A Framework for Specifying, Prototyping, and Reasoning about Computational Systems

Andrew Gacek

Department of Computer Science and Engineering
University of Minnesota

PhD Defense
September 8, 2009
Motivation

We are interested in a framework for developing *formal systems*

Some example formal systems:

- Evaluation and typing in a programming language
- Provability in a logic
- Behavior in a concurrency system

A framework should support:

- Specification, prototyping, reasoning
- Working with objects with variable binding structure
Our Approach to Building a Framework

A logic-based approach:

- A *specification logic* which encodes formal systems through logical formulas
- Prototyping via a computational interpretation of the specification logic
- A *reasoning logic* which can internalize the specification logic and be used to prove properties of specifications

A higher-order approach:

- Both logics incorporate the \(\lambda \)-calculus in their term structure so we can represent binding
- They contain logical devices for analyzing such structure
Contributions

- The logic G for reasoning about specifications
- Abella: an implementation of G which incorporates the two-level logic approach to reasoning
- Rich examples constructed in Abella which verify the power of G and the usefulness and practicality of the two-level logic approach to reasoning
Example: Mini-ML

Mini-ML Syntax

\[a ::= \text{int} \mid a \rightarrow a \]
\[t ::= x \mid t \ t \mid (\text{fn} \ x:a \Rightarrow t) \]

Mini-ML Evaluation

\[t \downarrow v \text{ means } t \text{ evaluates to } v \]

\[\frac{}{(\text{fn} \ x:a \Rightarrow r) \downarrow (\text{fn} \ x:a \Rightarrow r)} \]

\[\frac{m \downarrow (\text{fn} \ x:a \Rightarrow r) \quad r[x := n] \downarrow v}{m \ n \downarrow v} \]
Reasoning about Mini-ML

Theorem (Determinacy of Evaluation)

If \(t \Downarrow v \) and \(t \Downarrow w \) then \(v = w \)

Proof.
Induction on the derivation of \(t \Downarrow v \)
Proceed by cases,

- \(t \) and \(v \) are both \((\text{fn } x : a \Rightarrow r)\)
 Must be that \(w \) is \((\text{fn } x : a \Rightarrow r)\)
- \(t \) is \(mn \)
 - Must have \(m \Downarrow (\text{fn } x : a \Rightarrow r) \) and \(r[x := n] \Downarrow v \)
 - Must have \(m \Downarrow (\text{fn } x : b \Rightarrow s) \) and \(s[x := n] \Downarrow w \)
 - By induction \(r = s \), and thus by induction \(v = w \)
A Higher-order Abstract Syntax Representation

Object level binding can be represented with meta-level abstraction

Constants for Mini-ML

\[\text{int} :: \text{type} \]
\[\text{arrow} :: \text{type} \rightarrow \text{type} \rightarrow \text{type} \]
\[\text{app} :: \text{term} \rightarrow \text{term} \rightarrow \text{term} \]
\[\text{fun} :: \text{type} \rightarrow (\text{term} \rightarrow \text{term}) \rightarrow \text{term} \]

Example

\[\text{fn} \ x : \text{int} \Rightarrow \text{fn} \ y : \text{int} \Rightarrow x \]
\[\text{fun} \ \text{int} \ (\lambda x. \text{fun} \ \text{int} \ (\lambda y. x)) \]

Binding issues are now treated in the meta-level
Basic Structure for Reasoning

- Formulas over expressions from the simply-typed λ-calculus
- Atomic formulas encode object system judgments
- Relationships between judgments can be expressed with logical formulas
- The formal system provides a means for deriving sequents of the form:
 $$H_1, \ldots, H_n \rightarrow C$$
Some Core Rules of the Logic

\[\Gamma, B \rightarrow B \quad \text{id} \]

\[\Gamma, B, \Gamma \rightarrow C \quad \text{cut} \]

\[\Gamma, \bot \rightarrow C \quad \bot L \]

\[B \rightarrow C \quad \bot R \]

\[\Gamma, B_i \rightarrow C \quad \land L_i \]

\[\Gamma, B \rightarrow B \land C \quad \land R \]

\[\Gamma, B \rightarrow B \cup C \quad \cup R \]

\[\Gamma, B[h/x] \rightarrow C \quad \exists L \]

\[\Gamma, \exists x. B \rightarrow C \quad \exists R \]
Definitions

The syntax of definitions: \(\forall \vec{x}. H(\vec{x}) \triangleq B(\vec{x}) \)

Atomic formulas are interpreted as fixed-points of such definitions

\[
eval \ (\text{fun} \ A \ R) \ (\text{fun} \ A \ R) \triangleq \top
\]

\[
eval \ (\text{app} \ M \ N) \ V \triangleq \exists A. \exists R. \ eval \ M \ (\text{fun} \ A \ R) \land \ eval \ (R \ N) \ V
\]

We can encode this in a single definitional clause:

\[
eval \ T \ V \triangleq (\exists A, R. \ T = (\text{fun} \ A \ R) \land V = (\text{fun} \ A \ R)) \lor
\]

\[
(\exists M, N, A, R. \ T = (\text{app} \ M \ N) \land
 eval \ M \ (\text{fun} \ A \ R) \land eval \ (R \ N) \ V)
\]
Let p be defined by

$$
\forall \vec{x}. p \vec{x} \triangleq B \ p \vec{x}
$$

We also have rules for induction and co-induction for appropriate definitions
Formally Proving Determinacy of Evaluation

Theorem
\(\forall t, v, w. (\text{eval } t \ v \land \text{eval } t \ w) \supset v = w \)

Proof.
Apply rules for \(\forall \), \(\land \), and \(\supset \)

\[\text{eval } t \ v, \text{eval } t \ w \rightarrow v = w \]

Case analysis on eval \(t \ v \)

- \(t = v = (\text{fun } a \ r) \)

\[\text{eval } (\text{fun } a \ r) \ w \rightarrow (\text{fun } a \ r) = w \]

Case analysis on eval \((\text{fun } a \ r) \ w \)

\[\rightarrow (\text{fun } a \ r) = (\text{fun } a \ r) \]

- \(t = (\text{app } m \ n) \ldots \)
Dynamic Aspects of Binding

Consider a typing judgment for Mini-ML

\[
\frac{x : a \in \Gamma}{\Gamma \vdash x : a} \quad \frac{\Gamma \vdash m : a \rightarrow b \quad \Gamma \vdash n : a}{\Gamma \vdash m \ n : b}
\]

\[
\frac{\Gamma, x : a \vdash r : b}{\Gamma \vdash (\text{fn } x : a \rightarrow r) : a \rightarrow b} \quad x \notin \text{dom}(\Gamma)
\]

\[
of \ \Gamma \ X \ A \triangleq \text{member (} X : A \text{) } \Gamma
\]

\[
of \ \Gamma \ (\text{app } M \ N) \ B \triangleq \exists A. \ of \ \Gamma \ M \ (\text{arrow } A \ B) \land \ of \ \Gamma \ N \ A
\]

\[
of \ \Gamma \ (\text{fun } A \ R) \ (\text{arrow } A \ B) \triangleq \nabla x. \ of \ ((x : A) :: \Gamma) \ (R \ x) \ B
\]
Some Properties of the ∇ Quantifier

$\nabla x. F$ introduces a fresh “variable name” for x

We have the following structural properties for ∇:

$$\nabla x. \nabla y. F \equiv \nabla y. \nabla x. F$$

$$\nabla x. F \equiv F \quad \text{if } x \text{ does not appear in } F$$

If we allow ∇ quantification at a type, then we assume there are infinitely many fresh names at that type
Logical Rules for the ∇ Quantifier

$$\frac{B[a/x], \Gamma \rightarrow C}{\nabla x. B, \Gamma \rightarrow C} \quad \nabla L$$

$$\frac{\Gamma \rightarrow B[a/x]}{\Gamma \rightarrow \nabla x. B} \quad \nabla R$$

a is a nominal constant not appearing in B

The treatment of nominal constants requires permutations of nominal constants to be considered in the equivalence of formulas.

In particular, we change the initial rule to

$$\frac{}{\Gamma, B \rightarrow B', \text{id, if } B = \pi. B'}$$
Typing Example with ∇

\[
of \Gamma \ X \ A \triangleq \text{member} \ (X : A) \ \Gamma \\
of \Gamma \ (\text{app} \ M \ N) \ B \triangleq \exists A. \ of \ \Gamma \ M \ (\text{arrow} \ A \ B) \ \land \ of \ \Gamma \ N \ A \\
of \Gamma \ (\text{fun} \ A \ R) \ (\text{arrow} \ A \ B) \triangleq \nabla x. \ of \ ((x : A) :: \Gamma) \ (R \ x) \ B
\]

\[
\begin{align*}
\vdots \\
\rightarrow & \ \text{member} \ (c : \text{int}) \ ((d : \text{int}) :: (c : \text{int}) :: \text{nil}) \\
\rightarrow & \ of \ ((d : \text{int}) :: (c : \text{int}) :: \text{nil}) \ c \ \text{int} \\
\rightarrow & \ \nabla x. \ of \ ((x : \text{int}) :: (c : \text{int}) :: \text{nil}) \ c \ \text{int} \\
\rightarrow & \ of \ ((c : \text{int}) :: \text{nil}) \ (\text{fun} \ \text{int} \ (\lambda y. \ c)) \ (\text{arrow} \ \text{int} \ \text{int}) \\
\rightarrow & \ \nabla x. \ of \ ((x : \text{int}) :: \text{nil}) \ (\text{fun} \ \text{int} \ (\lambda y. \ x)) \ (\text{arrow} \ \text{int} \ \text{int}) \\
\rightarrow & \ of \ \text{nil} \ (\text{fun} \ \text{int} \ (\lambda x. \ \text{fun} \ \text{int} \ (\lambda y. \ x))) \ (\text{arrow} \ \text{int} \ (\text{arrow} \ \text{int} \ \text{int}))
\end{align*}
\]
Reasoning about Type Uniqueness

\[\forall t, a, b. (\text{of } nil \ t \ a \land \text{of } nil \ t \ b) \supset a = b \]

\[\forall \Gamma, t, a, b. (\text{of } \Gamma \ t \ a \land \text{of } \Gamma \ t \ b) \supset a = b \]

\[\forall \Gamma, t, a, b. (\text{cntx } \Gamma \land \text{of } \Gamma \ t \ a \land \text{of } \Gamma \ t \ b) \supset a = b \]

\text{cntx } \Gamma \text{ should enforce}

- \(\Gamma = (x_1 : a_1) :: (x_2 : a_2) :: \ldots :: (x_n : a_n) :: \text{nil} \)
- Each \(x_i \) is atomic
- Each \(x_i \) is unique

Definitions can serve to capture such meta-level properties

\text{cntx } \text{nil} \triangleq \top

\text{cntx } ((X : A) :: L) \triangleq \text{“} X \text{ atomic and not occurring in } L \text{“} \land \text{cntx } L
Analyzing Occurrences of Nominal Constants

We introduce the device of *nominal abstraction*:

\[(\lambda x_1 \ldots \lambda x_n.s) \triangleright t\]

This holds exactly when there exist nominal constants \(c_1, \ldots, c_n\) such that \((\lambda x_1 \ldots \lambda x_n.s)\) is equal to \((\lambda c_1 \ldots \lambda c_n.t)\)

Examples

- “\(X\) is atomic”
 \((\lambda z.z) \triangleright X\)

- “\(X\) is atomic and does not occur in \(L\)”
 \((\lambda z.fresh\ z\ L) \triangleright fresh\ X\ L\)
Nominal Abstraction as a Modular Extension of Equality

\[\Gamma \rightarrow t = t = R \]

\[\{ \Gamma[\theta] \rightarrow C[\theta] \mid \text{all } \theta \text{ such that } (s = t)[\theta] \} = L \]

\[s = t, \Gamma \rightarrow C \]

\[\Gamma \rightarrow s \triangleright t \triangleright R, \text{ if } s \triangleright t \text{ holds} \]

\[\{ \Gamma[\theta] \rightarrow C[\theta] \mid \text{all } \theta \text{ such that } (s \triangleright t)[\theta] \} \triangleright L \]

\[s \triangleright t, \Gamma \rightarrow C \]

\(\cdot[\cdot] \) is a generalized notion of substitution which respects the scope of nominal constants.
Summary of the Logic G

We have a logic with . . .

- simply-typed λ-terms for representation
- atomic formulas for encoding judgments
- fixed-point definitions for encoding rules
- induction (and co-induction) over appropriate fixed-point definitions
- ∇ quantifier for introducing fresh names
- nominal abstraction for analyzing occurrences of names
Cut and Cut-elimination

\[\frac{\Gamma \rightarrow B \quad B, \Gamma \rightarrow C}{\Gamma \rightarrow C} \quad \text{cut} \]

Cut is useful for...

- using lemmas during reasoning
- enabling shorter proofs
- allowing flexible proof construction

Cut is problematic for...

- proving the consistency of our logic
- designing automatic proof search

The best solution is to show cut-elimination
How to Prove Cut-elimination in General

To show that cut can be eliminated, we provide a syntactic procedure that eliminates instances cut

\[\frac{\Pi_1}{\Gamma \rightarrow B_1} \qquad \frac{\Pi_2}{\Gamma \rightarrow B_2} \qquad \frac{\prod}{\Gamma \rightarrow B_1 \land B_2} \quad \land \mathcal{R} \quad \frac{B_1, \Gamma \rightarrow C}{B_1 \land B_2, \Gamma \rightarrow C} \quad \land \mathcal{L}_1 \]

The difficulty is then showing that this procedure always terminates
Proving Cut-elimination for \mathcal{G}

Tiu and Momigliano prove cut-elimination for Linc^- (a subset of \mathcal{G}) using a notion of parametric reducibility for derivations that is based on the Girard’s proof of strong normalizability for System F.

A key lemma in this proof is:

- If $\Gamma \rightarrow C$ has a proof then $\Gamma[\theta] \rightarrow C[\theta]$ has a simpler proof

\mathcal{G} expands on Linc^- with ∇-quantification, nominal constants, and nominal abstraction.

The following two lemmas are key:

- If $\Gamma \rightarrow C$ has a proof then $\langle \vec{\pi} \rangle.\Gamma \rightarrow \pi. C$ has the same proof
- If $\Gamma \rightarrow C$ has a proof then $\Gamma[\theta] \rightarrow C[\theta]$ has a simpler proof

Then Tiu and Momigliano’s proof extends to cut-elimination for \mathcal{G}.
Adequacy

How do we connect results in G to results about the object system?

- We show a bijection between the expressions of the object system and their representation as terms in G.
- We then show an “if and only if” relationship between judgments of the object system and their encoding as atomic formulas in G.

Adequacy means that this kind of connection exists between an object system and its encoding in a logic.

Cut-elimination plays an essential role here since it restricts the sort of proofs we have to consider.
Using Adequacy (Example)

Suppose we have proven
\[\forall T, V, A. \ (\text{eval } T \ V \land \text{of nil } T \ A) \supset \text{of nil } V \ A \quad (1) \]

Theorem
If \(t \downarrow v \) and \(\vdash t : a \) then \(\vdash v : a \)

Proof.

- By adequacy we know \(\rightarrow \text{eval } \Gamma t \neg \neg v \neg \neg \) and
 \(\rightarrow \text{of nil } \Gamma t \neg \neg a \neg \) have proofs in \(\mathcal{G} \)
- Using these with (1) and various rules of \(\mathcal{G} \) (particularly cut)
 we can construct a proof of \(\rightarrow \text{of nil } \Gamma v \neg \neg a \neg \)
- By adequacy we know \(\vdash v : a \)
A Specification Logic

\[\Delta, A \models G \quad \frac{\Delta \models G[c/x]}{\Delta \models \forall x. G} \]

\[\Delta \models G_1[\vec{t}/\vec{x}] \quad \cdots \quad \Delta \models G_m[\vec{t}/\vec{x}] \quad \frac{\Delta \models A}{\Delta \models A} \]

where \(\forall \vec{x}.(G_1 \supset \cdots \supset G_m \supset A') \in \Delta \) and \(A'[\vec{t}/\vec{x}] = A \)

Proofs in this logic reflect computations in many formal systems

\[\forall m, n, a, b. (\text{of } m (\text{arrow } a b) \supset \text{of } n a \supset \text{of } (\text{app } m n) b) \]

\[\forall r, a, b. ((\forall x. \text{of } x a \supset \text{of } (r x) b) \supset \text{of } (\text{fun } a r) (\text{arrow } a b)) \]
The Two-level Logic Approach to Reasoning

The specification logic sequent $\Delta, L \models G$ is encoded as the atomic formula $\text{seq } \neg L \neg G$

$$\text{seq } L \text{ (imp } A \text{ G) } \triangleq \text{seq } (A :: L) \text{ G}$$
$$\text{seq } L \text{ (all } B) \triangleq \forall x.\text{seq } L \text{ (B x)}$$
$$\text{seq } L \text{ A } \triangleq \text{member } A \text{ L}$$
$$\text{seq } L \text{ A } \triangleq \exists b.\text{prog } A \text{ b } \land \text{seq } L \text{ b}$$

Where prog encodes the formulas of Δ:

$$\text{prog } (\text{of } (\text{fun } A \text{ R}) \text{ (arrow } A \text{ B}))$$
$$(\text{all } \lambda x.\text{(imp } (\text{of } x \text{ A}) \text{ (of } (R x) \text{ B}))) \triangleq \top$$
Benefits of the Two-level Logic Approach to Reasoning

We can formally prove properties of \(seq \) once, and use them as lemmas about particular specifications

Monotonicity
\[
\forall L, K, G. (\forall X. \text{member } X L \supset \text{member } X K) \supset \text{seq } L \ G \supset \text{seq } K \ G
\]

Instantiation
\[
\forall L, G. \ \forall x. \ \text{seq } (L \ x) \ (G \ x) \supset \forall t. \ \text{seq } (L \ t) \ (G \ t)
\]

Cut admissibility
\[
\forall L, A, G. \ \text{seq } (A :: L) \ G \supset \text{seq } L \ A \supset \text{seq } L \ G
\]
Abella is an interactive, tactics-based implementation of the reasoning logic which focuses on the two-level logic approach to reasoning and hides most of the supporting machinery.

- http://abella.cs.umn.edu
- Open source and freely available
- Includes documentation, walkthroughs, and live examples
- Released in February 2008
- Hundreds of downloads so far
Successful Applications

- Determinacy, type preservation, and equivalence of various evaluation strategies
- POPLmark Challenge 1a, 2a
- Cut admissibility for a sequent calculus with quantifiers
- Properties of bisimulation in the π-calculus
- Church-Rosser property for λ-calculus
 - Contributed by Randy Pollack
- Substitution for Canonical LF
 - Contributed by Todd Wilson
 - The “triple-8” and “double-3” proofs
Statement of the Triple-8 Lemma

Theorem subst_m&r : forall Tx Ty, stype Tx -> stype Ty ->
forall Tx$ Ty$, {subt Tx$ Tx} -> {subt Ty$ Ty} ->
(forall Xs N L L' M M' M'', nabla x y, %%%% m vs. m (y x) %%%%)
 vctx Xs -> tm m Xs N -> (Xs |- subst_m Tx$ L N L') ->
 {Xs, var x |- subst_m Ty$ (y \ M x y) (L x) (M' x)} -> {Xs, var y |- subst_m Tx$ (x \ M x y) N (M' y)} ->
 exists M'', {Xs |- subst_m Tx$ M' N M''} \ {Xs |- subst_m Ty$ M' L'' M''}) \ /
(forall Xs N L L' R M' T' R'', nabla x y, %%%% rm vs. rr (y x) %%%%)
 vctx Xs -> tm m Xs N -> (Xs |- subst_m Tx$ L N L') ->
 {Xs, var x |- subst_rm Ty$ (y \ R x y) (L x) (M' x) T'} -> {Xs, var y |- subst_rr Tx$ (x \ R x y) N (R' y)} ->
 exists M'', {Xs |- subst_m Tx$ M' N M''} \ {Xs |- subst_rm Ty$ R' L' M'' T'} \ /
(forall Xs N L L' R R' M'' R'', nabla x y, %%%% rr vs. rm (y x) %%%%)
 vctx Xs -> tm m Xs N -> (Xs |- subst_m Tx$ L N L') ->
 {Xs, var x |- subst_rm Ty$ (y \ R x y) (L x) (R' x)} -> {Xs, var y |- subst_rr Tx$ (x \ R x y) N (R' y)} ->
 exists R'', {Xs |- subst_rr Tx$ R' N R''} \ {Xs |- subst_rr Ty$ R' L' R''}) \ /
(forall Xs N L L' M M' M'', nabla x y, %%%% m vs. m (x y) %%%%)
 vctx Xs -> tm m Xs N -> (Xs |- subst_m Tx$ L N L') ->
 {Xs, var x |- subst_m Tx$ (y \ M x y) (L x) (M' x)} -> {Xs, var y |- subst_m Tx$ (x \ M x y) N (M' y)} ->
 exists M'', {Xs |- subst_m Tx$ M' N M''} \ {Xs |- subst_m Tx$ M' L'' M'')} \ /
(forall Xs N L L' R M' T' R'', nabla x y, %%%% rm vs. rr (x y) %%%%)
 vctx Xs -> tm m Xs N -> (Xs |- subst_m Tx$ L N L') ->
 {Xs, var x |- subst_m Tx$ (y \ R x y) (L x) (M' x) T'} -> {Xs, var y |- subst_rr Ty$ (x \ R x y) N (R' y)} ->
 exists M'', {Xs |- subst_m Tx$ M' N M''} \ {Xs |- subst_m Tx$ R' L' M'' T'}) \ /
(forall Xs N L L' R R' M'' R'', nabla x y, %%%% rr vs. rm (x y) %%%%)
 vctx Xs -> tm m Xs N -> (Xs |- subst_m Tx$ L N L') ->
 {Xs, var x |- subst_rm Ty$ (y \ R x y) (L x) (R' x)} -> {Xs, var y |- subst_rr Tx$ (x \ R x y) N (M' y) T'} ->
 exists M'', {Xs |- subst_rm Ty$ R' N M'' T'} \ {Xs |- subst_m Tx$ M' L'' M'')} \ /
(forall Xs N L L' R R' M'', nabla x y, %%%% rr vs. rr (x y) %%%%)
 vctx Xs -> tm m Xs N -> (Xs |- subst_m Tx$ L N L') ->
 {Xs, var x |- subst_rr Tx$ (y \ R x y) (L x) (R' x)} -> {Xs, var y |- subst_rr Tx$ (x \ R x y) N (R' y)} ->
 exists R'', {Xs |- subst_rr Tx$ R' N R''} \ {Xs |- subst_rr Tx$ R' L' R''}).
Conclusions & Future Work

Summary of contributions:

- The logic G and nominal abstraction
- The Abella system and its incorporation of the two-level logic approach to reasoning
- Rich examples which validate G, Abella, and the two-level logic approach to reasoning

Future directions:

- Alternative specification logics
- Stronger forms of definitions and (co-)inductive principles
- Improving the usability of Abella
- An integrated toolset