
Effective Pruning of Neural Network Classifier Ensembles

Aleksandar Lazarevic and Zoran Obradovic

Center for Information Science and Technology, Temple University,
Room 303, Wachman Hall (038-24), 1805 N. Broad St., Philadelphia, PA 19122, USA,

aleks@ist.temple.edu, zoran@ist.temple.edu

Abstract

Neural network ensemble techniques have been shown to be
very accurate classification techniques. However, in some
real-life applications a number of classifiers required to
achieve a reasonable accuracy is enormously large and
hence very space consuming. This paper proposes several
methods for pruning neural network ensembles. The
clustering based approach applies k-means clustering to
entire set of classifiers in order to identify the groups of
similar classifiers and then eliminates redundant classifiers
inside each cluster. Another proposed approach contains
the sequence of the depth-first building the tree of
classifiers according to their diversity followed by the
process of tree pruning. The novel proposed methods
applied to several data sets have shown that by selecting an
optimal subset of neural network classifiers, it is possible to
obtain significantly smaller ensemble of classifiers while
achieving the same or even slightly better generalizability
as when using the entire ensemble.

1 Purpose

Recently, neural network ensemble techniques have gained
widespread interest among researchers in machine learning
community. Among many varieties, the most popular
include bagging [1], arcing [2] or boosting [3]. The main
idea of these techniques is to generate multiple versions of a
predictor. When predictions from these versions are
combined, more stable and smother predictions are
generated. When applied to neural networks, these
techniques can yield dramatic improvements in
generalization performance [4, 5]. The reason for this is
because neural networks are inherently unstable [1, 6], i.e.
small changes in training set and/or parameter selection
may produce large changes in performance.

The most of combination methods for classifiers assume
that the classifiers forming the classifier ensemble have to
be both diverse and accurate. The “diversity” assumption
means that the classifiers have to make independent
classification errors, in order to improve overall prediction

accuracy. Both theoretical [7, 8] and empirical work [9, 10]
has shown that a good neural network ensemble is one
where the individual networks are both accurate and make
errors on different parts of the input space. For example,
Hansen and Salamon [7] have shown that a multiple
classifier system based on a simple majority combination
rule can provide very good improvements in accuracy if
combined classifiers make independent errors. In addition,
Tumer and Ghosh [11] pointed out that the increase of the
accuracy depends much more on error uncorrelation than on
the particular adopted combination method.

All above mentioned work indicated that the fundamental
need for effective combining methods is to design an
ensemble of independent classifiers. However, most of the
previous work has either focused on combining the outputs
of multiple trained networks or only indirectly addressed
the necessity for generating a good set of networks. In
addition, in some real life applications a number of
classifiers in an ensemble required to achieve a reasonable
accuracy may be enormously large [12, 13].

Margineantu and Dietterich [13] observed that in some
domains the boosting algorithm, although effective at
generating diverse set of classifiers, requires a large amount
of memory for storing all the classifiers in order to lower
the prediction error. More specifically, they have noticed
that in the letter dataset, AdaBoost algorithm [3] requires
about 200 C4.5 trees [14] to achieve very good
generalization accuracy. They asked if all 200 decision
trees are necessary, and according to their findings, by
examining the diversity and accuracy of the available
classifiers, it is possible to find a subset of classifiers that
achieves similar level of performance as the entire set. They
proposed an interesting method of pruning the boosting
ensemble using a statistics called the Kappa measure [15,
16]. Tamon and Xiang [12] offered a slight modification to
the Kappa method, such that the weights of unpruned
classifiers are modified with the weights of the pruned ones.

In this paper, a novel method for pruning classifiers from
ensembles based on a clustering approach is proposed. For
pruning classifiers, a method of distributing their voting

• Given: Set S {(x1, y1), … , (xm, ym)} xi ∈ X, with labels
yi ∈ Y = {1, …, C}

• Let B = {(i,y): i = 1,…,m, y ≠ yi}
• Initialize the distribution D1 over the examples, such

that D1(i) = 1/m.
• For t = 1, 2, 3, 4, … T

1. Train a weak learner Lt using distribution Dt
2. Compute weak hypothesis ht: X × Y → [0, 1]
3. Compute the pseudo-loss of hypothesis ht:

εt =)),(),(1)(,(
2
1

),(
yxhyxhyiD itiit

Byi
t +−⋅ ∑

∈

4. Set βt = εt / (1 - εt) and
 wt = (1/2)⋅(1 - ht(xi, y) + ht(xi, yi))

5. Update Dt : Dt+1 (i, y) = tw
ttt ZyiD β⋅)/),((

where Zt is a normalization constant chosen such
that Dt+1 is a distribution.

• Output the final hypothesis:

),()1(logmaxarg
1

yxhh t

T

t tYy
fn ⋅= ∑

=∈ β

weights is implemented. In addition, a depth-first technique
of building a tree with the most “independent” classifiers is
proposed. The proposed pruning methods applied to several
data sets indicate that by selecting an optimal subset of
neural network classifiers, it is possible to obtain the same
or even slightly better generalizability as when using the
entire ensemble.

2 Method

2.1. Classifier Ensembles
In order to improve the global accuracy, an ensemble of
classifiers must be both accurate and diverse. To create an
ensemble of classifiers in this study, two approaches are
used.

The first one is based on bagging, where a very popular
statistical re-sampling technique called bootstrap [17] is
used to generate multiple training sets on which the
individual networks from an ensemble are constructed.
However, the diversity of individual classifiers were tuned
not only by varying samples of the training set, but also
through different initial weight settings, learning
algorithms, number of hidden neurons and number of
training epochs.

Figure 1. The AdaBoost.M2 algorithm

A second approach used standard AdaBoost.M2 procedure
[3], since the additional randomization techniques used in
bagging did not significantly improve the ensemble
performance. The AdaBoost.M2 algorithm, shown at Figure
1, proceeds in a series of T rounds. In each round, a weak
learning algorithm is called and presented with a different

distribution Dt that is altered by emphasizing particular
training examples. The distribution is updated to give
wrong classifications higher weights than correct
classifications. The entire weighted training set is given to
the weak learner to compute the weak hypothesis ht. A
classifier weight β is computed (for each trial), which is
used in the final weighted vote. At the end, all weak
hypotheses are combined into a single hypothesis hfn.

2.2. The measures for pruning classifiers
The pruning method is defined as a procedure that takes as
input a training set S, the combining method and the set H
of all obtained classifiers ht, t = 1, …, T. The objective of
the pruning method is to identify the minimal subset of
classifiers that achieves the best prediction accuracy. In
order to maintain the prediction accuracy achieved by an
entire ensemble, we need to keep both accurate and diverse
classifiers. However, the diversity of classifiers is more
important and can be achieved by selecting the classifiers
that make different errors, i.e. disagree on different parts on
the input space.

As a measure of disagreement between two classifiers,
Kappa statistic [15, 16] and correlation error [18] are used.
First, the Kappa measure between two classifiers hi and hj,
where hi, hj: X → Y, is defined. Consider the following |Y|
× |Y| contingency table or matrix Mm×m. For elements a, b ∈
Y, define Ma,b to contain the number of examples x ∈ S for
which hi(x) = a and hj(x) = b. If hi and hj are identical on the
data set S, then all non-zero counts will appear along the
diagonal. If hi and hj are very different, then there should be
a large number of counts off the diagonal. Let

m

M
C

a
aa∑

== 1
,

1ΘΘΘΘ

be the probability that the two classes agree, where C is the
number of classes, and m is the number of examples in the
training set S. Lets also define

 ∑ ∑ ∑
= = =

⋅=
C

a

C

b

C

b

abba

m
M

m
M

1 1 1

,,
2)(ΘΘΘΘ

to be the probability that two classifiers agree by chance,
given the observed counts in the table. The Kappa measure
of disagreement between classifiers hi and hj is now defined
as:

2

21

1
),(

ΘΘΘΘ
ΘΘΘΘΘΘΘΘ

−
−

=ji hhκκκκ .

A value of κκκκ = 0 implies that Θ1 = Θ2, and the two
classifiers are considered to be different (or independent). A
value of κκκκ = 1 implies that Θ1 = 1, which means that the
two classifiers agree on every example. It is possible for κκκκ
to be negative although it was noted that this rarely occurs
[13].

A correlation error [18] has been also used in our approach
to analyze and explain the performance and disagreement
between two classifiers. For two classifiers hi and hj, where
hi, hj: X → Y, we compute the prediction vectors Yi and Yj
that classifiers hi and hj make respectively. The correlation
error between two classifiers hi and hj is defined as the
correlation coefficient between two vectors Yi and Yj.

2.3. The pruning algorithms
Given a set H of all classifiers ht, t = 1, …, T, our goal is to
eliminate redundant classifiers that do not affect the
improvement in the total prediction accuracy. Denote with
hi(x) the prediction that the classifier hi makes for the
instance x ∈ S. It is apparent that the prediction that the
classifier hi makes for the entire training set S can be
represented as a vector Yi. The vector Yt contains m
classification values, one for each of data examples from
the training set S.

Our unsupervised approach aims to identify the groups
(clusters) of classifiers that make errors on the same or
similar input patterns and then to eliminate the redundant
classifiers from these clusters. Consider all T prediction
vectors Yt that T classifiers make. Each of these vectors Yt
may be treated as a data pattern with m attributes.
Therefore, a clustering algorithm is applied to the set that
contains T patterns, each with m attributes.

In order to partition the set of classifiers into subsets
containing similar classifiers, the standard k-means
algorithm [19] is employed. Here, data set P = {Y1,…, YT},
is partitioned into k clusters by finding k points k

jjM 1}{ =
such that

∑
∈ YY jj i

n
min(1 d2(Yi, Mj))

is minimized, where d2(Yi, Mj) usually denotes the
Euclidiean distance between Yi and Mj, although other
distance measures can be used. The points k

jjM 1}{ = are
known as cluster centroids or cluster means.

To identify the optimal number of clusters we gradually
increased the number of clusters k until the diversity
between the clusters of classifiers starts to deteriorate. The
diversity between clusters of classifiers is defined as the
measure of disagreement between the cluster centroids.
When the optimal number k of the clusters are obtained,
according to the initial assumption the agreement among
the classifiers from the same cluster is large. Therefore, the
majority of them can be eliminated according to their
accuracy on the validation set or according to their
disagreement with the retained ones. The algorithm for
pruning the classifiers inside each of the clusters is
represented in Figure 2.

The algorithm starts from the least accurate classifier from
each cluster and keeps the classifier if its disagreement with
the remaining ones overcomes some prespecifed threshold
and if it is sufficiently accurate. We were removing the
classifiers from the cluster until the prediction accuracy of
the entire classifier ensemble on the validation set starts to
decrease.

Figure 2. Pruning classifiers inside each cluster

In addition to simple elimination of classifiers inside each
cluster, a method of distributing their voting weights is
implemented. Each classifier ht in an ensemble has its
weight βt used in a final weighted vote. In our simple
clustering approach, the weights of all removed classifiers
are set to zero, since they do not take part in the weighted
vote. Instead, it is possible to transfer the voting weights βt
of the pruned classifiers such that each unpruned hypothesis
receives a fraction of the weight proportional to its
similarity to the pruned hypothesis. Therefore, in this
algorithm, each pruned classifier computes the set of
distances from itself to the collection of the unpruned
classifiers. The pruned classifier then distributes its voting
weight using the distribution of distances, after performed
normalization. More weight is given to the classifiers that
are closer (similar or κκκκ ∼ 1) to the pruned classifier. Our
assumption is that the process of distributing the voting
weights helps produce a more authentic final ensemble,
especially when the pruning rate is high. The algorithm of
distributing the voting weights is shown in Figure 3.

Figure 3. Distributing the voting weights

• For each of the k clusters
o Sort the classifiers ht according to the accuracy
o Repeat
� For classifier ht from (the least accurate) to (the most

accurate)
� Compute the measure of disagreement between

classifier ht and the most accurate classifier
� If (disagreement greater than prespecified threshold)

 - Remove classifier ht
else
 - Compute accuracy on the validation set without
 considering classifier ht
 - If (the new computed accuracy > the old accuracy)
 Remove classifier ht
end if

o Until (the accuracy increases)

• For all classifiers ht with weights βt inside a cluster
• If classifier ht is selected for elimination
o Compute the measure of disagreement di between ht

and all other classifiers hi, i = 1,…T.
o Normalize the measures di = di/DT , where DT is a

normalization constant such that di is a distribution
o Transfer the di⋅βt part of the voting weight to the

unpruned classifier hi, such that the new weight of
the classifier hi is βi + di⋅βt.

 The most accurate classifier The tree root

 hi ….. hj ….. hk First tree level

hip hiq hir hjp hjq hjr hkp hkq hkr Second tree level

Finally, the method of organizing the classifiers into a tree
of classifiers is proposed. The most accurate classifier is
identified and the matrix of disagreements among all
classifiers obtained through the combining process is
constructed. The most accurate classifier is chosen to be the
root of the classifier tree (Figure 4). The first level of the
classifier tree corresponds to the classifiers that most
disagree (they are the least correlated) with the parent
classifier, which is the root of the tree (Figure 4). Which
classifiers belong to the first level of the classifier tree
depends on the prespecified threshold of disagreement
among the classifiers. If the disagreement between the
parent classifier and the considered classifier prevails the
prespecified threshold, the considered classifier is put into
the classifier tree as a child node of the parent classifier.
The tree nodes of further levels are built in an analogous
way considering all remaining classifiers as possible
children nodes and each of the classifier from the previous
level as parent nodes. It is important to note that using this
depth-first building the classifier tree, not all classifiers will
necessary be included in the tree.

Figure 4. The tree of classifiers

Pruning classifiers was accomplished in the bottom-up
manner, starting from the bottom level of the classifier tree
and from the least accurate classifiers in that level. The
classifiers are removed from the ensemble gradually one by
one, only if a new subset of classifiers without removed
classifier achieves the prediction accuracy that is not worse
than the prediction accuracy of the ensemble containing that
classifier.

3 Results

3.1. Experimental Setup
Our experiments were performed on three UCI data sets
[20] (diabetes, glass, waveform) and on a synthetic spatial
data set. For diabetes data set, the task was to classify from
diagnostic data (e.g. blood pressure, result of glucose
tolerance test, etc.), whether a female Pima Indian is
diabetes positive or not. The data set contains 768 examples
with 8 continuous attributes and 2 output classes. The
problem may be complex since some values for the input
patterns are not available.

The glass data set was from a criminological investigation.
In that problem, the glass left at the scene of crime is
classified in order to use this as an evidence. The glass data
set includes 214 instances with 9 continuous attributes and
6 output classes. For the Waveform set, 10,000 instances
with 21 continuous attributes and three equally sized classes
are generated.

Finally, a synthetic spatial data set was generated using our
spatial data simulator [21] such that the distributions of
generated data resembled the distributions of real life
spatial data. The obtained spatial data stemmed from a
homogeneous distribution and had 6561 data examples with
five continuous attributes and three equal size classes.

As classifiers, we trained multilayer (2-layered) feedforward
neural network models with the number of hidden neurons
equal to the number of input attributes. The neural network
classification models had the number of output nodes equal
to the number of classes, where the predicted class is from
the output with the largest response. We used two learning
algorithms: resilient propagation [22] and Levenberg-
Marquardt [23]. Non-linear neural network models
generally have a large variance, meaning that their accuracy
can largely differ over different weight’s initial conditions
and choice of training data. In such situations using the
neural network models may effect in significant errors in
the estimation of the level of pruning classifiers. In order to
alleviate the effect of neural network instability in our
experiments, the prediction accuracy is averaged over 10
trials of considered algorithms for combining classifiers.

3.2. Experimental Results
We first performed k-means based clustering approach for
pruning. During the identification of the optimal number of
clusters, we measured the diversity between the cluster
representatives. As cluster representatives we used the
classifiers that are the closest to the cluster centroids. When
the diversity between cluster representatives started to
deteriorate, we assumed that the optimal number of clusters
is discovered.

The classifiers inside the obtained clusters are pruned such
that the ensemble does not achieve worse prediction
accuracy than the entire ensemble of all classifiers. The
results of clustering based approach for four different data
sets are shown in Table 1.

Analyzing the data from Table 1, it is evident that the
clustering based method for pruning classifiers could
eliminate 62 – 68% of classifiers without deteriorating the
prediction accuracy of the pruned ensemble. For some data
sets (diabetes, glass, synthetic), the pruning classifiers could
even achieve the negligible improvement in prediction
accuracy.

Table 1. The accuracy and pruning level achieved by
pruning initial ensemble with T classifiers using the
clustering approach

Data set → Diabetes
(T = 30)

Glass
(T = 40)

Waveform
(T = 50)

Synthetic
(T = 50)

Accuracy of
Entire Ensemble 77.1±0.8 68.6±0.7 86.1 ± 0.6 83.3± 0.8

Accuracy of
Pruned Ensemble 77.7±1.3 68.9±0.8 86.0 ± 0.5 83.8± 0.7

Pruning level (%) 63.3 62.5 68 64
Number of clusters 4 4 3 5

The question that naturally arises from the previous method
is what happens when we miss the optimal number of
clusters. In order to examine this effect, we performed k-
means based clustering approach with the different number
of discovered clusters. Figure 5 and 6 show how this effect
influences both the classification accuracy and the pruning
level.

68

69

70

71

72

73

74

75

76

77

78

Number of discovered clusters

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

 2 3 4 5 6

Optimal number of clusters

Pima Diabetes Dataset

Glass Dataset

83

83.5

84

84.5

85

85.5

86

86.5

Number of discovered clusters

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Optimal number of clusters

 2 3 4 5 6

Waveform Dataset

Synthetic Spatial Dataset

Figure 5. The classification accuracy of pruned neural
network ensembles for different numbers of clusters
discovered on different datasets.

60

62

64

66

68

70

72

74

Number of discovered clusters

Pr
un

in
g

Le
ve

l (
%

)

Diabetes
Glass
Waveform
Synthetic Spatial

 2 3 4 5 6

Used dataset:

Figure 6. The percentage of eliminated classifiers (pruning
level) when different numbers of clusters are discovered on
different datasets.

It is evident from Figure 5 that the number of discovered
clusters does not significantly influence the classification
accuracy achieved by pruned neural network ensembles.
However, it is apparent from Figure 6 that there is a trend
of decreasing the pruned level when the number of
discovered clusters is increasing. By considering both the

achieved accuracy and the pruning level, we can identify
the optimal number of clusters that gives the best
classification for the maximum possible pruning level.
Figure 5 shows the optimal number of clusters for different
data sets.

When integrating the procedure of distributing the voting
weights into the clustering based method of pruning
classifiers, we could even achieve slightly better prediction
accuracy and pruning level (Table 2).

Table 2. The accuracy and pruning level achieved by
pruning initial ensemble with T classifiers using the
clustering approach with distributing the voting weights

Data set → Diabetes
(T = 30)

Glass
(T = 40)

Waveform
(T = 50)

Synthetic
(T = 50)

Accuracy of
Entire Ensemble 77.1±0.8 68.6±0.7 86.1 ± 0.6 83.3± 0.8

Accuracy of
Pruned Ensemble 77.9±±±±0.9 69.1±±±±0.8 86.3 ±±±± 0.5 84.2±±±± 0.9

Pruning level (%) 66.7 65 74 68
Number of clusters 4 4 3 5

Results from the experiments presented in Table 2 indicate
that by using the clustering method with distributing the
voting weights the initial ensemble of classifiers can be
further pruned with slightly increase in prediction accuracy.
Comparing the accuracies and pruning levels in Table 2 and
Table 1, it is apparent that consistently better accuracy and
larger pruning may be achieved by incorporating the
process of distributing the weights.

Finally, the method of building the classifier tree and its
pruning is implemented. Experiments on all four considered
data sets using this method are presented in Table 3.

Table 3. The accuracy and pruning level achieved by
pruning initial ensemble with T classifiers using the method
of building classifier tree

Data set → Diabetes
(T = 30)

Glass
(T = 40)

Waveform
(T = 50)

Synthetic
(T = 50)

Accuracy of
Entire Ensemble 77.1±0.8 68.6±0.7 86.1 ± 0.6 83.3± 0.8

Accuracy of
Pruned Ensemble 77.2±1.5 68.6±1.0 86.0 ± 0.7 83.2± 0.9

Pruning level (%) 53.3 55 62 60

Unlike previous clustering based methods, the method of
building classifier tree was not successful when pruning
classifiers from the initial ensemble. The prediction
accuracy achieved by pruning redundant classifiers was
comparable to the accuracy of the entire ensemble, while
the pruning level was smaller than in clustering based
methods.

The results from all experiments performed on all four data
set implied that 50 – 70% of constructed classifiers could be
effectively pruned without any significant decrease in the
prediction accuracy. Using the clustering based methods the
accuracy of pruned ensembles for some data sets (diabetes,
glass, synthetic) can be even improved when comparing to
the accuracy of the entire ensemble. The best performance
was achieved by the clustering method with distributing the
voting weights.

4 Conclusions

Several new methods for pruning neural network classifier
ensembles using unsupervised clustering algorithm and
breadth-first building the classifier tree are proposed.
Experimental results on several data sets indicate that the
proposed techniques for pruning classifiers can effectively
achieve similar or even better prediction accuracy while
requiring for 50 – 70 % less number of classifiers.

The proposed framework for pruning classifier is applicable
to both centralized and distributed environment where large
number of classifiers may be present. Our future work will
include the methods of post-pruning the classifiers in
distributed environments, where this step may be necessary
in order to increase system throughput.

In addition, alternate clustering algorithms will be
considered where the optimal number of clusters may be
identified by the clustering algorithm itself. Finally, we are
working to extend the proposed methods to regression-
based problems.

Acknowledgments. Work in part supported by INEEL
LDRD Program under DOE Idaho Operations Office
Contract DE-AC07-99ID13727.

5 References

[1] Breiman, L., “Bagging predictors”, Machine Learning 24,

123-140, 1996.
[2] Breiman, L., “Bias, Variance and Arcing Classifiers”,

Technical Report TR-460, Department of Statistics,
University of California, Berkley, 1996.

[3] Freund, Y., and Schapire, R. E., “Experiments with a new
boosting algorithm”, Proceedings of the Thirteenth
International Conference on Machine Learning, pp. 325-332,
1996.

[4] Carney, J. G., Cunningham, P., “The NeuralBAG Algorithm:
Optimizing Generalization Performance in Bagged Neural
Networks”, in Verleysen, M. (Ed.), Proceedings of the 7th
European Symposium on Artificial Neural Networks, pp. 35-
40, 1999.

[5] Drucker, H., Schapire, R. and Simard, P., “Improving
Performance in Neural Networks Using a Boosting

Algorithm”, in Hanson, S. J., Cowen, J. D., Giles, C. L.
(Eds.), Advances in Neural Information Processing Systems,
Morgan Kaufman, 5, pp. 42-49, 1993.

[6] Breiman, L., “Heuristic of instability in model selection”,
Technical Report, Statistics Department, University of
California at Berkley, 1996.

[7] Hansen, L., and Salamon, P., “Neural Network Ensembles”,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12, pp. 993-1001, 1990.

[8] Krogh, A., Vedelsby, J., “Neural Network Ensembles, Cross
Validation and Active Learning”, in Tesauro, G., Touretzky,
D., and Leen, T., (Eds.), Advances in Neural Information
Processing Systems, vol. 7, MIT Press, 1995.

[9] Hashem, S., Schmeiser, B. and Yih, Y., “Optimal Linear
Combination of Neural Networks: An Overview”,
Proceedings of the IEEE International Conference on Neural
Networks, 1994.

[10] Maclin, R. and Shavlik, J., “Combining the Predictions of
Multiple Classifiers: Using Competitive Learning to Initialize
Neural Networks”, Proceedings of the 14th International
Joint Conference on Artificial Intelligence, 1995.

[11] Tumer, K., and Ghosh, J., “Error Correlation and Error
Reduction in Ensemble Classifiers”, Connection Science 8,
pp. 385-404, 1996.

[12] Tamon, C. and Xiang J., “On the Boosting Pruning problem”,
Proceeding of the 11th European Conference on Machine
Learning, pp. 404-412, 2000.

[13] Margineantu, D. D., and Dietterich, T. G., “Pruning Adaptive
Boosting”, Proceedings of the 14th International Conference
on Machine Learning, pp. 211-218, 1997.

[14] Quinlan, J. R., C4.5 Programs for Empirical Learning,
Morgan Kaufman, San Francisco, 1993.

[15] Agresti, A., Categorical Data Analysis, John Wiley and
Sons, Inc., 1990.

[16] Cohen, J., “A coefficient of Agreement for Nominal Scales”,
Educational and Psychological Measures, 20, pp. 37-46,
1960.

[17] Efron, B., Tibshirani, R., An Introduction to the Bootstrap,
Chapman and Hall, London, 1993.

[18] Ali, K., and Pazzani, M., “Error reduction trough learning
multiple descriptions”, Machine Learning, 24, pp. 173-202,
1996.

[19] Kaufman, L., Rousseeuw, P., Finding groups in data: an
introduction to cluster analysis, Willey, New York, 1990.

[20] Blake, C.L. & Merz, C.J., UCI Repository of machine
learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,
CA: University of California, Department of Information and
Computer Science, 1998.

[21] Pokrajac D, Fiez T, Obradovic Z., “A Spatial Data Simulator
for Agriculture Knowledge Discovery Applications”, in
review.

[22] Riedmiller, M., Braun, H., “A Direct Adaptive Method for
Faster Backpropagation Learning: The RPROP Algorithm”,
Proceedings of the IEEE International Conference on Neural
Networks, pp. 586–591, 1993.

[23] Hagan, M., Menhaj, M.B., “Training feedforward networks
with the Marquardt algorithm”, IEEE Transactions on Neural
Networks 5, pp. 989-993, 1994.

	Effective Pruning of Neural Network Classifier Ensembles
	Abstract

