.M2 algorithm, shown at Figure 
1, proceeds in a series of T rounds. In each round, a weak 
learning algorithm is called and presented with a different 

distribution Dt that is altered by emphasizing particular 
training examples. The distribution is updated to give 
wrong classifications higher weights than correct 
classifications. The entire weighted training set is given to 
the weak learner to compute the weak hypothesis ht. A 
classifier weight β is computed (for each trial), which is 
used in the final weighted vote. At the end, all weak 
hypotheses are combined into a single hypothesis hfn. 
 
2.2. The measures for pruning classifiers 
The pruning method is defined as a procedure that takes as 
input a training set S, the combining method and the set H 
of all obtained classifiers ht, t = 1, …, T. The objective of 
the pruning method is to identify the minimal subset of 
classifiers that achieves the best prediction accuracy. In 
order to maintain the prediction accuracy achieved by an 
entire ensemble, we need to keep both accurate and diverse 
classifiers. However, the diversity of classifiers is more 
important and can be achieved by selecting the classifiers 
that make different errors, i.e. disagree on different parts on 
the input space. 
 
As a measure of disagreement between two classifiers, 
Kappa statistic [15, 16] and correlation error [18] are used. 
First, the Kappa measure between two classifiers hi and hj, 
where hi, hj: X → Y, is defined. Consider the following |Y| 
× |Y| contingency table or matrix Mm×m. For elements a, b ∈  
Y, define Ma,b to contain the number of examples x ∈  S for 
which hi(x) = a and hj(x) = b. If hi and hj are identical on the 
data set S, then all non-zero counts will appear along the 
diagonal. If hi and hj are very different, then there should be 
a large number of counts off the diagonal. Let 
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be the probability that the two classes agree, where C is the 
number of classes, and m is the number of examples in the 
training set S. Lets also define 
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to be the probability that two classifiers agree by chance, 
given the observed counts in the table. The Kappa measure 
of disagreement between classifiers hi and hj is now defined 
as: 
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A value of κκκκ = 0 implies that Θ1 = Θ2, and the two 
classifiers are considered to be different (or independent). A 
value of κκκκ = 1 implies that Θ1 = 1, which means that the 
two classifiers agree on every example. It is possible for κκκκ 
to be negative although it was noted that this rarely occurs 
[13]. 
 



A correlation error [18] has been also used in our approach 
to analyze and explain the performance and disagreement 
between two classifiers. For two classifiers hi and hj, where 
hi, hj: X → Y, we compute the prediction vectors Yi and Yj 
that classifiers hi and hj make respectively. The correlation 
error between two classifiers hi and hj is defined as the 
correlation coefficient between two vectors Yi and Yj. 
 
2.3. The pruning algorithms 
Given a set H of all classifiers ht, t = 1, …, T, our goal is to 
eliminate redundant classifiers that do not affect the 
improvement in the total prediction accuracy. Denote with 
hi(x) the prediction that the classifier hi makes for the 
instance x ∈  S. It is apparent that the prediction that the 
classifier hi makes for the entire training set S can be 
represented as a vector Yi. The vector Yt contains m 
classification values, one for each of data examples from 
the training set S.  
 
Our unsupervised approach aims to identify the groups 
(clusters) of classifiers that make errors on the same or 
similar input patterns and then to eliminate the redundant 
classifiers from these clusters. Consider all T prediction 
vectors Yt that T classifiers make. Each of these vectors Yt 
may be treated as a data pattern with m attributes. 
Therefore, a clustering algorithm is applied to the set that 
contains T patterns, each with m attributes. 
 
In order to partition the set of classifiers into subsets 
containing similar classifiers, the standard k-means 
algorithm [19] is employed. Here, data set P = {Y1,…, YT}, 
is partitioned into k clusters by finding k points k
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is minimized, where d2(Yi, Mj) usually denotes the 
Euclidiean distance between Yi and Mj, although other 
distance measures can be used. The points k

jjM 1}{ = are 
known as cluster centroids or cluster means. 
 
To identify the optimal number of clusters we gradually 
increased the number of clusters k until the diversity 
between the clusters of classifiers starts to deteriorate. The 
diversity between clusters of classifiers is defined as the 
measure of disagreement between the cluster centroids. 
When the optimal number k of the clusters are obtained, 
according to the initial assumption the agreement among 
the classifiers from the same cluster is large. Therefore, the 
majority of them can be eliminated according to their 
accuracy on the validation set or according to their 
disagreement with the retained ones. The algorithm for 
pruning the classifiers inside each of the clusters is 
represented in Figure 2.  

The algorithm starts from the least accurate classifier from 
each cluster and keeps the classifier if its disagreement with 
the remaining ones overcomes some prespecifed threshold 
and if it is sufficiently accurate. We were removing the 
classifiers from the cluster until the prediction accuracy of 
the entire classifier ensemble on the validation set starts to 
decrease. 

Figure 2. Pruning classifiers inside each cluster 
 
In addition to simple elimination of classifiers inside each 
cluster, a method of distributing their voting weights is 
implemented. Each classifier ht in an ensemble has its 
weight βt used in a final weighted vote. In our simple 
clustering approach, the weights of all removed classifiers 
are set to zero, since they do not take part in the weighted 
vote. Instead, it is possible to transfer the voting weights βt 
of the pruned classifiers such that each unpruned hypothesis 
receives a fraction of the weight proportional to its 
similarity to the pruned hypothesis. Therefore, in this 
algorithm, each pruned classifier computes the set of 
distances from itself to the collection of the unpruned 
classifiers. The pruned classifier then distributes its voting 
weight using the distribution of distances, after performed 
normalization. More weight is given to the classifiers that 
are closer (similar or κκκκ ∼  1) to the pruned classifier. Our 
assumption is that the process of distributing the voting 
weights helps produce a more authentic final ensemble, 
especially when the pruning rate is high. The algorithm of 
distributing the voting weights is shown in Figure 3. 

Figure 3. Distributing the voting weights 

• For each of the k clusters 
o Sort the classifiers ht according to the accuracy 
o Repeat  
� For classifier ht from (the least accurate) to (the most 

accurate) 
� Compute the measure of disagreement between 

classifier ht and the most accurate classifier 
� If (disagreement greater than prespecified threshold) 

  - Remove classifier ht 
else 
  - Compute accuracy on the validation set without 
    considering classifier ht  
  - If (the new computed accuracy > the old accuracy)
        Remove classifier ht 
end if 

o Until (the accuracy increases) 

• For all classifiers ht with weights βt inside a cluster 
•  If classifier ht is selected for elimination 
o Compute the measure of disagreement di between ht 

and all other classifiers hi, i = 1,…T.  
o Normalize the measures di = di/DT , where DT is a 

normalization constant such that di is a distribution 
o Transfer the di⋅βt part of the voting weight to the 

unpruned classifier hi, such that the new weight of 
the classifier hi is βi + di⋅βt. 
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Finally, the method of organizing the classifiers into a tree 
of classifiers is proposed. The most accurate classifier is 
identified and the matrix of disagreements among all 
classifiers obtained through the combining process is 
constructed. The most accurate classifier is chosen to be the 
root of the classifier tree (Figure 4). The first level of the 
classifier tree corresponds to the classifiers that most 
disagree (they are the least correlated) with the parent 
classifier, which is the root of the tree (Figure 4). Which 
classifiers belong to the first level of the classifier tree 
depends on the prespecified threshold of disagreement 
among the classifiers. If the disagreement between the 
parent classifier and the considered classifier prevails the 
prespecified threshold, the considered classifier is put into 
the classifier tree as a child node of the parent classifier. 
The tree nodes of further levels are built in an analogous 
way considering all remaining classifiers as possible 
children nodes and each of the classifier from the previous 
level as parent nodes. It is important to note that using this 
depth-first building the classifier tree, not all classifiers will 
necessary be included in the tree.  

Figure 4. The tree of classifiers 
 
Pruning classifiers was accomplished in the bottom-up 
manner, starting from the bottom level of the classifier tree 
and from the least accurate classifiers in that level. The 
classifiers are removed from the ensemble gradually one by 
one, only if a new subset of classifiers without removed 
classifier achieves the prediction accuracy that is not worse 
than the prediction accuracy of the ensemble containing that 
classifier. 
 
3 Results 
 
3.1. Experimental Setup 
Our experiments were performed on three UCI data sets 
[20] (diabetes, glass, waveform) and on a synthetic spatial 
data set. For diabetes data set, the task was to classify from 
diagnostic data (e.g. blood pressure, result of glucose 
tolerance test, etc.), whether a female Pima Indian is 
diabetes positive or not. The data set contains 768 examples 
with 8 continuous attributes and 2 output classes. The 
problem may be complex since some values for the input 
patterns are not available. 
 

The glass data set was from a criminological investigation. 
In that problem, the glass left at the scene of crime is 
classified in order to use this as an evidence. The glass data 
set includes 214 instances with 9 continuous attributes and 
6 output classes. For the Waveform set, 10,000 instances 
with 21 continuous attributes and three equally sized classes 
are generated. 
 
Finally, a synthetic spatial data set was generated using our 
spatial data simulator [21] such that the distributions of 
generated data resembled the distributions of real life 
spatial data. The obtained spatial data stemmed from a 
homogeneous distribution and had 6561 data examples with 
five continuous attributes and three equal size classes. 
 
As classifiers, we trained multilayer (2-layered) feedforward 
neural network models with the number of hidden neurons 
equal to the number of input attributes. The neural network 
classification models had the number of output nodes equal 
to the number of classes, where the predicted class is from 
the output with the largest response. We used two learning 
algorithms: resilient propagation [22] and Levenberg-
Marquardt [23]. Non-linear neural network models 
generally have a large variance, meaning that their accuracy 
can largely differ over different weight’s initial conditions 
and choice of training data. In such situations using the 
neural network models may effect in significant errors in 
the estimation of the level of pruning classifiers. In order to 
alleviate the effect of neural network instability in our 
experiments, the prediction accuracy is averaged over 10 
trials of considered algorithms for combining classifiers. 
 
3.2. Experimental Results 
We first performed k-means based clustering approach for 
pruning. During the identification of the optimal number of 
clusters, we measured the diversity between the cluster 
representatives. As cluster representatives we used the 
classifiers that are the closest to the cluster centroids. When 
the diversity between cluster representatives started to 
deteriorate, we assumed that the optimal number of clusters 
is discovered. 
 
The classifiers inside the obtained clusters are pruned such 
that the ensemble does not achieve worse prediction 
accuracy than the entire ensemble of all classifiers. The 
results of clustering based approach for four different data 
sets are shown in Table 1. 
 
Analyzing the data from Table 1, it is evident that the 
clustering based method for pruning classifiers could 
eliminate 62 – 68% of classifiers without deteriorating the 
prediction accuracy of the pruned ensemble. For some data 
sets (diabetes, glass, synthetic), the pruning classifiers could 
even achieve the negligible improvement in prediction 
accuracy. 
 



Table 1. The accuracy and pruning level achieved by 
pruning initial ensemble with T classifiers using the 
clustering approach 

Data set → Diabetes 
(T = 30) 

Glass 
(T = 40) 

Waveform 
(T = 50) 

Synthetic 
(T = 50)

Accuracy of  
Entire Ensemble 77.1±0.8 68.6±0.7 86.1 ± 0.6 83.3± 0.8

Accuracy of 
Pruned Ensemble 77.7±1.3 68.9±0.8 86.0 ± 0.5 83.8± 0.7

Pruning level (%) 63.3 62.5 68 64 
Number of clusters 4 4 3 5 
 
The question that naturally arises from the previous method 
is what happens when we miss the optimal number of 
clusters. In order to examine this effect, we performed k-
means based clustering approach with the different number 
of discovered clusters. Figure 5 and 6 show how this effect 
influences both the classification accuracy and the pruning 
level. 

68

69

70

71

72

73

74

75

76

77

78

Number of discovered clusters

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

  2                       3                        4                        5                        6 

Optimal number of clusters 

Pima Diabetes Dataset

Glass Dataset 

83

83.5

84

84.5

85

85.5

86

86.5

Number of discovered clusters

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Optimal number of clusters 

  2                       3                        4                        5                        6 

Waveform Dataset 

Synthetic Spatial Dataset 

 
Figure 5. The classification accuracy of pruned neural 
network ensembles for different numbers of clusters 
discovered on different datasets. 
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Figure 6. The percentage of eliminated classifiers (pruning 
level) when different numbers of clusters are discovered on 
different datasets. 
 
It is evident from Figure 5 that the number of discovered 
clusters does not significantly influence the classification 
accuracy achieved by pruned neural network ensembles. 
However, it is apparent from Figure 6 that there is a trend 
of decreasing the pruned level when the number of 
discovered clusters is increasing. By considering both the 

achieved accuracy and the pruning level, we can identify 
the optimal number of clusters that gives the best 
classification for the maximum possible pruning level. 
Figure 5 shows the optimal number of clusters for different 
data sets. 
 
When integrating the procedure of distributing the voting 
weights into the clustering based method of pruning 
classifiers, we could even achieve slightly better prediction 
accuracy and pruning level (Table 2). 
 
Table 2. The accuracy and pruning level achieved by 
pruning initial ensemble with T classifiers using the 
clustering approach with distributing the voting weights 

Data set → Diabetes 
(T = 30) 

Glass 
(T = 40) 

Waveform 
(T = 50) 

Synthetic 
(T = 50)

Accuracy of  
Entire Ensemble 77.1±0.8 68.6±0.7 86.1 ± 0.6 83.3± 0.8

Accuracy of 
Pruned Ensemble 77.9±±±±0.9 69.1±±±±0.8 86.3 ±±±± 0.5 84.2±±±± 0.9

Pruning level (%) 66.7 65 74 68 
Number of clusters 4 4 3 5 
 
Results from the experiments presented in Table 2 indicate 
that by using the clustering method with distributing the 
voting weights the initial ensemble of classifiers can be 
further pruned with slightly increase in prediction accuracy. 
Comparing the accuracies and pruning levels in Table 2 and 
Table 1, it is apparent that consistently better accuracy and 
larger pruning may be achieved by incorporating the 
process of distributing the weights. 
 
Finally, the method of building the classifier tree and its 
pruning is implemented. Experiments on all four considered 
data sets using this method are presented in Table 3. 
 
Table 3. The accuracy and pruning level achieved by 
pruning initial ensemble with T classifiers using the method 
of building classifier tree 

Data set → Diabetes 
(T = 30) 

Glass 
(T = 40) 

Waveform 
(T = 50) 

Synthetic 
(T = 50)

Accuracy of  
Entire Ensemble 77.1±0.8 68.6±0.7 86.1 ± 0.6 83.3± 0.8

Accuracy of 
Pruned Ensemble 77.2±1.5 68.6±1.0 86.0 ± 0.7 83.2± 0.9

Pruning level (%) 53.3 55 62 60 
 
Unlike previous clustering based methods, the method of 
building classifier tree was not successful when pruning 
classifiers from the initial ensemble. The prediction 
accuracy achieved by pruning redundant classifiers was 
comparable to the accuracy of the entire ensemble, while 
the pruning level was smaller than in clustering based 
methods. 
 



The results from all experiments performed on all four data 
set implied that 50 – 70% of constructed classifiers could be 
effectively pruned without any significant decrease in the 
prediction accuracy. Using the clustering based methods the 
accuracy of pruned ensembles for some data sets (diabetes, 
glass, synthetic) can be even improved when comparing to 
the accuracy of the entire ensemble. The best performance 
was achieved by the clustering method with distributing the 
voting weights. 
 
4 Conclusions 
 
Several new methods for pruning neural network classifier 
ensembles using unsupervised clustering algorithm and 
breadth-first building the classifier tree are proposed. 
Experimental results on several data sets indicate that the 
proposed techniques for pruning classifiers can effectively 
achieve similar or even better prediction accuracy while 
requiring for 50 – 70 % less number of classifiers. 
 
The proposed framework for pruning classifier is applicable 
to both centralized and distributed environment where large 
number of classifiers may be present. Our future work will 
include the methods of post-pruning the classifiers in 
distributed environments, where this step may be necessary 
in order to increase system throughput. 
 
In addition, alternate clustering algorithms will be 
considered where the optimal number of clusters may be 
identified by the clustering algorithm itself. Finally, we are 
working to extend the proposed methods to regression-
based problems. 
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