EXPERIMENTAL STUDY OF ILU PRECONDITIONERS FOR
INDEFINITE MATRICES*

Edmond Chow and Yousef Saad
Department of Computer Science, and
Minnesota Supercomputer Institute
University of Minnesota
Minneapolis, MN 55455

August 3, 1997

Abstract

Incomplete LU factorization preconditioners have been surprisingly successful for many
cases of general nonsymmetric and indefinite matrices. However, their failure rate is still too
high for them to be useful as black-box library software for general matrices. Besides fatal
breakdowns due to zero pivots, the major causes of failure are inaccuracy, and instability of
the triangular solves. When there are small pivots, both these problems can occur, but these
problems can also occur without small pivots. Through examples from actual problems, this
paper shows how these problems evince themselves, how these problems can be detected, and
how these problems can sometimes be circumvented through pivoting, reordering, scaling,
perturbing diagonal elements, and preserving symmetric structure. The goal of this paper
is to gain a better practical understanding of ILU preconditioners and help improve their
reliability.

1 Introduction

The incomplete LU factorization preconditioners were originally developed for M-matrices, for
which properties such as existence and a form of stability can be proved [25] (see also [40]).
However, ILU preconditioners have been successfully applied in much more general situations. In
the general symmetric case, diagonal perturbations of the matrix are required to help guarantee
the existence of a symmetric factorization [23, 24, 27]. These perturbations may be applied before
the factorization, or during the factorization when a small or negative pivot is encountered. In
the nonsymmetric case, there may be another problem: the incomplete factors L and U may
be much worsely conditioned than the original matrix A. A coupled effect is that the long
recurrences associated with solving with these factors are unstable [6, 16]. A remedy is also to
use diagonal perturbations, this time to make the factors diagonally dominant [27, 37, 17], but
the perturbations in this case may need to be very large.

*Work supported in part by the National Science Foundation under grant NSF/CCR-9618827 and in part by
NASA under grant NAG2-904.

EXPERIMENTAL STUDY OF ILU 2

ILU preconditioners have also been applied successfully to indefinite matrices, i.e., matrices
with indefinite symmetric parts. However, the problems described above can be more severe
and more probable:

1. Inaccuracy due to very small pivots. Pivots can be arbitrarily small, and often lead to
unstable and therefore inaccurate factorizations, i.e., the size of the elements in the factors
can grow uncontrollably, and the factorization becomes inaccurate. By accuracy, we mean
the closeness of LU to A. However, some pivots, particularly near the end of a factorization,
may not be used in the factorization, and small values of these pivots have no effect on
the stability of the factorization.

2. Unstable triangular solves. The incomplete factors of an indefinite matrix are often far
from being diagonally dominant, which makes unstable triangular solves more likely. A
sign of unstable triangular solves is when ||L || and ||[U !|| are extremely large while the
off-diagonal entries of L and U are reasonably bounded. If there are very small pivots,
then the triangular solves will be unstable. However, this problem also occurs without the
presence of very small pivots.

In complete LU factorizations, the main difficulty is the first one: small pivots leading to un-
stable and inaccurate factorizations. Large elements in the factors directly impact the backward
error. The common remedy here is to use a pivoting scheme so that the size of the elements in
the factors can be bounded. The second problem of unstable triangular solves is rare for com-
plete factorizations, and thus the problem seems to be related to the effect of dropping nonzeros
in incomplete factorizations.

In contrast, for incomplete factorizations, the first problem is much less severe. The growth
of the elements in the factors depends on how often each element is updated. In incomplete
factorizations, each element is updated far fewer times than in complete factorizations. As long
as extremely small pivots are avoided, the growth of the elements in the incomplete factors is
not a problem. However, triangular solves can be unstable even though a factorization is stable.

There are two other problems that exist for incomplete factorizations which have not yet
been mentioned:

3. Inaccuracy due to dropping. Factorizations are made incomplete by dropping nonzeros to
make the factorization more economical to store, compute, and solve with. Each nonzero
that is dropped contributes to the ‘error’ in the factorization, i.e., contributes to E in the
relation A = LU + E. However, this error is not a very serious problem as long as accuracy
can be improved by allowing more fill-in or using a different dropping scheme or sparsity
pattern. If the inaccuracy is not due to dropping, but is due instead to small pivots and an
unstable factorization, for example, then simply increasing the allowed fill-in will generally
not help.

4. Zero pivots. The pivots of an incomplete factorization can be arbitrarily small, even zero.
The most common cause of zero pivots is an irregular structure or ordering of the matrix,
one that has a null column above or null row to the left of a zero diagonal element. This
is referred to as a structurally zero pivot. When a matrix has zeros on the diagonal, this
problem can be common unless a careful ordering is used. Zero pivots can also be caused

EXPERIMENTAL STUDY OF ILU 3

numerically, i.e., when a nonzero diagonal element becomes zero. Numerically zero pivots
can be caused by very small pivots which cause a row to be ‘swamped out’ by an extremely
large factor of the pivotal row.

The above four problems will often occur together, and one problem may mask another.
For example, a factorization that is initially inaccurate due to dropping can produce small
pivots; these small pivots in turn can make the factorization unstable and even more inaccurate;
the inaccuracy may lead to a small pivot which induces a numerically zero pivot. When the
factorization fails on the zero pivot, none of the preceding problems may have been noticed.

The four problems may also interact in complex ways that are difficult to predict. For
example, by allowing more fill-in to improve the accuracy, the new factorization may happen to
have smaller pivots; this in turn may cause the triangular solves to be unstable.

To try to understand what can happen in an incomplete factorization, a number of statistics
can be monitored. These statistics, shown in Table 1, can be monitored during the course of a
factorization, or after the factorization has been computed.

Statistic Meaning

condest NLU) Te)|eo, e=(1,...,1)7

1/pivot size of reciprocal of the smallest pivot
max(L+U) | size of largest element in L and U factors

Table 1: Statistics that can be used to evaluate an incomplete factorization.

Probably the most useful statistic is ‘condest,” which measures the stability of the triangular
solves. It simply measures ||(LU) e/l where e is the vector of all ones. Note that this statistic
is also a lower bound for ||(LU)™}!||o and indicates a relation between unstable triangular solves
and poorly conditioned L and U factors. We refer to this statistic as the condition estimate of
(LU) L.

The second statistic is needed to help interpret this condition estimate. The condition
estimate will certainly be poor if there are very small pivots. Thus when condest is very large,
it should be compared to the size of the reciprocal of the smallest pivot. If these two quantities
are about the same size, then we assume that ||(LU)™!||» is large due to at least one very small
pivot. If condest is much larger than 1/pivot (e.g., condest greater than the square of 1/pivot)
then we assume that the recurrences associated with the triangular solves are unstable.

The third statistic is the size of the largest element in the L and U factors. A large value
of this statistic in relation to the size of the elements in A indicates an unstable and thus inac-
curate factorization. We will see in the numerical experiments in Section 6 that for incomplete
factorizations, max(L+U) is never large unless 1/pivot is large. In addition, when max(L+U) is
large, it is usually about the same size as 1/pivot (assuming that the maximum entries in A are
0O(1)). Occasionally, we will find very small pivots, but max(L+U) remains small. This occurs
when the small pivot is not used in the factorization.

Usually, these statistics are only meaningful when their values are very large, e.g., on the
order of 10'®. Extremely large values, particularly of the condition estimate, can be used to
predict when the ILU preconditioner will fail. When all three statistics are reasonably small,

EXPERIMENTAL STUDY OF ILU 4

and an ILU preconditioner does not help an iterative method converge, it is our experience that
the cause of failure is inaccuracy due to dropping.

The chart in Figure 1 summarizes some of these statements. Note that there are no cases of
small condest and large 1/pivot. Also, although there may be cases when 1/pivot is very large,
as long as condest is much larger, we will still label this as an unstable triangular solve.

condest
small large
— Inaccuracy unstable
g dueto triangular
dropping solves
fe)
>
o
=
o very
g small
- pivots

Figure 1: How to interpret the statistics.

The results of numerical tests are given in Section 6, and the actual values of these statistics
will be shown and discussed. In the next few sections, we discuss the particular difficulties of
level-based and threshold-based factorizations, and show the relative merits of pivoting, pre-
serving symmetric structure, and shifting or perturbing the diagonal of A to try to make ILU
preconditioners more reliable.

2 Dropping strategies for ILU
The ‘error’ in an incomplete factorization LU of a matrix A is the term FE in
A=LU+ E. (1)

By only dropping small nonzero entries in L and U, the size of the entries in £ can be kept
small. This is important because, for symmetric linear systems, the size of F is very strongly
related to the convergence rate of an ILU-preconditioned iteration [14].

However, for nonsymmetric and for indefinite problems the performance is much less pre-
dictable. The factorization error is important, but just as important is the stability of the
triangular solves, i.e., the norm of the preconditioned error L 'EU ! in the preconditioned
version of (1)

L'AU ' =1+ L'EUL

When A is indefinite or has a large nonsymmetric part, then L= and U~! may have very large
norms, causing ||LEU !|| to be very large.

EXPERIMENTAL STUDY OF ILU 5

For indefinite matrices, the behavior of ILU preconditioners that drop small nonzero entries
predicted by the matrix ‘structure’ and methods that drop based on matrix ‘values’ can be very
different. In particular, the latter methods can be more accurate, but are also more prone to
unstable triangular solves.

2.1 Dropping fill-in based on matrix structure

The original incomplete factorizations were developed for solving finite difference equations
for elliptic partial differential equations. For these problems, the structure of the incomplete
triangular factors was chosen based on the structure of the gridpoint operators [7, 28, 29, 39]
(see also the review [9]) and the resulting structure of the error matrix E. In most cases, the
gridpoint operator was a five-point stencil, and the stencil for the lower (upper) triangular factor
was chosen to have the same pattern as the lower (upper) triangular part of the original stencil.
These stencils are illustrated in Figure 2, along with stencils for the approximation LU and its
error E=A—LU.

S

(@ (b) (©) (d) (€)

Figure 2: Stencils of (a) A4, (b) L, (c) U, (d) LU, (e) A— LU.

To get a more accurate factorization, a larger stencil for the factors can be chosen, for
example, by attempting to reduce the error A — LU. This can be done by considering the
stencil of LU as the new stencil to be approximated [21]. Successively larger stencils for the
lower-triangular factor defined this way are shown in Figure 3.

T 0T

@ (b) (©

Figure 3: Increasingly larger stencils for L.

Incomplete factorizations were named as such when an approximate Gaussian elimination
process was defined that gives sparse factors of any given pattern [25]. This generalized the earlier

EXPERIMENTAL STUDY OF ILU 6

work on stencils to arbitrarily structured M-matrices. Choices of effective sparsity patterns for
the factors were given for five- and seven-point matrices [26]. Note that the sparsity pattern
should include the full diagonal, even if there are zeros on the diagonal, as in the case of some
indefinite matrices.

To get more accurate factorizations for general sparse matrices, the concept of level-of-fill
was introduced [41]. Suppose a matrix A has diagonal elements of size O(e”) and off-diagonal
elements of size O(e'), with e<1, and the exponent on ¢ indicating the level of the nonzero
element. As an incomplete factorization proceeds, an element a;; is updated with an expression
of the form

Q5 = Qj5 — Qi ;-

If lev;; is the current level of element a;j, i # j, then according to the model matrix, the size of
the updated element is approximately

6levij . Elevik % Glevkj’

i.e., roughly the maximum of the two sizes €'®¥ii and €‘®ikT€%;_ This can be used to compute a
level for each element before the actual factorization. By excluding nonzeros in the factorization
that have high level, i.e., that are created by a chain of induced nonzeros, then essentially
small nonzeros are dropped. For five-point matrices, retaining successively higher level elements
gives the same successively more accurate stencils as those in Figure 3. Note that to agree
with the literature, we need to redefine level as one less than what was used above. The ILU(k)
factorization is thus defined as a factorization that retains all elements with level up to k. ILU(0)
retains only the original nonzeros of the matrix.

There is also a characterization of level-of-fill based on the graph of the original matrix [12].
To illustrate this, consider the graph of Figure 4 from [20] and the elimination of the nodes in
the numbered order. In the complete factorization of the associated matrix, there will be a fill-in
between nodes 4 and 6, from the successive eliminations of nodes 1 and 2 [31]. This is because
there exists a path (4, 2, 1, 6) in the graph. The level of the fill-in is one less than the length
of the shortest path between nodes 4 and 6 through the eliminated nodes 1 and 2. In this case,
the level is 2. Assuming that the nodes are eliminated in the natural order, then in general, the
level of element a;; is equal to one less than the length of the shortest path (i,u1,...,un,) in
the original matrix, where the ug, the eliminated nodes, are numbered less than both ¢ and j.
Note the very strong dependence on the order of elimination.

Each new edge in the path corresponds to multiplying by € and inducing a nonzero in the
model matrix. This graph-based characterization can also be used to determine the stencils in
Figure 3. The important nonzeros or edges determined by these structural dropping schemes
are, in some sense, those between nearby nodes.

In practice, any form (order of the loops) of Gaussian elimination may be used to compute an
incomplete factorization. However, the most computationally efficient form is probably the row-
wise or column-wise form. A full-length work vector is used to hold the current row or column
that is being computed, which helps minimize searching for nonzero entries. The ‘submatrix’
form is more expensive to use, but it is more flexible and makes it possible to perform symmetric
pivoting [5, 12]. The ‘bordered’ form will be introduced in Section 4.

EXPERIMENTAL STUDY OF ILU 7

Figure 4: Example graph.

Algorithm 2.1 illustrates the row-wise incomplete factorization of a matrix A. This form is
suitable for sparse matrices stored in row-contiguous data structures. The algorithm computes
computes each row of L and U together, where L is unit lower triangular, and U is upper
triangular. The predetermined sparsity pattern of L + U is S, and w is the full-length work
vector mentioned above.

ALGORITHM 2.1 Row-by-row ILU factorization

1. Fori=1,...,n,do

2. wj = a4, (i,j) €S, w; =0 otherwise
3. Fork=1,...,i—1 and if (i,k) € S, do
4. Wy 1= wk/ukk

5. Forj=k+1,...,n and if (i,5) € S, do
6. Wj 1= Wj — Wik

7. Enddo

8. Enddo

9. lij::wj, j:l,...,i—landliizzl
10. Uij 1= Wj,] =hyeueyN

11. Enddo

2.2 Dropping strategies based on numerical threshold

There are many cases of matrices, particularly non-diagonally dominant and indefinite matrices,
where the model of the matrix for the level-of-fill concept above is inappropriate. For these
matrices, level-of-fill may be less effective at predicting the locations of the largest entries in
the factorization. As an alternative to dropping techniques based on structure, fill-in can be
dropped during the factorization, based on their numerical size [27, 34, 36, 44]. This is a kind
of greedy approach to minimizing E in (1).

Numerical dropping strategies generally yield more accurate factorizations with the same
amount of fill-in than level-of-fill methods. This is true even for some diagonally dominant M-
matrices. In general, ILU based on numerical dropping can solve more problems, and in fewer
steps than ILU based on matrix structure. However, there are some drawbacks which will be
described at the end of this subsection.

EXPERIMENTAL STUDY OF ILU 8

To describe a threshold-based numerical dropping strategy, Figure 5 shows A = LU in the
row-wise computation of row % of the factorization. Rows 1 to ¢ — 1 in L and U have been
completed, and rows ¢ + 1 to the end in A have not yet been accessed. The matrix equation

Al Ao Ly | O Uy U,

rowi \ W y 1 0 z

Figure 5: A = LU in the computation of row 7 of the factorization.

represented by the shaded regions is

A A _ (Lu 0\ (Un U (2)
v w y 1 0 z
which means that y and z (the rows to be computed in L and U) can be determined by first
solving a lower-triangular system
Uhyt =" (3)
and then substituting y into
=W — yUlz. (4)

The simplest way to perform numerical dropping is to drop small entries in y and z after
these vectors are computed. For example, given a parameter droptol, entries in y less than
droptol are set to zero, while entries in z less than z; X droptol are set to zero, where z; is the
first component of the vector z. (A threshold of ||z|| x droptol is often used instead if there is a
danger that z; is very small.)

However, it is also possible to drop small entries in y! during the triangular solve (3).
Algorithm 2.2 shows this operation without dropping. Note that the triangular solve is performed
with saxpy operations because only the columns of U7 are available, and not all columns of U}
may be needed.

ALGORITHM 2.2 Solving Uljy? = vT for the factorization using saxpy operations,
without dropping

yi=v
Fork=1,...,i—1, do
Yk = Yk /Ukk
Forj=k+1,...,i—1,do
Yj = Yj — YrUkj
Enddo
Enddo

NS U =

EXPERIMENTAL STUDY OF ILU 9

To make this algorithm approximate, values of y; less than droptol can be dropped after
Line 3. Then the work in loop 4-6 (i.e., column k of U{}) can be saved. In fact, this type of
dropping introduces less error into the factorization. Consider the factorization

(2 i):(e}b (1)) (8 c—];f/b>' (5)

If e/b is small and is dropped before it is used, then the error E of the factorization is

(oG DG)=o)

If /b is dropped after it is used in the loop 4-6, then the error in the factorization is

(2 ﬁ)_((l) (1)> (8 c_];f/b>:<2 efo/b>'

Surprisingly, this means it can be advantageous to sparsify a matrix (i.e., drop small values)
before starting an incomplete factorization.

Although numerical threshold-based ILU is generally more accurate than level-based ILU,
their differences in behavior with respect to other factors must be considered. For example, by
systematically retaining the largest elements in L and U in threshold-based IL U, the factorization
is more prone to unstable triangular solves, because the off-diagonal elements are generally larger.
The largest (LU)~! condition estimates that we see are those produced by threshold-based ILU
rather than level-based ILU.

An even more serious problem is the erroneously large entries that may have been computed
via a small and inaccurate pivot. In threshold-ILU, these large entries are propagated during
the factorization due to their size. This does not happen when a level-of-fill rule is used.

Practical implementations of threshold-based ILU include an additional parameter besides
droptol called Ifil. This is the maximum number of nonzeros in each row y and z when a row
of the factorization is computed, i.e., the largest Ifil entries are retained in each of y and z.
This implementation is called ILUT (droptol, Ifil) [34]. The Ifil parameter makes the storage
requirements for the preconditioner known beforehand.

However, by limiting the fill-in in each row but not each column, a very nonsymmetric
preconditioner may be produced. Figure 6 illustrates the pattern of a pair of L and U factors
together, for a matrix that has a symmetric pattern. The vertical striping in the Figure is
characteristic of the problem. A consequence is that columns with small elements may never
receive fill-in, and never create fill-in onto a possibly small or zero diagonal element. In Section
4, a bordered form of factorization will be described that circumvents this problem.

A common cause for this problem is the unequal scaling of the rows or columns of a matrix
when there are different types of equations and variables. Thus, when threshold-based ILU
preconditioners are used, it is often recommended that matrices are first scaled so that each
column has unit 2-norm, and then scaled again so that each row has unit 2-norm. However
there are side-effects to this scaling: it may improve the conditioning of the matrix, but it may
increase the degree of non-normality of the matrix.

EXPERIMENTAL STUDY OF ILU 10

1001

150}

200+ L T P

m
ko
- g
A P

ot

L e

250k . L . . ey
0 50 100 150 200 250

Figure 6: Poor ILUT pattern (of L 4+ U).

3 Pivoting for incomplete factorizations

In complete factorizations, pivoting is required for nonsymmetric and indefinite matrices to
prevent excessive growth of the entries of the factors. As mentioned in Section 1, this type
of instability is not a serious problem for incomplete factorizations, and thus pivoting has not
generally been used. However, there still needs to be a mechanism to help avoid zero and
very small pivots. Probably the most popular mechanism is to replace these small pivots by a
larger value, a technique that we discuss in Section 5. However, this technique may cause too
much inaccuracy in the preconditioner, particularly if many replacements need to be made. An
alternative which is particularly suitable for very unstructured matrices with many structurally
zero pivots is to use pivoting.

The simplest way to incorporate pivoting in an incomplete factorization computed row-wise
is to perform column (partial) pivoting. This is because no column data structures are available
for the searching required for row pivoting. In row ¢ of the factorization, after z is computed by
(4), the column with the largest entry in magnitude in z is exchanged with column i. The entry
21, which will be the pivot for that row, is the largest entry in z.

In the implementation of column pivoting, no actual column exchanges are made, and the
new row indices are determined through permutation vectors. The permutation vectors are
updated with each column exchange. This variant of incomplete factorization combined with
the dropping strategy of ILUT is called ILUTP. See [33] for more details.

Unlike the case with complete factorizations, pivoting for incomplete factorizations cannot
guarantee that a nonzero pivot can always be found, i.e., z may be all zero and failures due to
zero pivots can still occur. In fact, a poor pivoting sequence can occasionally trap a factorization
into a zero pivot, even if the factorization would have succeeded without pivoting.

EXPERIMENTAL STUDY OF ILU 11

A tolerance parameter permtol can be included to determine whether or not to perform a
permutation. The largest nondiagonal element a;; that satisfies permtol x|a;;|>|a;;| is permuted
into the diagonal position. This type of parameter is used in sparse direct factorization codes
to balance stability with the preservation of sparsity.

In block incomplete factorizations (BILU), where each entry in Algorithm 2.1 is actually a
small dense block, a form of pivoting is also occurring. When the inverse of ugy, is taken in Line
4 of the Algorithm, it is assumed to be computed with pivoting if necessary. Thus, one way to
deal with zero diagonal entries that might lead to zero pivots is to use blocking: guarantee each
zero diagonal entry is within a small nonsingular block. ILUTP can be used to simulate this
type of pivoting by only searching for pivots within the current block.

The idea of blocking is similar to the idea of diagonal pivoting for complete factorizations of
symmetric indefinite matrices [8, 13], where 2 by 2 pivot blocks are allowed. Here, permutations
are allowed to find a 2 by 2 pivot block that is well conditioned.

4 Preserving symmetric structure for threshold-based ILU

For matrices with symmetric structure, threshold-based ILU will not generally produce L and U
factors that are symmetric to each other, particularly when the [fil parameter is used. However,
the symmetric structure can be preserved with an incomplete form of LDU Gaussian elimination
based on bordering [11, 30, 35]. Let Agi+1 be the (k + 1)-st leading principal submatrix of A
and assume we have the decomposition Ay = L;D;Uy. Then we can compute the factorization

of Ay41 using
Ay v [Ly O D, 0 U 2k
Wg Qg1 ye 1 0 dky1 0 1

in which
z = Dy'Ly'oy (6)
ye = wpUy ' Dyt (7)
dgv1 = opq1 — YeDrzg- (8)

Thus, we obtain each row and column of the factorization by approximately solving two lower
triangular systems and computing a scaled dot product.

The lower triangular systems (6) and (7) are solved the same way as system (3) was solved,
i.e., with numerical dropping. However, in this case, the lower triangular matrices are only
available by rows, not by columns. A companion data structure that gives access to the columns
is needed. For details, see [11], which also describes how sparse approximate solutions to the
triangular systems can be found using approximate inverse techniques.

In order for z; and yi to have the same sparsity pattern, the systems (6) and (7) are solved
simultaneously. Corresponding entries in y;, and z; are both kept or both dropped, to try to
maximize the absolute value of y;Dyz,. Half of the book-keeping for the sparse computations
can be saved because of the symmetric pattern.

There are two advantages to this form of factorization. First, fill-in onto the diagonal is
guaranteed as long as all v, and wy are nonzero. Second, since L; and Uy are available after
step k, a running condition estimate ||(LyUg)™!|lco can be monitored.

EXPERIMENTAL STUDY OF ILU 12

5 Stabilized ILU

One possibility to affront the problem of small pivots is simply to replace them by larger values.
Algorithmically, the new pivots should be chosen large enough to ensure that they do not create
extremely large off-diagonal elements. Small pivots can lead to unstable and inaccurate factor-
izations, and unstable triangular solves. Thus we call such a technique a stabilized incomplete
factorization.

The trade-off is always between stable factorizations and solves, and a factorization that is
accurate or close enough to the original matrix A. It is clear that if the matrix is diagonally
dominant, or well-conditioned, stabilization is not necessary, and any modification to the original
matrix will cause the factorization to be inaccurate. On the other hand, some matrices will give
factorizations that are unstable and therefore inaccurate without stabilization. Stabilization
will help here, but too large a stabilization (e.g., too large a diagonal shift) will again cause the
factorization to be inaccurate. It is obvious that a successful balance between these two may
not always be found, in which case some other technique must be brought into play.

For positive definite matrices, Kershaw [23] suggested replacing negative or zero pivots with
small positive values, and continuing with the factorization. For symmetric incomplete factor-
izations by threshold, Munksgaard [27] proposed the same kind of modification, making the
pivot element comparable to the sum of the magnitudes of the off-diagonal elements in a row.
Manteutffel [24] proposed the factorization of a shifted matrix A + af, and when A is symmet-
ric, proved that there exists a scalar >0 such that the factorization for any sparsity pattern
exists. Robert [32] later extended this result to positive real matrices. Even before incomplete
factorizations were used widely, Jennings and Malik [22] augmented the entries on the diagonal
of a sparsified matrix to guarantee it is positive definite for a complete factorization.

Besides guaranteeing existence, Manteuffel [24] noticed that the shift a that gave the best
convergence of the iterative method was not the smallest one that makes the factorization exist,
but one slightly larger. The shift should make the pivots large enough so that the matrix is not
too poorly conditioned. Van der Vorst [37] found the same result for nonsymmetric matrices,
and suggested modifications to the diagonal to make the resulting factors diagonally dominant.
He called this a ‘stabilized’ incomplete factorization.

In general, a major difficulty is the determination of the threshold value for the pivots, or
the shift a. For irregularly structured symmetric matrices, Saad [35] gave a heuristic formula
for the shift to help ensure that each pivot will be greater than some small positive value.
Numerical experiments for positive definite matrices show that convergence improves sharply as
« is increased toward the optimal «, and then deteriorates slowly [24, 35].

Shifted or stabilized factorizations are not to be confused with modified ILU (MILU) factor-
izations [21] where the row-sum criteria

Ae = LUe, e=(1,1,---,1)T

is satisfied by modifying the diagonal of L or U. For M-matrices, the modification actually
decreases the size of the pivots, making the factorization less stable. Perturbed factorizations
that add a small value to the diagonal opposite in direction to the modification, help guarantee
a bound on the largest eigenvalue of the preconditioned system; see [4, Ch. 10] for a review.

EXPERIMENTAL STUDY OF ILU 13

These methods apply to elliptic problems in one variable, where they lower the order of the
spectral condition number of the preconditioned matrix.

Relaxed ILU (RILU) [2, 3] parameterizes the fraction of the modification to perform, giving it
the same effect as the perturbation. Negative relaxation factors in RILU have a stabilizing effect
for M-matrices. They were used for multigrid smoothing by Wittum [42] in his ILU method.
The diagonal is augmented with § times the sum of the magnitudes of the dropped elements.
ILUgy corresponds to the regular, unmodified factorization, ILU_; corresponds to MILU, and
ILU; corresponds to the modification of Jennings and Malik [22]. For elliptic problems that are
not M-matrices, modification may also have a stabilizing effect if it increases the value on the
diagonal. Elman [17] used this as part of his criteria to modify certain rows and not others, in
his stabilized factorization based on RILU.

Recently, the method of diagonal compensation [1] has been developed for preconditioning
positive definite matrices with incomplete factorizations. Essentially, the SPD matrix is modified
into an M-matrix, for example, by dropping positive off-diagonal elements and adding them to
the diagonal. An ILU factorization computed on this M-matrix (which must exist) is often a
good preconditioner for the original matrix. This can be viewed as another form of stabilization.

Dynamic stabilization strategies

When we focus on nonsymmetric and indefinite problems, negative pivots are acceptable and
even expected. However, shifts such as A + af are inadequate because they may shift the
eigenvalues of A arbitrarily close to the origin; shifts of a may decrease the magnitude of the
pivot. To avoid this, one can use a different shift for each row, computing them dynamically,
during the factorization. The sign of the shift depends on the sign of the pivot. This idea will
be tested in Section 6.

This shift is usually much larger than what is required to plainly avoid very small pivots.
The larger shift has the effect of making the problem much better conditioned. Stabilization
essentially amounts to the factorization of a better conditioned matrix. This is an important
effect of stabilization that was discovered experimentally [24, 37].

For block incomplete factorizations, the pivot is a block. The equivalent of a small pivot in
this case is a block that is very poorly conditioned, with an inverse that has very large entries.
It is possible to perform a shift for a block by shifting its singular values away from zero [43].

Given the singular value decomposition of a block A = UXV7, a shifted inverse

At = vETlUT (9)

can be produced, where ¥ is ¥ with its singular values thresholded by a function of the largest
singular value, such as ao;, where 0 < a < 1 is a parameter. This approximate inverse has
condition number no worse than 1/a.

EXPERIMENTAL STUDY OF ILU 14

6 Numerical experiments

6.1 Test matrices

Test matrices from a wide variety of applications were selected from the Harwell-Boeing, UMF-
PACK, and SPARSKIT collections. Many of these matrices are available from ‘MatrixMarket,’
a repository organized by the National Institute of Standards and Technology.

Results are only shown for test problems that could not be solved using ILU(0) as a pre-
conditioner. For the Harwell-Boeing and UMFPACK collections, when there is a set of related
matrices, only the results for one or two matrices in the set are shown. Some of the test matrices
are small. However, the difficulties that they encounter (e.g., zero pivots) are mostly represen-
tative of those for larger matrices. For large matrices, we expect unstable triangular solves to
be more severe, since there will be longer associated recurrences. We also expect more problems
which fail to converge due to insufficient amounts of fill-in to achieve an accurate factorization.

In the Harwell-Boeing collection, the RUA (real, unsymmetric, assembled) matrices were
tested with ILU(0) preconditioning. Of the 97 problems, 35 were successfully solved, 56 failed
due to zero pivots, and 5 did not converge. There were a large number of failures due to zero
pivots because of the large number of very unstructured matrices in the collection.

Besides this breadth of test problems, we also examined in depth a set of test problems
in SPARSKIT from the solution of the incompressible Navier-Stokes equations. We generated
this test set with the FIDAP fluid dynamics analysis package [18, 19]. The example problems
provided by FIDAP were solved using the fully-coupled solution method, and we extracted
the first linear systems in the nonlinear iterations. The incompressibility condition gives these
matrices zeros on their diagonals. The FIDAP matrices have a symmetric pattern.

Besides poor orderings that give structurally zero pivots, poor orderings can also give sin-
gular leading principal submatrices. We have found this to be common in the FIDAP test
matrices. Leading principal submatrices that are singular often end with zero diagonal elements
(suggesting that the equation that sets the absolute pressure was at the end). Matrices with
this ordering cannot be factored exactly, but approximate factorizations are often useful. Nev-
ertheless, singular leading principal blocks run the risk of producing very small or zero pivots,
especially when the amount of fill-in is increased. (The direct solver in FIDAP does not perform
pivoting, but replaces zero and small pivots with the ‘clipping constant,” which has default value
1078).

The matrices are listed in Table 2, along with a description, their sizes, and their number
of nonzero entries. All the matrices were scaled so that their columns have unit two-norms,
and then scaled again so that their rows have unit two-norms. The importance of scaling was
discussed in Section 2. Scaling also normalizes the statistics presented in Section 1.

In the numerical tests in the following subsections, the iterative method used to solve these
problems was right-preconditioned GMRES restarted every 50 steps. When no right-hand side
was provided, a vector of all ones was used. The iterations began with a zero initial guess and
were stopped when the exact residual norm was reduced by 8 orders of magnitude, or when 500
steps were taken. The latter case is indicated by a dagger (1) in the following Tables.

6.2 Experiments with level-based ILU

EXPERIMENTAL STUDY OF ILU 15

We begin by showing how the statistics presented in Table 1 can be used to determine what
difficulties are arising when an incomplete factorization fails. Table 3 lists problems that could
not be solved using ILU(0) as a preconditioner, along with their values of the statistics, and
the causes of failure as classified by Figure 1 and the comments in Section 1. We considered
‘condest’ to be large when it was larger than 10'°, and used this value to classify the failures.
(The value of the statistics is ‘Inf” when a zero pivot was encountered, and the cause of failure
is understood to be a zero pivot.)

Note that ‘condest’ can be very large; a value of 1 obviously indicates a factorization
that is useless. Also, the factorization is always stable unless there is a very small pivot (i.e.,
max(L+U) is never large unless 1/pivot is large). When max(L+U) is large, it is usually about
the same size as 1/pivot. There are no cases where max(L+U) is large but ‘condest’ is small.

About half of the failures in Table 3 were due to structurally zero pivots (FIDAP024 was the
only case of a numerically zero pivot). These mostly correspond to very unstructured matrices,
such as problem ‘lhr(01’ whose nonzero pattern is shown in Figure 7. Reordering and partial
pivoting will be used to try to remedy the problem of structurally zero pivots. Failures due to
small pivots or unstable triangular solves can be avoided to some extent by using pivoting, as
discussed in Section 3, or by using a stabilization as discussed in Section 5.

Six failures were classified as due to ‘inaccuracy’ due to dropping. For these problems,
we checked whether or not allowing more fill-in would help solve these problems. The results
are shown in Table 4. Only UTM5940 could not be solved with ILU with level as high as 2.
The values of the statistics did not increase dramatically, i.e., no other effects seemed to come
into play. In the case of FIDAP006, there was one very small pivot (1071%) at the end of the
factorization, but all other pivots were greater than 102 in magnitude. Increasing the fill-in for
the other problems (with failures not classified as ‘inaccuracy’) will not generally help, unless
large amounts of fill-in is used.

096

6.3 Experiments with threshold-based ILU with pivoting

To remedy the problem of structurally zero pivots, we use partial pivoting. Table 5 shows the
results using ILUTP. We used a permutation tolerance permtol of 1, meaning that whenever
an off-diagonal element is larger than the diagonal element, a permutation occurs. Fill-in was
controlled using Ifil set to 30, i.e., 30 nonzeros in each row of L and U was allowed. This relatively
large value of Ifil helps ensure that nonzero pivots can be found.

The results show that there are only two cases where a nonzero pivot could not be found,
whereas there were 19 cases of zero pivots with ILU(0). In the 17 cases that pivoting helped, all
problems except three could now be solved. This suggests that ILU(0) had failed on problems
due to structurally zero pivots, which were otherwise fairly easy to solve.

Pivoting can also to some extent help avoid very small pivots and enhance the stability of
the triangular solves. To illustrate this, in Table 6 we show the same experiment with ILUTP
as above, but use a smaller permtol of 0.01. (We do not use a permtol of 0 since this result with
no pivoting is extremely poor, i.e., ILUT performs very poorly on this test set without pivoting
due to the problems discussed in section 2.2.) There are four more failures, and the results
here are poorer. There are three interesting cases: GEMAT11, WIGT0966, and FIDAPMO03.
These problems failed due to unstable triangular solves with permtol of 0.01, but were solved

EXPERIMENTAL STUDY OF ILU 16

successfully when permtol of 1 was used.

There are cases, with both values of permtol, where ILUTP encountered a zero pivot while
no zero pivots were encountered with ILU(0). Thus it is not rare for ILUTP to produce a poor
pivoting sequence.

We emphasize that the matrices were scaled as described in section 2.2. There were many
zero pivots and extremely large values of condest when scaling was not used.

6.4 Experiments with ILUTS and reordering

ILUT in bordered or ‘skyline’ form (ILUTS) was tested on the FIDAP matrices, since these
matrices have symmetric structure. However, it is difficult to perform pivoting on matrices
stored in bordered form. Thus some sort of preordering must be used instead.

For the FIDAP matrices, there is an obvious reordering that that may give a good fac-
torization. In the original matrices, the unknowns were ordered element by element, with the
continuity equations ordered last for each element. A better ordering is to order the continuity
equations at the end of all other equations for all elements. This ordering gives a zero block in
the lower right-hand corner of the matrix, and we call this a block reordering (the matrix is a 2
by 2 block matrix). This ordering ensures that there are no structurally zero pivots.

Table 7 shows the results of ILUTS using this reordering. The fill-in was controlled to be
not more than the fill-in for ILU(0). For comparison, we show in Table 8 the results of ILU(0)
and ILUT, all with comparable amounts of fill-in. ILUTS was the most reliable preconditioner.
When the block reordering is used, none of the preconditioners encountered zero pivots, and all
values of 1/pivot are less than 10® (not shown). The results without this reordering are very
poor for ILUTS; for ILUT, all the failures shown for the original ordering were due to zero
pivots.

If we increase the amount of fill-in but do not use this reordering, ILU(1), for example, can
only help solve 3 FIDAP problems. However, if the block reordering is used, ILU(1) helps solve
all the problems (not shown). Also as fill-in is increased, the results of ILUT and ILUTS become
very similar (not shown).

6.5 Experiments with stabilized ILU

Stabilization can be an effective option when ‘condest’ is large, or there are small pivots. We
tested the problems in Table 2 with a stabilized version of ILUT. Pivots whose absolute value
were smaller than a parameter thresh were replaced by thresh with the original sign of the pivot.
This worked very well for the FIDAP matrices. For the very unstructured matrices, this strategy
did not help. Pivoting is a better solution for this latter class of matrices.

Table 9 shows the result for the FIDAP matrices of ILUT with [fil parameter 30, and thresh
set to 0.5 (i.e., 1/pivtol < 2), a relatively large value. As mentioned, this shift is usually much
larger than what is suggested in the literature to plainly avoid very small pivots. The larger
shift has the effect of making the problem much better conditioned. Without the shift, we could
only solve problems FIDAP006, FIDAPM02, and FIDAPMO0S.

In Table 10(a) we perform a parameter study of the effect of changing thresh for the
WIGTO0966 problem. Pointwise ILU(0) was used, with GMRES(100) and a tolerance of 10~.

EXPERIMENTAL STUDY OF ILU 17

As thresh is increased, condest decreases. This was always true in our experiments. However,
the best threshold balances the accuracy of the factorization and the stability of the triangular
solves.

The WIGTO966 matrix comes from an Euler model of an airfoil with four degrees of freedom
at each grid point. Thus we can use block ILU with a block size of 4, and illustrate the use of
a block shift (9). Table 10(b) shows the results. Here, thresh is the ratio of the largest singular
value to the smallest in (9). Our experiments with other problems generally show that when
shifting is successful, it does not matter if a pointwise or block shift is used.

6.6 Harder problems

There are several problems in Table 2 for which we have not yet presented a successful solution
method. Consider first the matrix ‘lhr01.” ILU(0) and ILUTP both encounter zero pivots when
trying to approximately factor this matrix. Figure 7 shows its nonzero pattern, and Figure 8
is a close-up of the top-left 100 x 300 block. For rows 25 to 60, there are not many choices for
good pivots, when column pivoting is used. However, there may be many good choices of pivots
if row pivoting is used. Thus we used a column-wise ILU algorithm with row pivoting (actually,
we only computed the ILU factors of the transposed matrix data structure), and no zero pivots
were encountered. Table 11 shows the problem was solved in 134 steps. By not applying these
algorithms blindly, for example, by looking at the structure of the matrix in this case, we were
able to make ILU work.

)\, X
200 %i . B

L . i

=
a
400+ % . \ |
~ %\\ >~ 0
sool N Vo]
: i: \\
N N N
]] \
800} “u v
NN E \
b \k\\\
1000+ .= = N
NN \
N N \
1200} N \\,
N
1400 %3; : |
\\i) NN

0 200 400 600 800 1000 1200 1400

Figure 7: Nonzero pattern for ‘lhr01.’

Another problem for which we had difficulty was GRE1107. ILUTP(30) with permtol 1.0
suggests that the difficulty is inaccuracy, and we start from there. We increased Ifil to 50,
but the GMRES solver was still stagnating. By looking at the convergence history, Figure 9,

EXPERIMENTAL STUDY OF ILU 18

O
20
40
601

L1] —

100
0

I I I I I
50 100 150 200 250 300

Figure 8: Nonzero pattern for ‘lhr01,” top-left 100 x 300 block.

convergence is steady until GMRES restarts at step 50. However, GMRES will converge in 94
steps if we do not restart (we tried GMRES(100)). In this case, we were able to make ILU work
by being aware that the Krylov subspace basis needed to be larger. (There was no convergence
with ILUTP(30) and GMRES(100).)

10° .

GMRES(50)

10 &

residual norm

| i GMRES(100)

| | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
step number

Figure 9: Convergence history for GRE1107.

We also could not solve UTM5940, this time due to inaccuracy in ILU(0) or unstable solves
in ILUTP. For this problem, we know that zero pivots are not encountered with the original
ordering, so we tried ILUT(30) without pivoting. The failure in this case could be classified as
inaccuracy due to dropping, i.e., it was the pivoting that made the solves unstable in this case.
Next we tried increasing [fil to 50, and the solution was found in 399 steps. The contributor
of this matrix, Peter Brown, had found that reordering this matrix with reverse Cuthill-McKee
(RCM) ordering makes ILU more effective. The solution, keeping all other parameters the same,
was found in 37 steps in this case. In general, reordering has a large effect on the accuracy of
ILU preconditioners [14, 15].

Consider now LNS3937. If no pivoting is used, the problem is small pivots. We thresholded
the pivots for ILU(30). This decreases condest and helps the residual be reduced further, but
there is still no convergence. By increasing amount of fill-in with the thresholding also does not
help convergence.

Our experience with NNC1374 is somewhat different. If ILUT with or without pivoting is

EXPERIMENTAL STUDY OF ILU 19

used, the solves are unstable, probably due to the problems discussed in section 2.2. Only very
large values of the thresh stabilization parameter can reduce condest a significant amount. Thus
we go back to ILU(0), which had failed due to small pivots. We try thresholding the pivots in
this case, but this did not help. By increasing the amount of fill-in at the same time, the solves
became unstable.

There are several problems, such as the above two, that are very difficult to solve by using
ILU preconditioners. A third problem, ‘shyy41,” is even difficult to solve with direct solvers:
the factorization is stable, but the triangular solves are very unstable. This matrix contains
an independent diagonal block that is a 5-point matrix with a zero diagonal. Solves with the
factors of this block are very unstable.

6.7 Block ILU preconditioners

Many linear systems from engineering applications arise from the discretization of coupled par-
tial differential equations. A blocking in these systems may be imposed by ordering together
the equations and unknowns at a single grid point. Experimental tests suggest it is very ad-
vantageous for preconditionings to exploit this block structure in a matrix. In block incomplete
factorizations (BILU), each entry in Algorithm 2.1 is actually a small dense block. Dropping
of the blocks can be based on the block level (BILUK) or the Frobenius norm of the block
(BILUT).

PULLIAM1 and BBMAT are two matrices with block structure. We will briefly compare
BILUK and BILUT, and show the effect of increasing the block size. Figure 10 shows ‘condest’
for BILUT(Ifil) applied to PULLIAM1, with blocksize 8 (Ifil now refers to the number of blocks
in a block row). The shape of this graph is typical: as fill-in is increased, the triangular solves
become more unstable, until the factorization approaches that of a direct solve. For low amounts
of fill-in, there are not enough nonzeros to make very large values of ‘condest.’” BILUK(0)
corresponds to [fil of approximately 4. BILUT is successful in this case for Ifil approximately
23. Van der Vorst [38] briefly investigated the effect that increasing fill-in has on stability in the
nonsymmetric case. His conclusion also was that increasing the accuracy does not seem to help,
unless of course, the accuracy approaches that of a direct solve.

Table 12(a) shows ‘condest’ for BILUK applied to the PULLIAM1 problem. The values are
much smaller. This suggests that threshold-based incomplete factorizations are much more prone
to unstable triangular solves than level-based ones. An alternative when an threshold-based ILU
is unstable is to use a level-based factorization. Table 12(b) shows the number of GMRES steps
required to solve the PULLIAM1 problem. Table 13(a) shows the number of GMRES steps
required to solve the BBMAT problem, along with timings on a Cray-C90 computer. Note that
block size 16 is fastest, even though the factorization requires 50 percent more storage than
block size 8 (due to some explicit storage of zeros; see Table 13(b)), partially due to better
vectorization. The storage for a direct solver is approximately 36.0 million nonzero entries.

7 Conclusions

It is clear that the blind application of incomplete factorizations will be unsuccessful for many
problems. However, by being attentive to the characteristics of a problem and the difficulties

EXPERIMENTAL STUDY OF ILU 20

120

log10(condest)

35

Ifil

Figure 10: Plot of condest for BILUT(Ifil) for the PULLIAM1 problem. The blocksize used was
8.

it encounters, incomplete factorizations can be made effective. For example, problem ‘lThr(1’
encountered structurally zero pivots even when column pivoting was used. After looking at the
structure of the matrix, we were able to solve the problem by using row pivoting. Poor orderings
and scalings are other characteristics of matrices that can cause difficulties.

We presented several statistics that can help determine the causes of failure of incomplete
factorizations. These statistics measure obvious quantities: the stability of the triangular solves,
the smallest pivots, and the stability of the factorization.

The occurrence of zero pivots is very common in very unstructured problems. Partial pivoting
is very effective in remedying this problem. Thresholding small and zero pivots is a less effective
solution when the matrix is very unstructured. However, large values of the threshold (i.e., of
the stabilization, or perturbation to the pivot) has another, more important effect: it makes the
L and U factors better conditioned. This is an important effect, even if the problem can be
solved with ILU(0).

The most difficult problems to solve were those with unstable triangular solves that were not
caused by very small pivots. The (LU) ! condition estimate can be reduced by thresholding the
pivots, but very large thresholds are required. This destroys the accuracy of the factorization,
and usually, increasing the fill-in is done in vain. For these problems, the last resort seems to be
to use very large amounts of fill-in [10], for example, as we did for the PULLIAM1 and BBMAT
problems.

General-purpose software for incomplete factorizations should include options for pivoting
and perturbing pivots. The latter should be a particularly simple addition to any incomplete
factorization code. The difficulty is determining when these options should be used, and the
values for their parameters. The statistics introduced in this paper can be used to determine
what difficulties are occurring, and to guide the selection of parameters or variants of incomplete
factorizations. The hope is that for a class of problems, one can find a strategy or set of
parameters that is effective for all problems in that class.

EXPERIMENTAL STUDY OF ILU 21

Acknowledgements The authors wish to thank the people who have contributed test matrices,
directed us to papers, and made very useful comments during this work, particularly Andrew
Chapman, Laura C. Dutto, Vahé Haroutunian, Isaac Hasbani, Michael A. Heroux, Xiaoye S. Li,
Thomas H. Pulliam, and Barry Rackner. Computer facilities for this research were provided by
both the Minnesota Supercomputer Institute and SGI/Cray Research.

EXPERIMENTAL STUDY OF ILU

22

Selected matrices from the Harwell-Boeing collection

matrix n nnz | description

BP0 822 3276 | Basis matrix from the simplex method

BP1000 822 4841 | Basis matrix from the simplex method

FS7603 760 5976 | Chemical kinetics, 38 species

GEMATI11 4929 33185 | Optimal power flow problem

GRE1107 1107 5664 | Simulation of computer systems

IMPCOLD 425 1339 | Chemical engineering model

LNS3937 3937 25407 | Compressible Navier-Stokes

NNC1374 1374 8606 | Nuclear reactor core model

ORANI6T8 2529 90158 | Economic model of Australia

PSMIGR1 3140 543162 | Demography application

SHL400 663 1712 | Basis matrix from the simplex method

STR600 363 3279 | Basis matrix from the simplex method

WEST0381 381 2157 | Chemical engineering plant model

WEST2021 2021 7353 | Chemical engineering plant model
Selected matrices from the UMFPACK collection

matrix n nnz | description

goodwin 7320 | 324784 | CFD finite element matrix (Goodwin)

lhr01 1477 18592 | Chemical process simulation (Mallya)

radfrl 1048 13299 | Chemical process separation (Zitney)

shyy41 4720 20042 | Fully-coupled Navier-Stokes (Shyy)

BBMAT 38744 | 1771722 | N-S model of airfoil, ARC2D (Simon)
Selected matrices from the SPARSKIT collection

matrix n nnz | description

PULLIAM1 | 17028 400896 | Euler model of airfoil, ARC2D, M = 0.8 (Pulliam)

UTM5940 5940 83842 | Tokamak simulation (Brown)

WATSON5 1853 10847 | Circuit simulation (Watson)

WIGTO966 | 3864 | 238252 | Finite volume model of fluid flow (Wigton)

FIDAP006 1651 49533 | Die-swell problem

FIDAP014 3251 66775 | Isothermal seepage flow

FIDAP024 2283 48737 | Unsymmetric forward roll coating

FIDAP032 1159 11343 | Radiation heat transfer, open channel

FIDAPMO02 537 19241 | 3-D steady Couette flow

FIDAPMO03 2532 50380 | Flow past a cylinder in freestream, Re = 40

FIDAPMO07 2065 53533 | Natural convection in a square enclosure

FIDAPMO08 3876 103076 | Developing flow, vertical channel

FIDAPMO09 4683 95053 | Jet impingment cooling, Re = 100

FIDAPM10 3046 53842 | 2-D flow over multiple steps in a channel

FIDAPM13 3549 71975 | Axisymmetric poppet valve

FIDAPM15 9287 98519 | Spin up of a liquid in an annulus

FIDAPM33 2353 23765 | Radiation heat transfer in a square cavity

Table 2: Test matrices. These problems could not be solved using ILU(0) as a preconditioner.

EXPERIMENTAL STUDY OF ILU 23

matrix max(L+U) | 1/pivot condest | reason for failure
BP0 Inf Inf Inf

BP1000 Inf Inf Inf

FS7603 3.19e+02 9.53e+02 | 9.07e+03 | inaccuracy
GEMATI11 Inf Inf Inf

GRE1107 2.20e+06 2.81e+06 | 1.85e+96 | unstable solve
IMPCOLD Inf Inf Inf

LNS3937 4.17e+11 6.36e+11 | 3.82e+13 | small pivot
NNC1374 4.58e+08 5.27e+08 | 2.38e+10 | small pivot
ORANI678 Inf Inf Inf

PSMIGR1 Inf Inf Inf

SHL400 Inf Inf Inf

STR600 Inf Inf Inf

WEST0381 Inf Inf Inf

WEST2021 Inf Inf Inf

goodwin 5.82e+05 | 3.63e+04 | 1.47e+06 | inaccuracy
Ihr01 Inf Inf Inf

radfrl Inf Inf Inf

shyy41 Inf Inf Inf

BBMAT 2.39e+06 2.00e+06 | 6.32e+52 | unstable solve
PULLIAM1 Inf Inf Inf

UTM5940 1.01e+03 2.21e+03 | 1.68e+04 | inaccuracy
WATSON5 1.89e+00 | 5.63e+14 | 6.63e+15 | small pivot
WIGTO966 3.42e+04 1.20e+04 | 2.11e+12 | unstable solve
FIDAPO006 1.46e+01 1.61e+01 | 4.91e+04 | inaccuracy
FIDAP014 4.02e+03 9.98e+03 | 2.26e+20 | unstable solve

FIDAP024 Inf Inf Inf (numerically zero pivot)
FIDAP032 Inf Inf Inf

FIDAPMO02 1.36e+4-02 3.80e+02 | 2.34e+04 | inaccuracy

FIDAPMO3 Inf Inf Inf

FIDAPMO7 2.81e+03 7.29¢+03 | 5.60e+13 | unstable solve
FIDAPMOS8 1.52e+01 2.81e+01 | 1.03e+03 | inaccuracy
FIDAPMO09 1.21e+05 2.91e+05 | 1.38e+22 | unstable solve
FIDAPM10 4.68e+27 7.05e+27 | 2.84e+31 | small pivot
FIDAPM13 2.42e+27 | 3.47e+27 | 2.96e+27 | small pivot
FIDAPM15 Inf Inf Inf
FIDAPM33 Inf Inf Inf

Table 3: Problems that could not be solved with ILU(0), and corresponding statistics and
possible reasons for failure.

EXPERIMENTAL STUDY OF ILU

24

matrix method | max(L+U) | 1/pivot condest | steps
FS7603 ILU(1) | 2.36e+03 | 1.56e+03 | 1.59e+06 84
goodwin ILU(2) 1.26e+05 | 9.63e+04 | 2.91e4+06 | 417
UTMb5940 ILU(2) 3.63e+02 7.12e4+02 | 8.61le+04 T
FIDAP006 ILU(1) 2.22e4-01 2.81le+14 | 9.52e+14 49
FIDAPMO02 | ILU(1) 3.85e+01 1.04e+03 | 5.42e+02 19
FIDAPMO08 | ILU(1) 1.91e+01 1.67e+01 | 3.99¢+02 178

Table 4: Increasing the level-of-fill for problems classified as failed due to inaccuracy from
dropping. The Table shows the statistics and the number of GMRES steps for convergence.

EXPERIMENTAL STUDY OF ILU

25

matrix max(L+U) | 1/pivot condest steps | reason for failure
BP0 1.45e+02 | 2.44e+02 | 1.13e+04 3

BP1000 2.26e+01 | 1.30e+03 | 5.31e+03 13

FS7603 7.89¢+02 | 8.63e+02 | 1.07e+10 t inaccuracy
GEMAT11 4.99e+02 | 1.09e4+03 | 8.20e+04 25

GRE1107 9.63e+00 | 2.97e+01 | 1.18e+04 t inaccuracy
IMPCOLD 2.25e+00 | 7.81e+00 | 3.16e+02 2

LNS3937 1.72e+09 | 1.14e+09 | 2.55e+19 t unstable solve
NNC1374 1.49e+09 1.67e+10 | 5.19e+172 t unstable solve
ORANI678 6.37e+00 | 1.70e+01 | 7.66e+01 8

PSMIGRI1 7.58e+00 | 2.81e+01 | 3.98e+03 9

SHL400 3.28e+01 | 2.56e+03 | 5.83e+05 3

STR600 3.60e+01 | 4.95e+01 | 4.96e+03 4

WEST0381 2.26e+01 3.41e+01 2.04e+402 11

WEST2021 1.27e4+05 | 2.19e4+05 | 1.17e+07 8

goodwin 1.55e+02 | 2.09e4+07 | 3.37e+70 t unstable solve
lhr01 Inf Inf Inf 1 zero pivot
radfrl 1.83e4+01 | 1.90e4+01 | 2.29e4-04 25

shyy41 2.07e+01 | 1.06e+37 | 1.35e+37 t small pivot
BBMAT 6.25e+16 1.49e+09 | 1.83e+177 t unstable solve
PULLIAM1 1.02e+03 | 2.26e+16 | 1.16e+209 t unstable solve
UTM5940 7.63e+01 1.80e+05 | 3.81e+32 1 unstable solve
WATSONS 6.98e+02 | 1.69e+05 | 7.21e+04 8

WIGTO966 | 4.84e+00 | 3.91e+00 | 9.98e+03 247

FIDAP006 8.27e+00 | 3.70e+02 | 8.83e+03 26

FIDAP014 9.10e+02 | 2.77e+04 | 2.05e+64 T unstable solve
FIDAP024 4.29¢+00 | 4.84e+00 | 1.06e+03 20

FIDAP032 2.27e+00 7.43e+01 | 3.21e+03 6

FIDAPMO02 | 3.87e+01 | 5.34e+01 | 6.04e+04 141

FIDAPMO03 | 8.21e+00 | 8.97e+00 | 4.32e+02 30

FIDAPMO7 1.14e+03 | 5.76e+04 | 3.24e+28 t unstable solve
FIDAPMO08 | 3.27e+00 | 1.58e+01 | 8.39e+05 24

FIDAPMO09 Inf Inf Inf t zero pivot
FIDAPM10 | 4.23e+00 | 1.78e+02 | 3.63e+04 25

FIDAPM13 9.87e+01 8.22e+02 | 3.37e+06 T inaccuracy
FIDAPM15 | 4.93e+00 | 9.53e+00 | 1.06e+07 60

FIDAPM33 | 8.83e+00 | 1.22e+01 | 1.35e+04 4

Table 5: Results for ILUTP (Ifil=30, permtol=1.00) for problems that failed with ILU(0). The
statistics are shown along with the number of GMRES steps required for convergence, or the

possible reason for failure.

EXPERIMENTAL STUDY OF ILU 26

matrix max(L+U) | 1/pivot condest steps | reason for failure
BP0 1.45e+02 | 2.44e+02 | 1.13e+04 3

BP1000 6.12e+02 1.40e+03 | 2.29e+05 32

FS7603 1.76e+03 1.87e+03 | 2.32e+07 195

GEMATI11 9.15e+03 2.85e+04 | 7.49e+14 unstable solve
GRE1107 1.17e+03 1.88¢+06 | 1.78e+34 unstable solve
IMPCOLD 5.92e+02 1.08e+02 | 4.53e+04

LNS3937 Inf Inf Inf Zero pivot
NNC1374 5.7le+10 9.59e+09 | 5.75e+250 unstable solve
ORANI678 Inf Inf Inf zero pivot
PSMIGR1 6.11e+00 | 4.71e+02 | 3.95e+03

SHL400 3.28e+01 2.56e+03 | 5.83e+05

STR600 2.54e+02 | 9.99e+01 | 5.11e+03

WEST0381 2.55e+03 2.49e+02 | 2.48e+05
WEST2021 1.93e+07 1.93e4+07 | 3.86e+06

goodwin 1.64e+04 | 1.47e4+04 | 3.88e+42 unstable solve
lhr01 Inf Inf Inf Zero pivot
radfrl 9.10e+04 | 2.56e+02 | 2.44e+4-06

shyy41 9.98e+01 | 3.55e+36 | 4.94e+42 small pivot
BBMAT 7.60e+19 2.60e+10 | 1.37e+474 unstable solve

PULLIAM1 6.39e+05 1.04e+12 | 3.80e+374
UTM5940 4.14e+02 1.87e+03 | 2.02e+07
WATSONS 1.38e+03 5.65e+04 | 3.32e+4-04
WIGTO966 2.25e+03 2.58e+02 | 2.23e+12
FIDAP006 1.26e+02 5.11e+13 | 1.6%e+14
FIDAP014 Inf Inf Inf
FIDAP024 8.97e+01 1.73e+02 | 4.34e+05
FIDAP032 2.72e+00 1.18e+01 | 3.21e+03
FIDAPMO02 3.85e+01 1.04e+03 | 2.97e+02
FIDAPMO3 1.83e+02 1.52e+02 | 4.82e+17
FIDAPMO7 4.49e+03 2.99e+05 | 5.14e+35
FIDAPMO08 2.84e+-01 1.62e4+01 | 2.27e+06
FIDAPMO09 1.04e+03 1.27e+22 | 1.51e+314
FIDAPM10 2.29e+01 4.27e+01 | 1.82e+04
FIDAPM13 1.39e+02 | 4.09e4+02 | 2.81e+25
FIDAPM15 Inf Inf Inf
FIDAPM33 6.17e+02 1.33e+02 | 3.73e+18

unstable solve
inaccuracy

unstable solve

Zero pivot

unstable solve
unstable solve

unstable solve

unstable solve
zero pivot

Table 6: Results for ILUTP (Ifil=30, permtol=0.01) for problems that failed with ILU(0). The
statistics are shown along with the number of GMRES steps required for convergence, or the
possible reason for failure. The results are slightly worse than when permtol=1.00.

EXPERIMENTAL STUDY OF ILU

27

matrix max(L+U) | 1/pivot condest | steps
FIDAP006 4.19e+01 6.31e+01 | 0.56e+04 | 251
FIDAP014 2.40e+03 2.27e+06 | 0.30e+09 t
FIDAP024 4.25e4-00 9.74e+00 | 0.17e+03 168
FIDAP032 2.95e+00 6.76e+00 | 0.47e+02 t
FIDAPMO02 1.10e+4-01 5.32e+02 | 0.93e+03 102
FIDAPMO3 1.79e+-01 2.47e+01 | 0.47e+03 57
FIDAPMO7 | 2.34e+04 7.17e+05 | 0.16e+06 t
FIDAPMO08 | 4.94e+00 9.43e+00 | 0.95e+03 | 262
FIDAPMO09 2.48e+02 5.99e+02 | 0.53e+04 t
FIDAPMI10 1.08e+01 1.57e4+01 | 0.33e+03 140
FIDAPM13 3.76e+02 5.63e+02 | 0.29e+05 79
FIDAPM15 1.34e+401 3.25e+01 | 0.34e+05 t
FIDAPM33 9.46e+00 2.50e+01 | 0.83e+03 24

Table 7: ILUT in bordered form with fill-in comparable to ILU(0)
with continuity equations last (block reordering).

. The matrices were reordered

ILU(0) | ILUT | ILUT | ILUTS
reord orig | reord reord
matrix
FIDAPO006 T 345 T 251
FIDAP014 1 t t t
FIDAP024 T T T 168
FIDAP(032 245 T 274 T
FIDAPMO02 219 49 t 102
FIDAPMO03 119 T 153 57
FIDAPMOQ7 T T T T
FIDAPMO08 t 189 t 262
FIDAPMO09 T T T T
FIDAPM10 236 T 225 140
FIDAPM13 150 T 448 79
FIDAPM15 T T T T
FIDAPM33 25 T 38 24
total
successes 6 3 5 8

Table 8: Number of steps for convergence with the use of various preconditionings, all with
comparable fill-in; original ordering (orig) and block reordering (reord).

EXPERIMENTAL STUDY OF ILU 28

matrix max(L+U) | condest | steps
FIDAP006 2.30e+00 4.47e+02 46
FIDAP014 1.15e+00 1.74e+01 t
FIDAP024 2.85e+00 1.14e+4-02 33
FIDAPO032 1.98e+00 1.98e+02 30
FIDAPMO02 1.02e+400 5.60e+01 85
FIDAPMO03 1.06e+4-01 2.35e+02 88
FIDAPMOQ7 1.50e4-00 2.12e+02 474
FIDAPMO08 2.96e+00 3.88e+02 247
FIDAPMO09 1.47e+4-00 9.26e+17 t
FIDAPM10 1.52e+01 1.14e+403 50
FIDAPM13 2.36e+00 4.57e+02 486
FIDAPM15 9.06e+00 6.81e+02 T
FIDAPM33 1.35e+4-01 5.20e+03 24

Table 9: Results for stabilized ILUT, [fil = 30, thresh = 0.5

thresh | condest | steps

0. 2.19e+17 T thresh | condest | steps
0.001 4.63e+17 t 0. 1.51e+08 t
0.002 1.75e+09 t 0.001 7.22e+09 t
0.003 1.04e+06 73 0.01 5.30e+05 72
0.004 | 9.84e+03 90 0.1 7.24e+04 43
0.005 7.42e+03 84 0.5 1.16e+03 | 177
0.01 1.85e+4-03 90 1.0 4.25e+-02 T
0.1 2.64e+02 | t

(b) Block ILU(0)
(a) Pointwise ILU(0)

Table 10: Stablized ILU(0), (a) pointwise, and (b) block versions, for the WIGT0966 problem.

matrix method max(L+U) | 1/pivot condest | steps
ThrO1(t) ILUTP(30) | 4.58¢+03 | 9.68¢+09 | 3.4de+11 | 134
GRE1107(f) | ILUT(50) | 1.57e+01 | 3.40e+01 | 1.43e+04 | 94
UTM5940 ILUT(50) 2.23e+03 | 7.20e+02 | 5.24e4+06 | 399
UTM5940(r) | ILUT(50) 1.37e4+02 | 7.06e+02 | 5.56e4+06 | 37

Table 11: Solution of some harder problems. Notes: (t) transposed data structure and ILUTP
with permtol=1; (f) full GMRES was used; (r) reordered with RCM.

EXPERIMENTAL STUDY OF ILU 29

block BILUK level block | BILUK level

size 0 1 2 size 0 1 2

4 9.74e+16 | 4.89e+11 | 4.94e+13 4 T 1 T

8 2.64e+10 | 4.25e+09 | 1.03e+09 8 148 | 61 | 42

16 4.51e+09 | 2.18e+09 | 1.90e+09 16 147 | 39 | 40
(a) condest (b) GMRES steps

Table 12: BILUK preconditioning for the PULLIAMI1 problem. GMRES(100) was used to
reduce the residual norm by 1076,

block | GMRES CPU time (5) bsli‘;zk OBILUlK fovel
size steps precon | solve | total

1 1.8 5.7 | 114
4 f 2911 f f 4 |33] 85130

8 56 61.1 | 162.6 | 223.8 ’ ' ’
16 51 28.1 70.9 99.0 8 4.2 9.7 142
- - - 16 7.6 | 14.2 | 219
(a) Timings on one processor of a Cray-C90 (b) Number of scalar

nonzeros for BILUK, in
millions

Table 13: BILUK preconditioning for the BBMAT problem.

EXPERIMENTAL STUDY OF ILU 30

References

[1]

[2]

3]

[4]
[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

O. Axelsson and L. Yu. Kolotilina. Diagonally compensated reduction and related precon-
ditioning methods. Num. Lin. Alg. Appl., 1, 1995.

O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning
methods. Numer. Math., 48:479-498, 1986.

0. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate
gradient method. Numer. Math., 48:499-523, 1986.

Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994.

E. F. F. Botta, A. van der Ploeg, and F. W. Wubs. Nested grids ilu-decomposition (ngilu).
J. Comp. Appl. Math., 66:515-526, 1996.

A. M. Bruaset, A. Tveito, and R. Winther. On the stability of relaxed incomplete LU
factorizations. Math. Comp., 54:701-719, 1990.

N. I. Buleev. A numerical method for the solution of two-dimensional and three-dimensional
equations of diffusion. Math. Sb., 51:227-238, 1960. English transl.: Rep. BNL-TR-551,
Brookhaven National Laboratory, Upton, New York, 1973.

J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving
symmetric linear systems. Math. Comp., 31:162-179, 1977.

T. F. Chan and H. A. Van der Vorst. Approximate and incomplete factorizations. Technical
Report 871, Department of Mathematics, University of Utrecht, 1994.

A. Chapman, Y. Saad, and L. Wigton. High-order ILU preconditioners for CFD prob-
lems. Technical Report UMSI 96/14, Minnesota Supercomputer Institute, University of
Minnesota, Minneapolis, Minnesota, 1996.

E. Chow and Y. Saad. ILUS: an incomplete LU factorization for matrices in sparse skyline
format. Intl. J. Num. Meth. Fluids, 24, 1997.

E. F. D’Azevdo, P. A. Forsyth, and W.-P. Tang. Towards a cost-effective ILU preconditioner
with high level fill. BIT, 32:442-463, 1992.

I. S. Duff, N. I. M. Gould, J. K. Reid, and J. A. Scott. The factorization of sparse indefinite
matrices. IMA J. Num. Anal., 11:181-204, 1991.

I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients.
BIT, 29:635-657, 1989.

L. C. Dutto. The effect of ordering on preconditioned GMRES algorithms, for solving the
compressible Navier-Stokes equations. Int. J. Numer. Methods Engrg., 36:457-497, 1993.

H. C. Elman. A stability analysis of incomplete LU factorizations. Math. Comp., 47:191—
217, 1986.

EXPERIMENTAL STUDY OF ILU 31

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

H. C. Elman. Relaxed and stabilized incomplete factorizations for non-self-adjoint linear
systems. BIT, 29:890-915, 1989.

M. Engelman. FIDAP: Ezxamples Manual, Revision 6.0. Fluid Dynamics International,
Evanston, IL, 1991.

M. S. Engelman and I. Hasbani. Matrix-free solution algorithms in a finite element context.
Technical Report 88-1, Fluid Dynamics International, Evanston, Illinois, 1988.

Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

I. Gustafsson. A class of first-order factorization methods. BIT, 18:142-156, 1978.

A. Jennings and G. M. Malik. Partial elimination. J. Inst. Maths Applics, 20:307-316,
1977.

D. S. Kershaw. The incomplete Cholesky—conjugate gradient method for the iterative
solution of systems of linear equations. J. Comput. Phys., 26:43-65, 1978.

T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems.
Math. Comp., 34:473-497, 1980.

J. A. Meijerink and H. A. Van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31(137):148-162,
1977.

J. A. Meijerink and H. A. Van der Vorst. Guidelines for the usage of incomplete de-
compositions in solving sets of linear equations as they occur in practical problems. J.
Computational Physics, 44(1):134-155, 1981.

N. Munksgaard. Solving sparse symmetric sets of linear equations by preconditioned con-
jugate gradients. ACM Trans. Math. Softw., 6:206-219, 1980.

T. A. Oliphant. An implicit numerical method for solving two-dimensional time-dependent
diffusion problems. Quart. Appl. Math., 19:221-229, 1961.

T. A. Oliphant. An extrapolation process for solving linear systems. Quart. Appl. Math.,
20:257-267, 1962.

J. M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems. Plenum
Press, New York, 1988.

S. V. Parter. The use of linear graphs in Gauss elimination. SIAM Rewv., 3:119-130, 1961.

Y. Robert. Regular incomplete factorizations of real positive definite matrices. Lin. Alg.
Appl., 48:105-117, 1982.

Y. Saad. Preconditioning techniques for indefinite and nonsymmetric linear systems. J.
Comp. Appl. Math., 24:89-105, 1988.

EXPERIMENTAL STUDY OF ILU 32

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

Y. Saad. ILUT: A dual threshold incomplete ILU factorization. Num. Lin. Alg. Appl.,
1:387-402, 1994.

Y. Saad. Preconditioned Krylov subspace methods for CFD applications. In W. G. Habashi,
editor, Proceedings of the International Workshop on Solution Techniques for Large-Scale
CFD Problems, pages 179-195, Montréal, Québec, 1994.

O. Osterby and Z. Zlatev. Direct Methods for Sparse Matrices, volume 157 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1983.

H. A. Van der Vorst. Iterative solution methods for certain sparse linear systems with a
non-symmetric matrix arising from PDE-problems. J. Computational Physics, 44(1):1-19,
1981.

H. A. Van der Vorst. Stabilized incomplete LU-decompositions as preconditionings for
the Tchebycheff iteration. In D. J. Evans, editor, Preconditioning methods: Analysis and
Applications, New York, 1983. Gordon and Breach.

R. S. Varga. Factorization and normalized iterative methods. In R. E. Langer, editor,
Boundary Problems in Differential Equations, pages 121-142, Santa Barbara, California,
1960. University of Wisconsin Press.

R. S. Varga, E. B. Saff, and V. Mehrman. Incomplete factorizations of matrices and con-
nections with h-matrices. SIAM J. Numer. Anal., 17:787-793, 1980.

J. W. Watts-III. A conjugate gradient truncated direct method for the iterative solution of
the reservoir simulation pressure equation. Soc. Pet. Eng. J., 21:345-353, 1981.

G. Wittum. On the robustness of ILU-smoothing. SIAM J. Sci. Statist. Comput., 10:699—
717, 1989.

A. Yu. Yeremin. Private communication, 1995.

7. Zlatev, V. A. Barker, and P. G. Thomsen. SLEST: A Fortran IV subroutine for solving
sparse systems of linear equations. User’s guide. Technical Report NI-78-01, Numerisk
Institut, Lyngby, Denmark, 1978.

