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Abstract
Estimating the number of false negatives for a classifier when
the true outcome of the classification is ascertained only
for a limited number of instances is an important problem,
with a wide range of applications from epidemiology to
computer/network security. The frequently applied method
is random sampling. However, when the target (positive)
class of the classification is rare, which is often the case with
network intrusions and diseases, this simple method results
in excessive sampling. In this paper, we propose an approach
that exploits the cluster structure of the data to significantly
reduce the amount of sampling needed while guaranteeing
an estimation accuracy set forth by the user. The basic
idea is to cluster the data and divide the clusters into a set
of ”strata”, such that the proportion of positive instances
in the stratum is very low, very high or in between. By
taking advantage of the different characteristics of the strata,
more efficient estimation strategies can be applied, thereby
significantly reducing the amount of required sampling. We
also develop a computationally efficient clustering algorithm
– referred to as class-focused partitioning – which uses the
(imperfect) labels predicted by the classifier as additional
guidance. We evaluated our method on the KDDCup
network intrusion data set. Our method achieved better
precision and accuracy with a 5% sample than the best trial
of simple random sampling with 40% samples.
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1 Introduction

Determining the performance of a classifier is an im-
portant and well-studied problem. While a wealth
of metrics (such as precision, recall, F-measure) and
techniques (e.g. bootstrapping, cross-validation, ROC
curves) have been developed [7], most of them require
that the true class labels are known. In many classi-
fication problems, however, establishing the true class
label of all instances is not feasible. In epidemiology,
very reliable classifiers, “gold standard” tests, exist, but
they are so intrusive that their application to the generic
public without “sufficient indication” of the presence of
the disease is deemed unethical and expensive. In case
of network intrusion detection, a security expert (say,
of an enterprise network) serves as a reliable classifier,
who can distinguish malicious traffic behavior (positive
class) from normal traffic behavior (negative class) at

high confidence. However, due to the high traffic vol-
ume, it is unrealistic to expect a security expert to in-
spect every single traffic flow in his/her network.

Instead of the “gold standard” test, a less expensive
but imperfect classifier, such as an epidemiological
screening test or a network intrusion detection system
(IDS), is often employed. Positive outcome of this
imperfect classifier is considered “sufficient indication”
and the true status of these predicted positive instances
are investigated.

The goal of this paper is to develop a method for
evaluating the performance of these imperfect classifiers.
Part of the performance is already known: the true
class label for all predicted positive instances is already
determined. To obtain a full evaluation, however,
one must also determine the number of false negative
instances.

A frequently used method is to draw a sufficiently
large sample of the instances classified as negative, de-
termine the true class label by applying the gold stan-
dard test and compute the proportion of the positive
instances in it [2]. Since in many applications, the pos-
itive class is typically rare (e.g., network intrusions and
‘diseased’ outcomes in a medical screening test), and a
(hopefully) large portion of them has been identified by
the classifiers, only very few positive instances are left
among the (negative) majority of the instances with the
true class label not yet determined. Under these con-
ditions, the sample size required to accurately estimate
the number of false negatives grows excessively large.
We will show later that detecting a certain class of com-
mon intrusions within a modest 20% range of error at
least at 95% probability in the KDD Cup data set which
contains 480,000 instances, would require a sample size
of over 100,000 instances.

In this paper, we present a novel approach based on
stratified sampling that allows for estimating the num-
ber of false negative instances more efficiently, while
guaranteeing that the error stays within bounds speci-
fied by the user. The basic idea is to exploit the inherent



cluster structure of the classification problem and parti-
tion the data into three distinct sets (“strata”) of clus-
ters: (1) Negative stratum that that is hypothesized to
contain clusters with a proportion of false negative (FN)
instance close to (or equal to) 0, (2) Positive stratum
with clusters that are hypothesized to have a FN propor-
tion of close to (or equal to) 1, and (3) Mixed stratum,
containing the remaining clusters. These strata have
different statistical properties which can be exploited
to develop a more efficient sampling scheme. The effi-
ciency of our approach stems from two factors. First,
in case of simple random sampling (SRS), purer clus-
ters have smaller variability in the proportion of FN
instances across possible samples, which translates to
smaller sample sizes. Second, when the Positive and
Negative clusters are indeed close to pure, a more pow-
erful (in the statistical sense) scheme – the geometric
model – can be employed to further reduce the sample
size.

We evaluate our proposed method on a real-world
data set, the KDD Cup intrusion detection dataset.
Our proposed method attains a 4-fold improvement in
precision and accuracy over SRS with a sample size of
200,000 instances. Our method required a sample of
only 25,000 instances.

2 Related Work

In the following, we briefly discuss some of the related
work. A more detailed account can be found in the
technical report version of this paper [6].
Methods of estimation. In epidemiology, the evalua-
tion of new screening tests is a very important problem
[4]. The goal here is to evaluate the performance of an
imperfect screening test without sampling, based on the
predictions of another imperfect classifier. The earliest
methods are based on the capture-recapture model [2].
The capture-recapture model in its original form makes
the assumption that the classifiers to be evaluated are
independent. Although new techniques have been de-
veloped (such as latent class analysis and logistic and
loglinear modeling, it has been proven that the problem
is underdefined [8], and hence not solvable without in-
corporating external information. Mane at al. showed
that even moderate deviations from the independence
assumption can invalidate the estimate [3]. This recog-
nition led to alternative approaches in the epidemiologic
research that utilize multiple tests [8] or two- and multi-
phase studies.In contrast, our proposed method takes a
different approach. The external information we incor-
porate is the cluster structure of the problem and some
limited sampling.
Clustering. Arguably one of the most popular clus-
tering methods is k-means [7]. K-means partitions the

set of objects into k disjoint subsets under the con-
straint that the sum squared error is to be minimized.
Semi-supervised clustering [1], aimed at modeling the
cluster structure of the problem more accurately, allows
the user to specify hints regarding whether two specific
points should belong to the same cluster or not. Our
problem differs from clustering in that we do not need
to discover the true cluster structure of the problem. We
can break clusters into partitions as long as the parti-
tions are pure. While density-based clustering methods
with similar goals exist, their computational complexity
is prohibitively high for our application.
Semi-Supervised Classification (SSC). Semi-
supervised classification [5, 9] is applicable when a large
number of unlabeled instances and only a few labeled
instances exist. However, a key difference is that while
semi-supervised classification aims to label the entire
data set, we only need to estimate the number of FN
instances; we do not need to know which instances are
FN instances.

3 Problem Formulation

We consider a classification problem, where the in-
stances of a population D are classified as having either
positive (+) or negative (−) class label. Our goal is to
evaluate the performance of a classifier T , when the true
labels are not known for all instances. An instance is
predicted positive, if T predicts it to have positive label;
otherwise it is predicted negative.

We have an infallible expert determine the true
label of the predicted positive instances. A predicted
positive instance is true positive (TP) if its true label is
positive, otherwise it is false positive (FP). Analogously,
a predicted negative instance is a false negative(FN)
(resp., true negative) if its true label is positive (resp.,
negative).
Goal. Our goal is to derive an estimate t̂ for the number
of FN instances given the predicted labels and the true
labels for the predicted positive instances such that

Pr
[

|
t̂ − t

t̂
| < ε

]

≥ 1 − α,(3.1)

where ε is the margin of error and α is the significance
level. Both ε and α are specified by the user. In the
experiments, we will use α = 5% and ε = 20%.

One way to estimate t̂ is to use simple random
sampling1(SRS). When the positive class is rare (i.e.,
the number of instances with + true labels is very small
relative to the total size of the dataset), the required
sample size becomes excessively large. In this paper,

1By ”sampling” we mean drawing a sample and having the

expert determine the true class label of the instances in the

sample.



we propose an innovative approach that exploits the
cluster structure underlying the classification problem
to significantly reduce the number of samples that need
to be drawn to attain the user-specified accuracy bound.

4 Proposed Approach

First, the classifier is applied to the data. Next,
the data is clustered into partitions using our class-
focused partitioning technique. It aims to cluster the
data into partitions that are likely pure: either a vast
majority of the predicted negative instances in the group
are positive or negative. Purity, however, cannot be
directly observed, so we heuristically approximate it.
We consider a partition pure if it is tight and observed-
pure. Formal definitions for these properties follow.

Property 1. (Tightness) We call a partition tight,
if for its mean squared error (MSE), MSE < minMSE
holds, where minMSE is a user-defined threshold.

MSE measures the average dissimilarity of the partition
by comparing each instance to the partition mean.
MSE does not penalize large partitions as long as their
instances are sufficiently similar to each other.

Property 2. (Purity) We call a partition pure, if
most (or preferably all) instances share the same mode
of behavior.

From the information we have available, we can not
measure purity. Instead, Observed purity is measured
using the imperfect labels. A partition is observed-
pure if for any of the classifiers TPR > 0 and FPR = 0;
or if TPR = 0 and FPR ≥ 0 2. Observed purity does
not imply purity (i.e. non-observed purity), however
they are correlated.

The Class-Focused Partitioning Algorithm.
The algorithm extends bisecting k-means [7]. Initially,
it considers the entire data set D as one cluster. Then
it iteratively bisects it into two smaller partitions until
a stopping conditions is met. Bisection stops when
(1) The class label of all instances is known or
(2) The partition is observed pure or
(3) Further bisection results in no improvement in terms
of either purity or tightness.

4.1 Outline of the Estimation. Once the parti-
tions are created, we form strata on which our stratified-
sampling-based estimation is carried out. We shall show
that estimation using these strata is correct (i.e. the
estimate satisfies the error bound defined in Equation

2The lack of true and false positive instances can be indicative

of the lack of FN instances

3.1) and more efficient than just applying simple ran-
dom sampling (SRS).

We create 3 strata: (i) Positive, which is relatively
rich in FN instances, (ii) Negative, which contains
relatively few FN instances and (iii) Mixed, containing
the rest of the partitions. The Negative stratum is
assumed to contain no false negative instances, while the
Positive stratum is assumed to contain no true negative
instances.

Then the estimation proceeds as follows. Let t̂
denote the number of FN instances in a stratum.
Since the Negative stratum is assumed to contain no
false negatives, we estimate t̂ = 0. The purpose
of sampling here is to prove that there are not too
many3 false negative instances in the stratum w.r.t.
the predefined error bounds. We employ the geometric
model (described later in Section 4.1.1) to this end. If
we happen to find too many false negatives during the
sampling, then we revert back to SRS in this stratum.
With the Positive stratum, we proceed similarly. This
stratum is assumed to contain only positive instances,
hence t̂ = u, where u denotes the number of instances in
this stratum with unknown true label. Here we employ
the geometric model to prove that indeed there are not
too many true negatives in this stratum. If too many
true negatives are found, the number of FN instances
in this stratum is estimated via SRS. Finally, for the
Mixed stratum, we simply employ SRS.

Our approach is correct in the sense that the
estimate will be within the error bounds. This is
guaranteed for SRS [2]. We only deviate from SRS,
when the stratum is observed-pure. Should we discover
that it is not sufficiently pure, we revert back to
SRS. The worst-case scenario is when the data set
is uninformative, i.e. it does not contain relevant
clusters. Some partitions could appear (by chance) pure
negative, others pure positive. During the application
of the geometric model, we will discover (with 1 − α
probability) that these partitions are not pure and
revert to SRS.

The effectiveness of our approach stems from two
factors. First, when the partitions are observed pure,
the geometric model is applicable4. Second, even when
the partitions are found to be insufficiently pure, the
sample size required to obtain estimates using SRS
decreases with increasing purity within a fixed error
bound. This is demonstrated in the following examples.

3i.e. the error is within the pre-define error at 1−α probability.

In the rest of the paper, we will use “too many” in this sense.
4SRS is not even applicable when the proportion is 0 or 1. The

variance of the estimate becomes 0 and alongside, the sample size

becomes 0, too.
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Figure 1: The minimal
sample size for estimat-
ing within relative error
bounds.
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Figure 2: The minimal
sample size for estimat-
ing within absolute error
bounds.

Example 1 – FN estimation in the popula-
tion. Let us consider a population of 100,000 instances
with unknown labels. The goal is to estimate the π∗

proportion of FN instances within 20% error at 95%
probability. Figure 1 depicts the required sample size
as function of π∗. The results are obtained from simu-
lation: for each π∗ ∈ {1/1000, . . . , 999/1000}, we tested
sample sizes of s ∈{1%,2%,. . . , 99% of the population}.
For each π∗ and for each s, we ran 100 trials and for
each π∗ we determined the smallest s such that at least
95 of 100 trials resulted in an estimate π̂∗ of π∗ within
20% error. Figure 1 depicts this minimal s for each π∗.

Figure 1 shows that the sample size required to
perform estimation increases as the proportion of FN
instances decreases.

�

Example 2 – FN estimation in a stratum. The
proportion π∗ of FN instances in the population is now
fixed. Let π̂∗ be a fixed estimate of π∗. Let the error ǫ
be 20% of π̂∗; ǫ is also fixed.

Next, we divide the FN population into 3 strata.
We distribute the FN instances among these 3 strata
arbitrarily. We will concentrate on one of the 3
strata, which we denote by N . In this example, we
will control the proportion πN of FN instances in N :
πN = 1/1000, 2/1000, . . . , 999/1000. Let us remind the
Reader, that the total number of FN instances is fixed,
we just change their distribution across the 3 strata.

We also need to distribute the error ǫ among the
3 strata. Arbitrarily, let us assign ǫN = .3ǫ. Let us
remind the Reader, that ǫN does not depend on π̂N , it
only depends on the fixed π̂∗. Then Figure 2 depicts the
sample size required to estimate πN within ǫN error at
95% probability. These sample sizes were determined
by simulation identically to Example 1.

Figure 2 shows that the sample size decreases with
increasing purity (i.e. the increasing |.5 − πN |) of
the partition. This observation is contrary to the
observation in Figure 1. The reason lies in the use of

relative error versus absolute error. In Example 1, ǫ was
a relative error, it was a function of π∗, the quantity we
were estimating. In Example 2, ǫN was an absolute
error, it did not depend on π∗

N , the quantity we tried to
estimate.

�

Example 2 demonstrates that partitioning the
data with the goal of creating purer strata has utility.
By discovering pure partitions, we can generate pure
strata, which leads to estimation with small samples.
On the other hand, Example 2 assumes that an
estimate, π̂∗ exists. Although initial estimates can
be obtained, we have to make provisions that these
estimates may be incorrect. Incorrect estimates may
lead to looser error bounds. With this point in mind,
the estimation process will work as follows.

Estimation process.
1. After the discovery of the partitions, the three

strata are formed.
2. An initial estimate of the FN proportion π̂(0)

is computed from the number of True Positive
instances and a small sample drawn from the Mixed
strata. (This estimate can be viewed as π̂∗ in
Example 2.)

3. A sampling plan is created. Given the total allowed
error, the sampling plan determines how much of
the total allowed error is allocated to each stratum
such that the total required sample size is minimal.

4. The sampling plan is executed. The outcome is
an updated (more precise) FN proportion estimate
(π̂(1)) and its achieved error. If the achieved
error is less than maximal allowed error, then the
estimation is complete and the final estimate is π̂(1).
Otherwise, the estimate needs to be refined. A new
total allowed error is computed from π̂(1) and the
process repeats from Step 3.

Once the proportion π̂ of the FN instances is
obtained, computing the number t̂ of FN instances is
trivial.

4.1.1 Estimating π in the three strata. In the
Mixed stratum M, the proportion π̂M of FN instances
is estimated using SRS. SRS is a standard technique,
the Reader is referred to [6] for details.

As discussed before, in the Negative N and the Pos-
itive P strata, we apply the geometric model. For sim-
plicity let us consider the Negative stratum N ; estima-
tion in P works analogously. In N , all instances are
assumed negative. The goal here is to probabilistically
prove, that there are no false negative instances in the
stratum. More precisely, we shall show that if we draw
a sample of size z (as determined by Equation 4.3), and



we find 0 FN instances in that sample, then the esti-
mate t̂N = 0 is correct within an error bound of ǫN at
α probability.

N can contain 2 types of instances with unknown
labels: (i) predicted negatives that are true negatives
and (ii) false negatives that are actually positives. Let
us assume that there are x false negatives instances and
NN − x true negative instances. We need to show, that
if x > NN ǫN , then by drawing a sample of size z, there
will be 0 false negative instances in the sample at most
at probability of α.

(

NN−x

z

)

(

NN

z

) <

(

NN−NN ǫN

z

)

(

NN

z

) < (1 − ǫN )z < α(4.2)

Accordingly, in order to probabilistically show that
there are not too many FN instances in N , we need to
draw a sample of

z ≥
log α

log(1 − ǫN )
(4.3)

instances. We expect to find no FN instances in the
above sample. If we do find FN instances, we can revert
back to SRS.

An analogous estimation can be applied to the P
stratum except we need to find true negatives instead
of false negatives.

Once the Negative and Positive strata are proven
pure or their FN proportions are determined from SRS,
estimating the the total number of FN instances is
straightforward.

5 Evaluation

We evaluated our algorithm on the KDD Cup ’99
Network Intrusion data set. The data set contains
494,021 instances. The instances belong to the normal
class or one of the 20 attack classes. We evaluated a
classifier based on Ripper [7], which classified instances
as scanner or non-scanner. Out of the 20 attack classes,
4 pertain to scanning activity. The total number of
scanning instances is 4,107, which is less than 1% of the
total number of instances. Our scan detector detected
86% of all scans.

Evaluating the Estimates. Let ˆFN denote the
estimate for the number of FN instances; let FN
denote the actual number of FN instances (the amount
we need to estimate); and let E[ ˆFN ] and Var[ ˆFN ]
denote the expected value and variance of the estimate,
respectively. Then we will evaluate the estimates using
the following measures.

Bias = E[ ˆFN ] − FN

Precision = Var[ ˆFN ] = E[( ˆFN − E[ ˆFN ])2]

Accuracy = MSE[ ˆFN ] = E[( ˆFN − FN)2]

Bias shows how far the estimate is from the real
value and it also shows whether the estimate is an
over- or underestimate. Precision is indicative of the
variability in the estimate and accuracy shows how close
the estimate to the real value is in absolute (squared)
terms.

5.1 Estimation via the Proposed Method. We
have compared the performance of our method with
Simple Random Sampling (SRS). We performed 10
trials for each setting. In each trial, we perform the en-
tire estimation process from the partitioning/clustering
to the sampling for estimation. For SRS, the sample
size of 100,000 was selected, because that is the small-
est sample size where the estimates are within the er-
ror bounds with (almost) the required probability (See
Section 5.1.1). For the proposed scheme, we selected
minMSE = .05.

Table 1: Comparison of the proposed scheme with SRS

Method CFP SRS

Esimate

Bias -3.20 2.99

Precision 221.76 1880.80

Accuracy 232.00 1889.80

Lower Qartile 559 549

Median 570 571

Upper Quartile 584 615

Sample Size

Lower Qartile 24,946 100,000

Median 25,457 100,000

Upper Quartile 25,994 100,000

As Table 1 shows, our proposed method has ap-
proximately the same bias as SRS (which is theoreti-
cally unbiased), has an 8.48 times better precision and
8.14 times better accuracy. These results were achieved
using only a quarter of the the sample size that SRS
required.

Before we proceed with analyzing our algorithm
further, let us establish a “baseline” performance using
Simple Random Sampling.

5.1.1 Baseline: Estimation via Simple Random
Sampling (SRS). In this experiment, we took samples
of sizes 10,000, 20,000, . . . , 200,000 and estimated the
number of false negatives from these samples. For each
sample size, the estimation was performed on 100 dif-
ferent samples. Figure 3 depicts the estimates. The 100
results for each sample size (along the horizontal axis)
are represented by a box plot. The top and bottom of
the box denote the upper and lower percentiles and the
middle line corresponds to the median. The whiskers
extend out to the minimal and maximal estimates.
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Figure 4: FN Estimation via
the proposed method.
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Figure 5: Sample Size Re-
quired to Achieve the above
Performance

Strictly speaking, the estimates are within 20%
error at 95% probability only for a sample size of
200,000, but they already get close (within 20% error
at 93% probability) at a sample size of 100,000.

5.1.2 Dependence on minMSE. In this section we
investigate how minMSE affects the estimation. We
ran 10 trials for each of the 6 minMSE values that
span almost 3 orders of magnitude.

Figure 4 displays the obtained results. Each boxplot
corresponds to the 10 trials with a fixed minMSE value.
The estimates are well within the required 20% range.

Due to the guarantees that our sampling scheme
must provide, the parameter minMSE appears to have
little influence over the estimation precision or accuracy.
The difference lies in the sample sizes.

Figure 5 depicts the sample sizes. It shows that
a sweet spot exists, where the required sample size is
stable and minimal. In our technical report [6], we a
describe a method for finding this sweet spot without
drawing a single sample. At the sweet spot, our method
required only 1/8 of the sample size that needed to be
drawn when SRS was used.

6 Summary and Conclusion

In this paper, we considered the problem of estimating
the number of false negative instances in a classification
task where the true label can be ascertained for only a
limited number of instances.

We propose a stratified sampling scheme that ex-
ploits the cluster structure of the problem. Clusters are
discovered and divided into 3 strata. The clusters in dif-
ferent strata have different statistical properties, hence
they give rise to more efficient estimation. Two of the
strata are pure: one consisting of mostly positive in-
stances, the other mostly negative instances. The purer
the strata, the smaller the sample that is required for
estimation within a fix error bound.

We also introduced the class-focused partitioning

algorithm, which facilitates the efficient discovery of
pure clusters. In [6], we have shown that by using
our partitions instead of k-means clusters, not only did
we achieve reductions in sample sizes and shorter run-
times, but also an approximately 5-fold improvement in
estimation precision and accuracy.

Our proposed method (including the class-focused
partitioning) has achieved a 4.15-fold improvement in
precision, a 3.96-fold improvement in accuracy over SRS
with a sample size of 200,000 instances. Our method
required a sample of only 25,000 instances.
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