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Abstract

We explore the geometry of complex networks in terms of an n-dimensional Euclidean embedding represented
by the Moore-Penrose pseudo-inverse of the graph Laplacian (L+). The squared distance of a node i to the
origin in this n-dimensional space (l+ii ), yields a topological centrality index, defined as C∗(i) = 1/l+ii . In
turn, the sum of reciprocals of individual node centralities,

∑
i 1/C∗(i) =

∑
i l+ii , or the trace of L+, yields

the well-known Kirchhoff index (K), an overall structural descriptor for the network. To put into context
this geometric definition of centrality, we provide alternative interpretations of the proposed indices that
connect them to meaningful topological characteristics — first, as forced detour overheads and frequency
of recurrences in random walks that has an interesting analogy to voltage distributions in the equivalent
electrical network; and then as the average connectedness of i in all the bi-partitions of the graph. These
interpretations respectively help establish the topological centrality (C∗(i)) of node i as a measure of its
overall position as well as its overall connectedness in the network; thus reflecting the robustness of i to
random multiple edge failures. Through empirical evaluations using synthetic and real world networks, we
demonstrate how the topological centrality is better able to distinguish nodes in terms of their structural
roles in the network and, along with Kirchhoff index, is appropriately sensitive to perturbations/re-wirings
in the network.

1. Introduction

Unlike traditional studies on network robustness, that typically treat networks as combinatoric objects
and rely exclusively on classical graph-theoretic concepts (such as degree distributions, geodesics and min-
imum cuts), we explore a geometric approach as an alternative. To do so, we embed the network into an
n-dimensional Euclidean space (n being the number of nodes in the network) represented by the Moore-
Penrose pseudo-inverse of its graph Laplacian, denoted henceforth by L+. The diagonal entries of L+,
denoted as l+ii for the node i, represent the squared distance of node i to the origin in this n − dimensional
space and provide a measure of the node’s topological centrality, given as C∗(i) = 1/l+ii . Closer the node i is
to the origin in this space, or equivalently lower the l+ii , more topologically central i is. Similarly, the trace
of L+, Tr(L+) =

∑
i 1/C∗(i), determines the overall volume of the embedding and yields the well-known

Kirchhoff index (K), a structural descriptor for the network as a whole. Once again, lower the value of K for
a network (from amongst all possible networks with the same number of nodes and edges), more compact
the embedding, and more structurally robust the overall network is. In short, topological centrality defines
a ranking of the nodes of a given network, where as the Kirchhoff index provides a geometric measure to
rank different networks of comparable sizes.

In order to illustrate how the two geometric quantities defined above actually reflect the structural
properties of the underlying network, and in particular to structural robustness against multiple failures,
we provide three alternative interpretations for them in terms of: (a) detour overheads in random walks,
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(b) voltage distributions and the phenomenon of recurrence when the network is treated as an electrical
circuit, and (c) the average connectedness of nodes when the network breaks into two, thereby making global
communication untenable. We describe each of these in detail below.

First, we show how topological centrality of a node reveals its overall position in the network. By equating
topological centrality of a node i, i.e. C∗(i) = 1/l+ii , to the (reciprocal of) average detour overhead incurred
when a random walk between any source destination pair is forced to go through i, we get a measure of
the node’s position. Intuitively, the average overhead incurred in such forced detours (measured in terms
of the number of steps in the random walk) is lower if node i is centrally positioned in the network (higher
C∗(i) and lower l+ii) and higher if i is peripheral. Secondly, we show how C∗(i) captures voltage distribution
when the network is transformed into an equivalent electrical network (EEN). This, in turn, is related to the
probability with which a random detour through i returns to the source node; referred to as the phenomenon
of recurrence in random walk literature. To be precise, higher C∗(i) implies that a random detour through
node i forces the random walk between any source destination pair to return to the source node with lower
probability, thereby incurring lower detour overhead. Both of these interpretations, namely average detour
overhead and probability of recurrence, therefore, demonstrate how C∗(i) quantifies the overall position of
node i in the network. Finally, we establish how C∗(i) captures the overall connectedness of node i. To do so,
we equate it to the number of nodes that i can communicate with when a sub-set of edges in the network fail
in such a way that the network is partitioned into two connected sub-networks. As connected bi-partitions
represent a regressed state of the network when not all pairs of nodes can maintain communication, a higher
value of C∗(i), implies that i is present in the larger of the two sub-networks, on an average, in such bi-
partitions. Thus, C∗(i) reflects the immunity/vulnerability of node i towards multiple edge failures in the
network, a distinct topological characteristic.

Through numerical simulations using synthetic and realistic network topologies, we demonstrate that
our new indices better characterize robustness of nodes in network, both in terms of position as well as
connectedness, as compared to other existing metrics (e.g. node centrality measured based on degree,
shortest paths, etc.). A rank-order of nodes by their topological centralities (C∗(i)) helps distinguish them in
terms of their structural roles (such as core, gateway, etc.). Also, topological centrality and Kirchhoff index,
are both appropriately sensitive to local perturbations in the network, a desirable property not displayed by
some of the other popular centrality indices in literature (as shown later in this paper).

The rest of the paper is organized as follows: we begin by providing a brief overview of several structural
indices, characterizing node centrality as well as overall descriptors for networks, found in literature in §2.
§3 introduces a geometric embedding of the network using the eigen-space of L+, topological centrality and
Kirchhoff index as measures of robustness. §4 demonstrates how topological centrality of a node reflects the
average detour overhead in random walks through a particular node in question followed by its equivalence
to the probability of recurrence. In §5 we show how topological centrality captures the average connectedness
of nodes in the bi-partitions of a network. §6 presents comparative empirical analysis with simulated as well
as real world networks while in §7 we analyze the computational complexity of the proposed metrics with
respect to others popular in literature. Finally, the paper is concluded with a discussion of future work in
§8.

2. Related Work

Robustness of nodes to failures in complex networks is dependent on their overall position and connected-
ness in the network. Several centralities, that characterize position and/or connectedness of nodes in complex
networks in different ways, have therefore been proposed in literature. Perhaps the simplest of all is degree
— the number of edges incident on a node. Degree is essentially a local measure i.e. a first oder/one-hop
connectedness index. A second-order variant called joint-degree, given by the product of degrees of a pair of
nodes that are connected by an edge in the network, is also in vogue. However, except in scale free networks
that display the so called rich club connectivity [2, 15, 16], neither degree nor joint-degree determine the
overall position or the connectedness of nodes.
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A class of structural indices called betweennesses, namely shortest path/geodesic (GB) [20, 21], flow (FB)
[22] and random-walk (RB) [30] betweenness respectively quantify the positions of nodes, with respect to
source destination pairs in the network. The set of betweennesses, therefore, reflect the role played by a
node in the communication between other node-pairs in the network and are not the measures of a node’s
own connectedness.

Another popular centrality measure is geodesic closeness (GC)[20, 21]. It is defined as the (reciprocal of)
average shortest-path distance of a node from all other nodes in the network. Clearly, geodesic closeness is a
pth-order measure of connectedness where p = {1, 2, ..., δ}, δ being the geodesic diameter of the graph, and is
better suited for characterizing global connectedness properties than the aforementioned indices. However,
communication in networks is not always confined to shortest paths alone and GC being geodesic based,
ignores other alternative paths between nodes, however competitive they might be, and thus only partially
captures connectedness of nodes. Some all paths based counterparts of geodesic closeness include information
centrality [39] and random-walk centrality [32], that use random-walk based approach to measure centrality.
In [7], several centrality measures based on network flow, and collectively referred to as topological centrality,
have also been discussed in great detail.

Recently, subgraph centrality (SC) — the number of subgraphs of a graph that a node participates in —
has also been proposed [14]. In principle, a node with high subgraph centrality, should be better connected
to other nodes in the network through redundant paths. Alas, subgraph centrality is computationally
intractable and the proposed index in [14] approximates subgraph centrality by the sum of lengths of all
closed walks, weighed in inverse proportions by the factorial of their lengths. This inevitably results in
greater correlation with node degrees as each edge contributes to closed random-walks of lengths 2, 4, 6, ...
and thus introduces local connectivity bias. In a subsequent paper, Estrada et al introduce the concept of
vibrations to measure node vulnerability in complex networks [13]. Their index called node displacement
bears significant resemblance to information centrality and has interesting analogies to physical systems.
However, once again the true topological significance of the centrality measure, in terms of connectedness is
wanting.

Our aim in this work, therefore, is to provide an index for robustness of nodes in complex networks, that
effectively reflects both the position and connectedness properties of nodes and consequently, by extension,
of the overall network.

3. Geometric Embedding of Networks using L+, Topological Centrality and Kirchhoff Index

In studying the geometry of networks, we first need to embed a network, represented abstractly as a
graph, into an appropriate space endowed with a metric function (mathematically, a metric space). In this
section, we first describe just such a metric space in terms of the the Moore-Penrose pseudo-inverse of the
combinatorial Laplacian (§3.1). Next, using the geometric attributes of this metric space, we define the
topological centralities for individual nodes as well as the Kirchhoff index for the network as a whole (§3.2).

3.1. Network as a Graph, the Laplacian and a Euclidean Embedding

Given a complex network, we represent its topology as a weighted undirected graph, G = (V, E, W ),
where V (G) is the set of nodes; E(G) the set of edges; and W = {wuv ∈ ℜ+ : euv ∈ E(G)} is a set of weights
assigned to each edge of the graph (here ℜ+ denotes the set of nonnegative real numbers). These weights can
be used to represent a variety of affinity/distance measures, depending upon the context, such as latency or
capacity in traditional communication networks, as well as friendship and acquaintance type relationships
in the social counterparts. We define A = [aij ] as the affinity matrix of G(V, E, W ), such that aij = wij

represents the affinity between nodes i and j: larger the value of aij is, closer the nodes i and j are. For a
simple graph where wij ∈ {0, 1}, A is simply the standard adjacency matrix of the graph G. Let n = |V (G)|
be the number of nodes in G (also called the order of G). For 1 ≤ i ≤ n, we define d(i) =

∑
j aij , which is

the (generalized) degree of node i. The sum of node degrees is often referred to as the volume of the graph,
given as V ol(G) =

∑
i∈V (G) d(i). It is easy to see that when the graph is unweighted, V ol(G) = 2|E(G)|.
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The combinatorial Laplacian of the graph G(V, E, W ), is defined as L = D − A, where D = [dii] = d(i)
is a diagonal matrix with the node degrees on the diagonal. L is a square, symmetric, doubly-centered (all
rows and columns sum up to 0) and positive semidefinite matrix [3] with n non-negative eigen values. By
convention, we order the eigen values of L in decreasing order of magnitude as [λ1 ≥ λ2 ≥ ...λn−1 > λn = 0].
Similarly for 1 ≤ i ≤ n, let ui be the corresponding eigenvector of λi. If the network is connected (which
we assume to be the case henceforth), the smallest eigen value λn = 0 and its corresponding eigen vector
un = [1, 1, ..., 1] are both unique. Also, the eigen vectors of L are mutually perpendicular, i.e. ui ·uj = 0, ∀i, j
(where (·) is the inner product). Therefore, the matrix of eigen vectors U = [u1,u2, ...un] represents an
orthonormal basis for an n-dimensional Euclidean space. In short, we say that the Laplacian L admits an
eigen decomposition of the form L = UΛU′, where Λ is the diagonal matrix Λ = [λii] = λi and U is set of
n orthonormal eigen vectors.

Like L, its Moore-Penrose pseudo-inverse L+ is also square, symmetric, doubly-centered and positive
semi-definite [19]. It thus admits an eigen decomposition of the form, L+ = UΛ+U′, where Λ+ is a diagonal
matrix consisting of λ−1 if λi > 0, and 0 if λi = 0. It is the eigen space of L+ (derived from the eigen space
of L) that is of interest to us. Let X = Λ+1/2U′. We can therefore rewrite L+ as:

L+ = UΛ+U′ = X′X (1)

The form in (1) above, together with the fact that the matrix U is an orthonormal basis for ℜn, implies
that the matrix X represents an embedding of the network in an n-dimensional Euclidean space (for details
please refer [19] and the references therein).

Each node i ∈ V (G) of the network is now represented in terms of a point in this n-dimensional space,
characterized by the position vector xi, i.e. the ith column of X. Also, as L+ is doubly-centered (all rows
and columns sum to 0), the centroid of the position vectors for the set of nodes lies at the origin of this
n-dimensional space. Thus, the squared distance of node i from the origin (or the squared length of the
position vector) is exactly the corresponding diagonal entry of L+ i.e. ||xi||

2
2 = l+ii .

Similarly, the squared distance between two nodes i, j ∈ V (G), is given by ||xi−xj||
2
2 = l+ii + l+jj − l+ij − l+ji.

This pairwise distance is also called the effective resistance distance [26], which in turn is a scaled version
of the expected length of a random commute between nodes i and j in the underlying graph (details in
subsequent sections).

3.2. Topological Centrality and Kirchoff Index

Based on the geometric embedding of the graph using L+ described above, we now put forth two metrics.
First, a rank order for individual nodes in terms of their relative robustness characteristics called topological
centrality, defined as:

Definition 1. Topological centrality of node i ∈ V (G):

C∗(i) =
1

l+ii
, ∀i ∈ V (G) (2)

Thus, closer a node i is to the origin in this n-dimensional space, i.e. lower the numerical value of l+ii , more
topologically central it is, i.e. higher C∗(i). More importantly, and as we shall demonstrate in the sections to
follow, higher the topological centrality of a node, more centrally located it is in the network (structurally)
and greater its robustness to multiple edge failures in the network. But before we proceed, a brief discussion
of the definition in (2) is warranted to put the topological centrality metric in context. The element l+ii in
L+ can be rewritten in terms of the elements Laplacian spectrum, as follows:

l+ii =

n−1∑

j=1

u2
ji

λj
(3)

4



Thus, the topological centrality of a node is a function of the entire eigen spectrum of the graph Laplacian
(L). Clearly, the contribution made to the overall value of l+ii by a particular eigen pair (λi,ui) is determined
by the ratio u2

ji/λj. This attribute, though simple essence, is rather important and sets the topological
centrality measure apart. The use of matrix spectra for studying structural properties of networks is quite
popular in literature. In [11] the spectra of the adjacency and related ensemble matrices have been studied,
whereas in [29] a subset of leading eigen vectors of the graph Laplacian and its normalized counterparts have
been used for localizing a subset of closely connected nodes (or communities). Our topological centrality
(C∗(i)), seen in this light, is a more generalized metric that extends previously known localization approaches
(similar to that in [29]) to the granularity of individual nodes.

Next, we define a structural descriptor for the overall robustness of the network called Kirchhoff index,
as:

Definition 2. Kirchhoff index for G(V, E):

K(G) = Tr(L+) =

n∑

i=1

l+ii =

n∑

i=1

1/C∗(i) (4)

Geometrically, more compact the embedding is, lower the value of K(G) and more robust the network G
is (shown in latter sections) 1. Kirchhoff index has been widely used to model molecular strengths in the
mathematical chemistry literature [33, 34, 35, 36, 42, 43] as well as in linear algebra [4]. However, its true
topological significance has scarcely been explored and/or demonstrated. Note,

K(G) = Tr(L+) =

n−1∑

i=1

1

λi
(5)

Once again, we see that the global structural descriptor is a function of the overall Laplacian spectrum.
Therefore, Kirchhoff index can be thought of as a generalized analogue of the much celebrated algebraic
connectivity of the graph [17, 18], which is measured in terms of the second smallest eigen-value of the
Laplacian i.e. λn−1, or, equivalently, the largest eigen value of L+.

In what follows, we demonstrate how these two metrics indeed reflect robustness of nodes and the overall
graph respectively, first through rigorous mathematical analysis resulting in closed form representations and
then with empirical evaluations over realistic network topologies.

4. Topological Centrality, Random Walks and Electrical Voltages

To show that topological centrality (C∗(i)) indeed captures the overall position of a node, we relate it
to the lengths of random-walks on the graph. In §4.1, we demonstrate how C∗(i) is related to the average
overhead incurred in random detours through node i as a transit vertex. Next in §4.2, we provide an electrical
interpretation for it in terms of voltages and the probability with which a random detour through node i
returns to the source node.

4.1. Detours in Random Walks

A simple random walk (i → j), is a discrete stochastic process that starts at a node i, the source, visits
other nodes in the graph G and stops on reaching the destination j [23]. In contrast, we define a random
detour as:

1In literature, and in particular in [42] (c.f. corollary 2.3), the Kirchhoff index for a network sometimes appears as K(G) =
n Tr(L+), i.e. with a scaling factor of n over what we have defined above in 4. However, in this work, our aim is to use K(G)
as a comparative measure of robustness for two networks of the same order (i.e. same values of n) and volume (as described in
subsequent sections). Therefore, we do away with the constant n from the definition of K(G) for the rest of this work.
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Definition 3. Random Detour (i → k → j): A random walk starting from a source node i, that must visit
a transit node k, before it reaches the destination j and stops.

Effectively, such a random detour is a combination of two simple random walks: (i → k) followed by (k → j).
We quantify the difference between the random detour (i → k → j) and the simple random walk (i → j) in
terms of the number of steps required to complete each of the two processes given by hitting time.

Definition 4. Hitting Time (Hij): The expected number of steps in a random walk starting at node i before
it reaches node j for the first time.

Clearly, Hik + Hkj is the expected number of steps in the random detour (i → k → j). Therefore, the
overhead incurred is:

∆Hi→k→j = Hik + Hkj − Hij (6)

Intuitively, more peripheral transit k is, greater the overhead in (6). The overall peripherality of k is captured
by the following average:

∆H(k) =
1

n2 V ol(G)

n∑

i=1

n∑

j=1

∆Hi→k→j (7)

Alas, hitting time is not a Euclidean distance as Hij 6= Hji in general. An alternative is to use commute
time Cij = Hij + Hji = Cji, a metric, instead. More importantly [26],

Cij = V ol(G)(l+ii + l+jj − l+ij − l+ji) (8)

and in the overhead form (6), (non-metric) hitting and (metric) commute times are in fact equivalent (see
propositions 9 − 58 in [24]):

∆Hi→k→j = (Cik + Ckj − Cij)/2 = ∆Hj→k→i (9)

We now exploit this equivalence to equate the cumulative detour overhead through transit k from (7) to l+kk

in the following theorem.

Theorem 1.

∆H(k) = l+kk (10)

Proof: Using ∆Hi→k→j = (Cik + Ckj − Cij)/2:

∆H(k) =
1

2n2 V ol(G)

n∑

i=1

n∑

j=1

Cik + Ckj − Cij

Observing Cxy = V ol(G) (l+xx + l+yy − 2l+xy) [26] and that L+ is doubly centered (all rows and columns sum
to 0) [19], we obtain the proof.

�

Therefore, a low value of ∆H(k) implies higher C∗(k) and more structurally central node k is in the network.
Theorem 1 is interesting for several reasons. First and foremost, note that:

n∑

j=1

Ckj = V ol(G) (n l+kk + Tr(L+)) (11)

As Tr(L+) is a constant for a given graph and an invariant with respect to the set V (G), we obtain
l+kk ∝

∑n
j=1 Ckj ; lower l+kk or equivalently higher C∗(k), implies shorter average commute times between k

and the rest of the nodes in the graph on an average. Moreover,

K(G) = Tr(L+) =

n∑

k=1

l+kk =
1

2nV ol(G)

n∑

k=1

n∑

j=1

Ckj (12)
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Figure 1: A simple graph G and its EEN.

As K(G) reflects the average commute time between any pair of nodes in the network, it is a measure of
overall connectedness in G. For two networks of the same order (n) and volume (V ol(G)), the one with
lower K(G) is better connected on an average.

4.2. Recurrence, Voltage and Electrical Networks

Interestingly, the detour overhead in (6) is related to recurrence in random walks — the expected number
of times a random walk (i → j) returns to the source i [12]. We now explore how recurrence in detours
related to topological centrality of nodes. But first we need to introduce some terminology.

The equivalent electrical network (EEN) [12] for G(V, E, W ) is formed by replacing an edge eij ∈ E(G)
with a resistor. The resistance of this resistor is equal to w−1

ij (see Fig. 1), where wij is the affinity between
nodes i and j, or equivalently, the weight associated with the edge eij in the graph G. The effective resistance
(Ωij) is defined as the voltage developed across a pair of terminals i and j when a unit current is injected at

i and is extracted from j, or vice versa. In the EEN, let V ij
k be the voltage of node k when a unit current

is injected at i and a unit current is extracted from j. From [40], U ij
k = d(k)V ij

k ; where U ij
k is the expected

number of times a random walk (i → j) visits node k. Substituting k = i we get, U ij
i = d(i)V ij

i ; the expected

number of times a random walk (i → j) returns to the source i. For a finite graph G, U ij
i > 0. The following

theorem connects recurrence to the detour overhead.

Theorem 2.

∆Hi→k→j =
V ol(G) (U ik

i + Ukj
i − U ij

i )

d(i)

= V ol(G) (V ik
i + V kj

i − V ij
i )

Proof: From [40] we have, ∆Hi→k→j = d(i)−1 V ol(G) U jk
i . The rest of this proof follows by proving

U jk
i = U ik

i + Ukj
i − U ij

i .

From the superposition principle of electrical current, we have V xz
x = V xz

y + V zx
y . Therefore,

V ik
i + V kj

i − V ij
i = V ik

j + V ki
j + V kj

i − V ij
k + V ji

k

= V ik
j + (V ki

j + V kj
i − V ij

k − V ji
k )

From the reciprocity principle, V xy
z = V zy

x . Therefore, V ik
i + V kj

i − V ij
i = V jk

i . Multiplying by d(i) on both
sides we obtain the proof.

�

The term (U ik
i + Ukj

i ) − U ij
i can be interpreted as the expected extra number of times a random walk

returns to the source i in the random detour (i → k → j) as compared to the simple random walk (i →
j). Each instance of the random process that returns to the source, must effectively start all over again.
Therefore, more often the walk returns to the source greater the expected number of steps required to
complete the process and less central the transit k is, with respect to the source-destination pair (i, j).
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(a) Partition P = (S, S′) (b) Spn. forest in P = (S, S′)

Figure 2: Partitions and spanning forests of a graph.

Therefore, ∆H(k), that is the average of ∆Hi→k→j over all source destination pairs, tells us the average
increase in recurrence caused by node k in random detours between any source destination pair in the
network. Higher the increase in recurrence, i.e. ∆H(k), lower the magnitude of C∗(k) and less structurally
central the node k is in the network.

5. Connected Bi-Partitions of a Network

Having thus far established that nodes with higher C∗(i), are more structurally central in the network,
we now turn to average connectedness of nodes in this section. To show how structural centralities of nodes
capture their immunity/vulnerability to random failures in the network, we study their connectedness in all
the bi-partitions of a graph.

5.1. Connected Bi-partitions

Definition 5. Bi-partition (P = (S, S′)): A cut of the graph G which contains exactly two mutually exclusive
and exhaustive connected subgraphs S and S′.

Let, V (S) and V (S′) be the mutually exclusive and exhaustive subsets of V (G), E(S) and E(S′), the sets
of edges in the respective components S and S′ of P and E(S, S′), the set of edges that violate P i.e. have
one end in S and the other in S′. Also, let T (S) and T (S′) be the set of spanning trees in the respective
component sets S and S′. We denote by P(G), the set of all bi-partitions of G(V, E). Clearly, a given
P = (S, S′) represents a state of the network in which E(S, S′) have failed. A node i ∈ V (S) stays connected
to |V (S)| − 1 nodes and gets disconnected from |V (S′)| nodes. In the following relationship we show how
topological centrality of node i is related to a weighted sum of |V (S)′| over all the bi-partitions P ∈ P(G)
of the network.

Theorem 3.

l+ii ∝

i∈V (S)∑

P∈P(G)

|T (S)||T (S′)||V (S′)| (13)

Proof sketch: The following result, due to Chebotarev et al. [9, 10], forms the basis of our proof. Let
Fx be the set of spanning rooted forests of G(V, E) with x edges. Precisely, Fx ∈ Fx, is a spanning acyclic
subgraph of G with the same node set as G and is composed of exactly n− x trees with one node marked as
a root in each of these x trees. Let F ii

x , be the subset of Fx in which node i is the root of the tree in which
it belongs. Then,

l+ii =
ε(F ii

n−2) −
1
nε(Fn−2)

ε(Fn−1)
(14)

Here, ε(·) simply represents the cardinality of the input set (see [9, 10] for details). It is easy to see that
ε(Fn−1) = n|T (G)|, as a spanning forest with n − 1 edges is a spanning tree, and each spanning tree has
exactly n possible choices of roots. Also, ε(Fn−2) and ε(Fn−1) are invariants over the set of vertices V (G)
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for a given graph. Hence, l+ii ∝ ε(F ii
n−2). The rest of the proof follows from the results of the following

lemmas:

Lemma 1. Let F ii
n−2|P be the set of spanning forests with n − 2 edges (or exactly two trees) rooted at node

i in a given bi-partition P = (S, S′) and T (S), T (S′) be the set of spanning trees in S and S′ respectively.
If i ∈ V (S) then,

ε(F ii
n−2|P ) = |T (S)| |T (S′)| |V (S′)|

Proof : Let T1 ∈ T (S) and T2 ∈ T (S′). Clearly, |E(T1)| = |V (S)| − 1 and |E(T2)| = |V (S′)| − 1. As
|V (S)| + |V (S′)| = |V (G)| and |E(T1) ∩ E(T2)| = 0, |E(T1) ∪ E(T2)| = |V (S)| − 1 + |V (S′)| − 1 = n − 2.
Each such pair (T1, T2) is a spanning forest of n − 2 edges. Given i is the root of T1 in S, we can choose
|V (S′)| roots for T2 in S′. There being |T (S)| |T (S′)| such pairs: ε(F ii

n−2|P ) = |T (S)| |T (S′)| |V (S′)|.

�

By symmetry, for j ∈ V (S′) :
ε(F jj

n−2|P ) = |T (S)| |T (S′)| |V (S)|

Lemma 2. Given P(G), the set of all bi-partitions of G:

ε(F ii
n−2) =

i∈V (S)∑

P∈P(G)

|T (S)||T (S′)||V (S′)|

Proof: By definition, ∀F ∈ Fn−2, F belongs to exactly one of the partitions of G. Hence, F ii
n−2 =∐

P∈P ε(F ii
n−2|P ). As the RHS is a disjoint union, counting members on both sides we obtain the proof.

�

Evidently, combining the results of the two lemmas above, we obtain the proof for Theorem 3.

�

To paraphrase, given a bi-partition P = (S, S′) ∈ P(G), such that i ∈ V (S) and j ∈ V (S′), Lemma 1
yields: ε(F ii

n−2|P )/ε(F jj
n−2|P ) = |V (S′)|/|V (S)|. Clearly, for a given bi-partition, nodes in the larger of the

two components of P have a lower number of spanning forests rooted at them than those in the smaller
component and vice versa. By extension,

l+ii − l+jj ∝

i∈V (S),j∈V (S′)∑

P∈P(G)

|T (S)||T (S′)|(|V (S′)| − |V (S)|)

can be interpreted as a comparative measure of connectedness of nodes i and j. Note that for P ∈ P(G),
the RHS of (15) is zero when nodes i and j belong to the same component of P or if |V (S)| = |V (S′)| and
positive when i ∈ V (S), j ∈ V (S′) and |V (S′)| > |V (S)| or vice versa. Therefore, a node i with higher
topological centrality stays connected to a greater number of nodes on an average in a disconnected network,
than one with lower topological centrality and is consequently more immune to random edge failures in the
network.

By simple extension, Kirchhoff index represents the average connectedness of all the nodes when a failure
of a subset of edges partitions the network into two halves, thereby truly reflecting overall network robustness.
It is easy to demonstrate that of all trees of order n, the star has the lowest Kirchhoff index and the root of
the star has highest C∗(i) value. Also, amongst all graphs of order n with differing volumes, the completely
connected graph Kn has the lowest Kirchhoff index.
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5.2. A Case Study: When the Graph is a Tree

We now study the special case of trees. Recall, a tree T (V, E) of order n = |V (T )| is a connected acyclic
graph with exactly n − 1 = |E(T )| edges. As each of the n − 1 edges eij ∈ E(T ), upon deletion produces a
unique partition P (S, S′) ∈ P(T ), we conclude that there are exactly n− 1 connected bi-partitions of a tree.
Moreover, the two sub-graphs S and S′ are also trees themselves, such that |T (S)| = |T (S′)| = 1 for any
partition P (S, S′). For the nodes of the tree, we then obtain an elegant closed form for topological centrality
in the following corollary.

Corollary 1.

l+ii =
1

n2

i∈V (S)∑

P∈P(T )

|V (S′)|2 (15)

Proof: The proof follows simply by making the following observations about trees: ε(Fn−1) = n · 1 = n.
Also,

ε(F ii
n−2) =

i∈V (S)∑

P (S,S′)∈P(G)

|V (S′)| (16)

and
ε(Fn−2) =

∑

P (S,S′)∈P(G)

|V (S)||V (S′)| =
∑

P (S,S′)∈P(G)

(n − |V (S′)|)|V (S′)| (17)

Thus substituting these values in (14), we obtain the proof.

�

More importantly, in a tree, the shortest path distance SPD(i, j) and the effective resistance distance
Ωij between the node pair (i, j) is exactly the same i.e.

SPD(i, j) = Ωij = l+ii + l+jj − l+ij − l+ji (18)

The result above is simply due to the fact that a tree is an acyclic graph. It is easy to see that

l+ii =

n∑

j=1

SPD(i, j) − Tr(L+) ⇒ l+ii ∝

n∑

j=1

SPD(i, j) (19)

But the node i∗ ∈ V (T ) for which
∑n

j=1 SPD(i∗, j) is the least, is the so called tree center of T . Thus
the node with the highest topological centrality, is also the tree center if the graph is a tree; a result which
further knits our centrality measure into the broader body of knowledge (c.f. [25]).

6. Empirical Evaluations

In this section, we empirically study the properties of topological centrality (C∗(i)) and Kirchhoff index
(we use K∗ = K−1 henceforth to maintain higher is better). We first show in §6.1, how a rank-order of
nodes in terms of their topological centralities captures their structural roles in the network and then in
§6.2 demonstrate how it, along with Kirchhoff index, is appropriately sensitivity to re-wirings and local
perturbations in the network.

6.1. Identifying Structural Roles of Nodes

Consider the router level topology of the Abilene network (Fig. 3(a)) [1]. At the core of this topology, is
a ring of 11 POP’s, spread across mainland US, through which several networks interconnect. Clearly, the
connectedness of such a network is dependent heavily on the low degree nodes on the ring. For illustration,
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Figure 3: Abilene Network and a simulated topology.

we mimic the Abilene topology, with a simulated network (Fig. 3(b)) which has a 4-node core {v1, ..., v4}
that connects 10 networks through gateway nodes {v5, ..., v14} (Fig.3(b)).

Fig. 4 shows the (max-normalized) values of geodesic closeness (GC), subgraph centrality (SC) and
topological centrality C∗ for the core {v1, ..., v4}, gateway {v5, ..., v14} and other nodes {v15, ..., v65} in topol-
ogy (Fig.3(b)). Notice that v5 and v6, two of the gateway nodes in the topology, have the highest values
of degree in the network i.e. (d(v5) = d(v6) = 10) while v14 has the highest subgraph centrality (SC). In
contrast, C∗(i) ranks the four core nodes higher than all the gateway nodes with v1 at the top. The relative
peripherality of v5, v6 and v14 as compared to the core nodes requires no elaboration. As far as geodesic
centrality (GC) is concerned, it ranks all the nodes in the subnetwork abstracted by v5, namely v15 − v23,
as equals even though v22 and v23 have redundant connectivity to the network through each other and are,
ever so slightly, better connected than the others - a property reflected in their C∗(i) rankings.

We see similar characterization of structural roles of nodes in two real world networks in terms of topo-
logical centrality: the western states power-grid network [41] and a social network of co-authorships [31],
as shown through a color scheme based on C∗(i) values in Fig. 5. Core-nodes connecting different sub-
communities of nodes in both these real world networks are recognized effectively by topological centrality
as being more central (Red end of the spectrum) than several higher degree peripheral nodes.

6.2. Sensitivity to Local Perturbations

An important property of centrality measures is their sensitivity to perturbations in network structure.
Traditionally, structural properties in real world networks have been equated to average statistical properties
like power-law/scale-free degree distributions and rich club connectivity [2, 15, 16]. However, the same degree
sequence D = {d(1) ≥ d(2) ≥ ... ≥ d(n)}, can result in graphs of significantly varying topologies. Let G(D)
be the set of all connected graphs with scaling sequence D. The generalized Randić index R1(G) [6, 37]:

R1(G) =
∑

eij∈E(G)

d(i)d(j) (20)

where G ∈ G(D), is considered to be a measure of overall connectedness of G. Higher R1(G) suggests
that nodes of higher degrees connect with each other with high probability thereby displaying the so-
called rich club connectivity (RCC) in G [27]. Similarly, the average of each centrality/betweenness index
(GC, SC, GB, RB averaged over the set of nodes), is in itself a global structural descriptor for the graph G
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Table 1: Sensitivity to local perturbations, X = 1/n
P

n

i
X(i): Avg. node centrality for a network.

# Structural Descriptor PERT-I PERT-II

1 K∗(G) (or C∗) ↓ ↑

2 R1(G) ↑ ↔

3 GC ↓ ↑

4 SC, GB ↑ ↓

5 RB ↑ ↑

[14]. We now examine the sensitivity of each index with respect to local perturbations in the subnetwork
abstracted by the core node v1 and its two gateway neighbors v5 and v6.

First, we re-wire edges e15,5 and e6,1 to e15,1 and e6,5 respectively (PERT-I Fig. 3(c)). PERT-I is a degree
preserving re-wiring which only alters local connectivities i.e. neither individual node degrees nor average
node degree changes. Fig. 6(a) and (b) respectively show the altered values of centralities (C∗, GC, SC) and
betweennesses, geodesic and random-walk i.e. (GB, RB), after PERT-I. Note, after PERT-I, v15 is directly
connected to v1 which makes C∗(v15) comparable to other gateway nodes while SC(v15), GB(v15), RB(v15)
seem to be entirely unaffected. Moreover, PERT-I also results in v6 losing its direct link to the core, reflected
in the decrease in C∗(v6) and a corresponding increase in C∗(v5). C∗(i), however, still ranks the core nodes
higher than v5 (whereas SC, GB, RB do not) because PERT-I being a local perturbation should not affect
nodes outside the sub-network — v1 continues to abstract the same sub-networks from the rest of the
topology. We, therefore, observe that C∗(i) is appropriately sensitive to the changes in connectedness of
nodes in the event of local perturbations. But what about the network on a whole?

Let G and G1 be the topologies before and after PERT-I. G1 is less well connected overall than G as
the failure of e5,1 in G1 disconnects 19 nodes from the rest of the network as compared to 10 nodes in G.
However,

∆R1(G → G1) =
R1(G1) − R1(G)

R1(G)
= 0.029

as the two highest degree nodes (v5 and v6) are directly connected in G1 (see Table 1 for the sensitivity of
other centrality based global structural descriptors). In contrast, ∆K∗(G → G1) = −0.045, which rightly
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(a) The western-states power grid network [41] (b) A network of co-authorships in network sciences [31]

Figure 5: Real world networks: Red → Turqoise in order of decreasing C∗(i).
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(a) Vis-à-vis centralities (b) Vis-à-vis betweennesses

Figure 6: PERT-I: Max-normalized values of centralities and betweennesses for core, gateway and some other nodes.

reflects the depreciation in overall connectedness after PERT-I (recall K∗(G) = K−1(G). Table 1 shows the
changes in the average of all centrality and betweenness indices post PERT-I.

A subsequent degree preserving perturbation PERT-II of G1, re-wiring e22,23 and e24,25 to e22,25 and
e23,24, to obtain G2, creates two cycles in G2 that safeguard against the failure of edge e5,6. This significantly
improves local connectivities in the sub-network. However, ∆R1(G1 → G2) = 0 (and average SC decreases)
while ∆K∗(G1 → G2) = 0.036 which once again shows the efficacy of Kirchhoff index as a measure of global
connectedness of networks.

7. A Word on Computational Complexity

We now discuss the practical aspects of computing the topological centrality measure for the set of nodes
in the graph representing the complex network. Clearly, it suffices to compute the pseudo-inverse of the
matrix L, the Laplacian, to obtain L+. The most common method for computing the pseudo-inverse of a
matrix mathematically, is to use the singular value decomposition (SVD). Indeed, mathematical software
such as MATLAB, come equipped with subroutines, such as pinv (for pseudo-inverse), which make use of
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the SVD factorization. It is common knowledge that the computational complexity for the SVD method
is, in terms of worst case complexities, O(n3) where n is the number of rows/columns of the matrix. Thus
the base worst case complexity for computing the topological centrality measure is indeed O(n3), where n
is the order of the graph. This worst case complexity is at par with the competitive centrality measures,
like geodesic centrality (GC) and betweenness (GB) (based on shortest paths) as well as subgraph centrality
(SC); and better than the random-walk betweenness (RB) (see Table 2).

However, given that networks abstracted as graphs, are topological objects, exploiting some of the features
of the eigen spaces of L and L+ (as discussed in §3), we can be clever from the computational point of view.
As a full discussion of these computational improvisations is out of the scope of the current work, we refer
the interested reader to [38] where an incremental approach to computing L+ is discussed. For the purposes
of the current work, we confine ourselves to some useful pointers.

Exploiting the fact that λn = 0, the smallest eigen value of L, is unique if the network is connected, it
has been shown in [42] that L+ can be computed by perturbing the matrix L (by adding a constant 1/n
to every element) which yields an invertible full rank matrix. This method, though considerably faster in
practice on MATLAB, still leaves the worst case complexity at O(n3).

Some approximation results are also interesting in their own right. In [19], we find a way of approximating
L+ by using fast converging Monte-Carlo algorithms. Such parallel algorithms exploit the sparsity of real
world networks which in turn makes the Laplacian L a sparse matrix (even though L+ is always full).
However, we observe that from the point of view of computing topological centrality alone (C∗(i)), all we
need is the diagonal of L+. It is known that subsets of inverse for a sparse matrix can be computed to a
given pattern (selective elements), using parallel and multi-frontal approaches (c.f. [8] and the references
therein).

Finally, another interesting result has recently been proposed in [28] that shows that as the density of edges
in the network increases, the hitting time from node i to j can be well approximated as Hij ≈ V ol(G)d(i)−1.
By extension, the commute time becomes

Cij ≈ V ol(G)(d(i)−1 + d(j)−1)

So for dense graphs, we can compute topological centrality for nodes using the node degree distribution alone
(see §4). Most importantly, this result implies that topological centrality, which is a measure of the overall
position and connectedness of a node, is determined entirely by its local connectedness determined by its
degree, a remarkable result indeed.

8. Conclusion and Future Work

In this work, we presented a geometric perspective on robustness in complex networks in terms of the
Moore-Penrose pseudo-inverse of the graph Laplacian. We proposed topological centrality (C∗(i)) and Kirch-
hoff index (K(G)) that respectively reflect the length of the position vector for a node and the overall volume
of the graph embedding and therefore are suitable geometric measures of robustness of individual nodes and
the overall network. Additionally, we provided interpretations for these indices in terms of the overhead
incurred in random detours through a node in question as well as in terms of the recurrence probabilities
and voltage distribution in the EEN corresponding to the network. Both indices reflect the global connect-
edness properties of individual nodes and the network on a whole, particularly in the event of multiple edge
failures that may render the network disconnected. Through numerical analysis on simulated and real world
networks, we demonstrated that C∗(i) captures structural roles played by nodes in networks and, along with
Kirchhoff index, is suitably sensitive to perturbations/re-wirings in the network. In terms of computational
complexity, topological centrality compares well with other geodesic and all-paths based indices in literature
(see Table 2) and performs better than random-walk betweenness in the asymptotic case. In future, we
aim at investigating similar metrics for the case of strongly connected weighted directed graphs to further
generalize our work, a preliminary attempt towards which has already begun in the form of the results in
[5].
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Table 2: Taxonomy and computational complexities of centrality measures (for all nodes).

# Measure Paths covered Complexity

1. Degree - O(m)
2. GC, GB Geodesic paths O(n3)

3. C∗ All paths O(n3)
4. SC All paths O(n3)
5. RB All paths O(m + n)n2

6. FB All paths O(m2n)
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[37] M. Randić. On characterization of molecular branching. J. Amer. Chem. Society, 97:6609–6615, 1975.

[38] G. Ranjan, Z.-L. Zhang, and D. Boley. Incremental computation of pseudo-inverse of Laplacian: Theory
and applications. arXiv:1304.2300, 2013.

[39] K. A. Stephenson and M. Zelen. Rethinking centrality: Methods and examples. Social Networks,
11:1–37, 1989.

[40] P. Tetali. Random walks and effective resistance of networks. Journal of Theoretical Probability, pages
101–109, 1991.

[41] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393:440–442,
1998.

[42] W. Xiao and I. Gutman. Resistance distance and Laplacian spectrum. Theoretical Chemistry Accounts,
110:284–289, 2003.
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