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Abstract

We introduce block versions of the multi-elimination incomplete LU (ILUM) fac-
torization preconditioning technique for solving general sparse unstructured linear sys-
tems. These preconditioners have a multi-level structure and exhibit properties that
are typically enjoyed by multigrid methods. Several heuristic strategies for forming
blocks of independent set are introduced and their relative merits are discussed. Ad-
vantages of block ILUM over point ILUM include increased robustness and efficiency.
We compare several versions of the block ILUM, point ILUM and the dual-threshold-
based ILUT preconditioners. In particular, the ILUM preconditioned Krylov subspace
solver is tested for some convection-diffusion problems to show convergence that is near
Reynolds number independent and near grid independent.
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1 Introduction

In this paper, we consider the problem of developing efficient preconditioners for solving
general large sparse linear systems of the form

Au=b, (1)
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where A is an n X n matrix that is assumed to be unstructured. Efficient iterative solvers
for solving such large problems consist of a combination of an accelerator and a good
preconditioner [35]. It is generally recognized that the key to solving a general sparse
linear system efficiently by iterative methods is a high quality preconditioner. With a
suitable preconditioner, the accelerator plays a secondary role.

The incomplete LU (ILU) factorization with no fill-in, or ILU(0) [26], is one of the
best known preconditioners. A disadvantage of ILU(0) is that it is a rather crude approx-
imation of A and therefore it is unreliable when used to solve large problems arising from
certain applications, such as computational fluid dynamics. To improve the efficiency and
robustness of ILU factorizations, many alternatives which allow higher amounts of fill-in
have been developed [10, 11, 21, 27, 37, 41].

The implementation of ILU(0) and other ILU preconditioners on high performance
computers can be optimized by a technique called “level scheduling” or “wavefront order-
ing” [1]. However, the parallelism that can be extracted by level-scheduling techniques is
limited. The more accurate ILU factorizations are generally more robust than ILU(0) but
their level of parallelism is generally worse. Different alternatives have been considered in
the past to improve the degree of parallelism, see for example [35, 36, 30| for references. A
particularly interesting group of methods in this category introduce parallelism by exploit-
ing “graph coloring,” or multicoloring [24, 33]. The unknowns of the problem are colored
in such a way that no two unknowns of the same color are coupled by an equation. When
the unknowns of the same color are numbered consecutively, then a large degree of par-
allelism is usually obtained in both the preprocessing and the preconditioning operations
of the associated ILU preconditioning. One notable drawback of this approach is that
the efficiency of the preconditioning deteriorates and as a result the number of iterations
to achieve convergence may increase substantially, when compared with that required for
the original system [16, 18, 19]. Recently, a technique based on exploiting the idea of
successive independent sets (a simple form of multicoloring) [25] has been used to develop
preconditioners that are akin to multi-level preconditioners [33, 34]. This technique called
ILU with Multi-elimination (ILUM) is somewhat related to multifrontal elimination, a
standard method used in the parallel solution of sparse linear systems by direct methods
13, 14].

Block versions of ILUM preconditioner are attractive because block ILU precondi-
tioners usually perform better than their point counterparts. In particular, the point
ILUM factorization may have difficulties when the diagonal elements of the resulting U
factor are small. The problem is not as severe in a block version because of the additional
freedom in selecting blocks. Block approaches are also preferred when the matrix has
natural blocks that are inherited from the underlying physical problem. In this paper, we
introduce some block versions of ILUM, which we call BILUM, to distinguish it to from the
already discussed point ILUM preconditioner, or ILUM. BILUM is aimed at alleviating
the above shortcomings of ILUM.

Block versions of ILUM have already been suggested (but not implemented) along
with point ILUM in [34]. The idea of using pre-selected blocks to deal with convection-
diffusion problems, such as the line relaxation methods, has been known for many years.



The use of pre-selected small blocks for diagonal pivoting method was introduced in [6]
and the definition of a pivot was extended to 2 X 2 blocks when choosing a 1 X 1 pivot
on the diagonal is no longer stable due to large off-diagonal elements. Such techniques
were incorporated in ILU-type preconditioners and tested by Botta and Wubs [5]. In their
approach for solving convection-diffusion equations, they select block pivots (defined from
pairs of indices) on the basis of the dominant flow direction (similar to the well-known line
iteration methods). These pairs are maintained during the whole process. In other words,
the blocks are pre-determined by using physical information before the construction of
the preconditioner. The use of small blocks constructed dynamically for general sparse
matrices does not seem to have been investigated.

In Section 2 some background on ILUM is given. In Section 3, we discuss several
heuristic techniques to form independent sets with k& x k blocks. A detailed discussion is
given for 2 x 2 blocks, with a straightforward extension to larger blocks. Section 4 briefly
introduces the construction of ILUM preconditioners. Section 5 is a study of the properties
of block independent sets. Extensive numerical experiments with different variants of
ILUM and the existing ILUT preconditioners, including comparisons of various blocking
strategies, are included in Section 6. Concluding remarks are given in Section 7.

2 Background and ILUM

ILUM relies on the fact that many rows can be eliminated simultaneously at a given stage
of Gaussian elimination, a consequence of sparsity. A set consisting of such rows is called
an independent set. This is a set of unknowns that are not coupled by an equation. A
Mazimal Independent Set (MIS) is an independent set which cannot be augmented by
one or more elements. These concepts are best described using graph terminology. Let
G = (V, E) denote the adjacency graph of the matrix A, where V' = {v1,v2,...,v,} is the
set of vertices and E is the set of edges, and let (v;,v;) denote an edge from vertex v; to
vj.

Definition 2.1 A verter independent set S is a subset of the vertex set V such that
Yo €8, V’Uj €S, (Ui,’Uj) ¢ E

An independent set S is mazimal if there is no independent set which strictly includes S,
i.e., for anyv € V, SU{v} is not an independent set.

In the remainder of the paper, we will often use the term independent set to mean
Mazximal Independent Set. The unknowns associated with an independent set can easily
be eliminated (in parallel) and yield another sparse linear system. The basic idea is to
find such a set and then to eliminate the unknowns associated with it to obtain a smaller
reduced system. The process may be combined with a dropping strategy to reduce fill-in
and it is repeated a few times until the final reduced system is easily solvable. In [34],
several heuristic algorithms have been suggested to find Maximal Independent Sets.

If we reorder the original linear system with an ordering in which the unknowns

associated with the independent set are listed first, we obtain a linear system which has



the following block form
D F
A~ 2
( E C ) ’ @)

where D is a diagonal matrix. The reduced system is the Schur complement with respect
to C' as
A =C—-ED'F. (3)

Since D is diagonal, A; is still a sparse matrix in general. The same process may be ap-
plied recursively a few times to the consecutive reduced systems, such as A;, until the last
reduced system is small enough and can be solved by a direct or iterative solver. In ILUM,
the reduction process is performed approximately. Standard threshold strategies are em-
ployed to control the sparsity of the L and U factors. One reason for studying this type of
preconditioners is that they have a far better parallelism than the traditional incomplete
LU factorization type preconditioners. Similar preconditioners have been designed and
tested to show the property of near grid-independent convergence in [4].

There are two main reasons to seek block generalizations of ILUM. First, the diag-
onal elements in D may be close to zero at each reduction step. The resulting reduced
systems may be poor and this may lead to inaccurate LU factors. Using blocks instead of
single elements will lead to a better control of near-singularity. Second, there are many
applications leading to matrices with a fairly large number of nonzero elements per row.
In these situations, it is common that the size of the independent set is small. It seems
natural to group nodes in clusters of highly coupled subsets of nodes to reduce the size of
the vertex-cover (a complement of an independent set is called a vertex cover).

3 Block Independent Sets

We first introduce a few straightforward generalizations of maximal independent sets.
Consider a collection of non-empty subsets

Bj = {vj,vj,...,vj,} #0
of the vertex set V which are disjoint exclusive, i.e., such that
BjﬂBz':(b, lf ]752

Recall that a quotient graph, is a graph whose vertices are the subsets B;,7 = 1,...,m, see
[20, p. 105]. It is defined by coalescing all the nodes in each subset B; into a super-vertez
and defining an edge from any super-vertex B; to another super-vertex B; if there is an
edge from a vertex in B; to a vertex in By, i.e.,

B; —>Bj if Ak € B;, 3 kj € Bj such that Ok; k; 750 .
A block-independent set is simply an independent set on this quotient graph.

Definition 3.1 Let By, Bo,..., B, be a collection of mutually exclusive nonempty subsets
of V. The set S = {B1, Bs,...,B,,} is said to be a block independent set if any two distinct
subsets Bj and By, in S are not adjacent in the quotient graph.
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It is not necessary that By, Bs,..., B, have same cardinality (size). However, for
simplicity, we will deal mostly with subsets of constant cardinality k£ in this paper. We
will then use the subscript k& for S to denote the cardinality of uniform blocks. Given
this assumption, Definition (2.1) is a special case of Definition (3.1) with ¥ = 1. In the
sequel, we may use point version and block version of size 1 interchangeably. A useful and
convenient independent set may consist of the union of S7 and S with some k£ > 1. Other
combination seems to need special treatments that are beyond the scope of the current
paper.

Matrices which arise in certain applications have a natural block structure, in which
the blocks are small dense matrices, typically of the same size. In such cases, it is natural
to use this blocking for defining a block version of ILUM. However, an additional blocking,
based on the graph in which each node now represents a physical point, may be mandatory
to obtain good performance. The blocking strategies referred to in this paper are related
to this graph, or mesh, and are therefore in addition to the original blocking that may be
naturally available.

Heuristic algorithms for finding point independent sets have been discussed in [34] and
been successfully utilized with ILUM to develop parallelizable preconditioners for solving
general sparse matrices. Based on the strategies of [34], we introduce some heuristic
algorithms for finding block independent set from a given matrix. The algorithms are
described with k = 2, but generalization to other block size is straightforward.

3.1 Blocking Strategies for Independent Sets of Size 2

Blocks of size 2 will be found by strategies for coupling a given node j with one of its nearest
neighbors. Suppose the jth row of the matrix has nonzero elements a; ;,,a; j,,---,a;j,-
One way to find this coupling is to examine the absolute value of a;;.,1 <14 < q,7; # 7,
which determines the strength of the link from node j to node j;. A potential benefit
of BILUM is that it can handle small or even zero diagonals. The natural choice is the
strongest link, i.e., the element with the largest absolute value. In doing so, we will have
a 2 x 2 submatrix (after permutation) of the form

o Qi1
2,3 7,3+ ] (4)
Aj+1,j Gj+1,5+1

Notice that in contrast with ILUM small diagonal elements do not necessarily cause diffi-
culties. Even though a;; or a;;1,; may be small, both singular values of the above matrix
can be away from zero provided the co-diagonal elements are not small. This will lead to
a stable inversion of the above matrix. In the following description adj(j) denotes the set
of all nearest neighbors of node j, i.e., all vertices [ such that a;; # 0.

Algorithm 3.2 Greedy algorithm for blocking elements by strongest links.

1. Set m =0.
2. Forj=1,2,...,n, Do:
3. If node j is not marked, then



4 m:=m+1, B, = {j}

5. Choose s € adj(j) such that |a;;| = max{|a;;|, ¢ € adj(j)}
6. B, = B U {s}

7. Mark j and all nodes in adj(j).

8. Endlf

9. EndDo.

The output of the algorithm is a block-independent set Sy = {Bj, Ba,..., By} in which
each supervertex is a set consisting of two nodes. Clearly, other criteria than the one in
Line 5 may be used to select the vertex s to add to j to form a set B,,. For example,
weakest links may be explored instead of strongest links. We will consider some of these
options and study them experimentally. One alternative that is of interest is to use criteria
based on the degree of a node. Recall that the degree of a vertex j, deg(j), is equal to
the total number of edges that are adjacent to j. If 77 is the maximum degree of all the
vertices that constitute Si, then a lower bound for the size of S; is given by [34]

n
Syl > _.
|”—1+n

(5)

This suggests that it may be a good idea to visit the nodes with the smallest degrees first
[34] to form independent sets of size 1. This observation also suggests pairing the current
node with the vertex among its nearest neighbors which has the smallest degree, to form
independent sets of size 2.

Algorithm 3.3 Minimal degree algorithm for blocking elements.

1. Set m =0.

2. For3=1,2,...,n, Do:

3. If node j is not marked, then

4 m:=m+1, B, = {j}

5 Choose s € adj(j) such that deg(s) = min{deg(:); 7 € adj(j)}
6. B,, = B, U{s}

7. Mark j and all nodes in adj(j).

8 Endlf.

9. EndDo.

We may further improve the stability of the blocks by insisting that the magnitude
of the diagonal elements a4, resulting from the strategy in Line 5, are greater than some
threshold tolerance €. However, larger £ enhances the stability of the factorization, but
may reduce the size of the independent set. The best strategy may be to use a threshold
parameter ¢ to make sure that the diagonals are not zero or too small (this may be ap-
plied to ILUM too). Algorithms 3.2 and 3.3 may be modified appropriately to include the
threshold strategy. There are other heuristics that may be used to form blocks, such as
choosing the node whose row has the most (least) diagonal dominance. We have exper-
imented this and several other possibilities and have not found any of these alternatives
performed substantially better than the ones considered here.



At the end of the blocking procedure, there are usually some nodes left which are
neither in the independent set nor in its complement because they are not coupled. They
are in effect subsets of size one which are independent or singletons. We could just add
those to the complement set but this would be ineffective. It is best to add these singletons
to the set of independent subsets, listing them last. (In the experiments reported in this
paper this strategy was not implemented.)

4 Block ILUM Factorization

The main lines of a block version of ILUM are similar to those of the scalar version
developed in [34]. Here we only recall the main steps.

After an independent set is found and the matrix A is permuted into the form of (2)
where D is now a block diagonal matrix

D = diag(D1, Dy, ..., Dy, dip1, diss, - - ., dm),

and each D; is a k x k matrix and each d; is a single diagonal element. We may eliminate
the unknowns of the independent set to obtain a reduced system with the matrix A; as in
(3), and the process may be repeated with A;, We then have a series of reduced systems
of the form
-1
Ajp1=0Cj— Eij Ej. (6)

By doing these reductions, we have implicitly performed a block LU factorization

(3 8)-(a 2)(30)
J J V| J J+1

with A;, defined as in (6). Hence, in order to solve a system with A, we may perform

a series of forward and backward substitutions with the block matrices defined on the

right-hand side of (7).

The inverse of the block diagonal matrix D; in (6) and (7) can be computed explicitly
by inverting each small block exactly. Alternatively, these small matrices can also be
factored using Gaussian elimination and the factors will then be kept instead of the explicit
inverses. If explicit inversion is employed, it is best to utilize a thresholded pseudo-inverse
employing a singular value decomposition as is often done in block ILU factorizations,
for details, see [7, 8]. The above reduction process can be continued recursively with the
matrix A; being replaced by A;; , until we reach a Schur complement matrix Ay, which
is small enough to be solved by a direct or a preconditioned iterative method.

The multi-level block factorization described above becomes more expensive as the
number of levels increases. This is because of the fill-ins introduced by the elimination
process. The matrices Eij_l and Aj 1 as in (7) become denser as the factorization pro-
ceeds. A general practice for avoiding this undesirable result in developing preconditioners
is to neglect some of the fill-ins created by using a simple dropping strategies as we form
the reduced system [34, 35]. For example, we may drop any fill-in element created when-
ever its absolute value is less than a given tolerance 7 times the average of the absolute



values of the row in question. A second strategy is to limit the number of fill-ins that are
accepted in each row. Thus, an approximate version of the successive reduction steps can
be used to provide an approximate solution M~1v to A~!v for any given vector v. This
approximate solution is usually too crude to approximate the solution of Eq. (1), but it
may instead be used to precondition the original linear system. For detailed descriptions,
see [34].

Our preconditioner is constructed differently from that of [4, 5]. Specifically, we con-
struct D; (and D;l) and F; exactly whenever this is possible, since these matrices do not
have any fill-in (except for Dj_l) during the reduction process. Also, there is no dropping
for the diagonal elements regardless of their values. However, dropping strategies based on
a threshold tolerance are applied to Eijl and A; 1. This construction guarantees some
degree of accuracy for the inter-level transfer operators (F; and E]-Dj_l). As a result, we
are able to use a uniform dropping tolerance at all the levels. Our numerical experiments
suggested that, for most problems, there is no gain in decreasing the dropping tolerance
as the number of levels increases.

Based on the algorithms presented in the previous sections, the complete preprocess-
ing phase of BILUM consists of four steps: (1) finding the block independent set ordering,
(2) permuting the matrix, (3) computing the inverse (or the exact LU factorization) of
the diagonal block matrix D; by computing the inverse (exact LU factorization) of each
k x k matrix explicitly, and (4) forming the reduced system as well as the L and U parts
of the BILUM matrix. Fig. 1 is an illustration of the structure of the processed matrix
after two levels of reduction with 4 blocks of size 2 at each level.

The forward-backward solution process is similar to the one described in [34] with
the diagonal matrix D; being replaced by the block diagonal matrix. In our current imple-
mentation, we stored the permutation matrices for each level and did the permutation and
inverse permutation explicitly at each preconditioning step. A slightly different approach
was used in [34] for implementing ILUM, where the matrix is permuted explicitly.

5 Size of the Independent Set

In addition to being potentially robust by avoiding instabilities caused by small diagonals
in the ILUM factorization, BILUM may also have the advantage of yielding larger inde-
pendent sets. This will in general produce a smaller Schur complement and the cost of
solving the last reduced system is consequently reduced.

Denote by Vs the union of all subsets Bi,..., By, and V. the complement set of
vertices. We are interested in lower bounds for |Vg|, the total size of the independent set.
Let k£ be the number of nodes in each block and m the number of blocks of uniform size in
the independent set Sy. Let 7; be the degree of vertex j. Let n be the maximum degree
of each node in V, i.e.,

n= lrgjagxn{nj},

It has been shown in [34] that
n
> —.
Vel 1o ®)
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Figure 1: Illustration of the structure of the processed matrix after two levels of reduction
with 4 blocks of size 2 at each level.

This is a rough lower bound. For example, when the graph is bipartite, i.e., if it can be
colored with two colors, the Breadth-First-Search algorithm will yield an independent set
of size n/2. For an independent set with blocks, it is hard to estimate the number of nodes
in the independent set. However, with some simplifying assumptions, a number of simple
results can be established.

We now make the assumption that the independent set is maximal, and that all
subsets are of size < k. In other words, if there is a node or a subset of nodes of size
< k, then it should be a member of S. Algorithmically, this means that some clean-up
must be added at the end of the block-forming phase in which all singletons are grouped
in independent subsets of size < k. With this assumption it is clear that any node in the
vertex cover must be coupled to at least one subset from S.

In the following we will call the peripheral degree (pdeg) of a subset B of vertices the
number of vertices not belonging to B which are linked to a vertex in B in the original
graph, see Fig. 2. The set of these vertices is usually denoted by adj(B) [20] and therefore,

pdeg(B) = |adj(B)|

The main parameter which determines the size of Vg is the ratio pdeg(B)/|B|. As the
blocks become smaller these ratios become smaller, provided the aspect ratio of each
subgraph remains moderate. Let S = {Bj,..., By} and denote by -y; the ratio

 pdeg(By)

— , 1<i<m.



Figure 2: A set B of vertices (surrounded by a dashed line) and its peripheral vertices
(joined by a dotted line).

Clearly, the complement of Vg is the set of all peripheral vertices. Therefore,
m
n—|Vs| = 7lBil
i=1
Now defining
7= max {7},

we obtain,
m m
n—[Vs| =Y vilBil <7 |Bil =|Vs]
i=1 i=1
from which we get the following immediate generalization of (8)

Proposition 5.1 Let S = {B1,Bs,...,Bny} be a mazimal independent set and assume
that the peripheral degree of each subset B; is such that pdeg(B;) < -y|B;|. Then,

Vs > —

144 )

As the block-size increases, v will decrease to zero provided the algorithm chooses sets
that have ‘a round shape’. Typically, for large k, one can expect vy to be of the order of
k~1/2 for two-dimensional meshes. A simple algorithm for achieving this effect would be
to do a breadth-first search from the next candidate until a satisfactory number of nodes
is reached.

Example. Consider this algorithm for a 9-point matrix (see Section 6 for definition) on
a square N x N mesh, where N is a multiple of a certain number s + 1. Let k = s® be
the size of the blocks. We start at node one and take all its neighbors, then the neighbors
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Figure 3: A 9-point 7 x 7 mesh. The subsets of nodes surrounded by dashed lines are
members of the independent set S. Those surrounded by dotted lines are in V..

of its neighbors until £ nodes are found. This means that breadth-first search traverses s
level sets to fill one set of &k = s? nodes. Then the next traversal starts at vertex s + 2,
assuming natural ordering has been used to label the nodes. Hence, the blocks found are
square of side s, and in this case

pdeg(B;) < 4(s +1).

Therefore,
7§4(38%1):§+§2z4k—1/2.

Fig. 3 is an illustration with N = 7 and s = 3. We have k = 9 and four blocks with
|B;| = 9,7 =1,...,4. It is easy to see that pdeg(B;) = 2s +1 = 7. Hence 7; = 9/7 by
(5). It follows that v = 9/7. Inequality (9) gives the lower bound |Vg| > 343/16 ~ 21.4.
The actual size of the independent set is |Vg| = 36 and |V.| = 13. Note that for £ = 1
|Vs,| = 16 and Vg, is significantly larger than S;. In this case, a properly chosen larger
block size does increase the size of the independent set.

Another simple example can show that an improperly chosen large block size does
not necessarily increase the size of the independent set. Recall that a square N X N 5-point
mesh is two-colorable and |V, | = N?/2, assuming for simplicity that N is even. Then the
line red-black ordering which consists of taking k¥ = N and choosing the blocks B; to be
the sets consisting of the vertices forming every other line in the mesh in the z direction

satisfies
NZ .
[Vs| = TR if N iseven,

11



N2+ N
Vs| = TJF if N isodd.
Note that |Vs| is approximately the same as for for £ = 1 for large N. In general blocks
formed in a round shape have smaller peripheral degrees and are better than those formed
in a thin shape which have larger peripheral degrees.

6 Numerical Experiments

Unless otherwise indicated explicitly, all tests used 20 levels of reduction. In all cases,
the last reduced system was solved approximately by a GMRES(10) algorithm precondi-
tioned by a dual threshold ILUT(p,7) preconditioner [32], which will be referred to as the
inner iteration. The inner iteration was terminated when either the number of iterations
exceeded 10 or the (inner iteration) residual in 2-norm was reduced by a factor of 102,
whichever condition is satisfied first. We chose different values for 7 and p for different
problems to demonstrate that there is freedom to adjust these parameters to enhance the
performance of the algorithm. The first level was factored exactly, i.e., no dropping in
any LU factor or the Schur complement A; on the first level. Beginning from the second
level, elements in the Schur complements A; and in the U factor EjD;1 on each level were
dropped when they were smaller than 7 multiplied by the average of the absolute values
of the row in question. As was said before, there was no dropping in D; and Fj.

Although some of the test matrices were generated on regular grids, the structure of
the grids was not utilized and all matrices were considered as general unstructured sparse
matrices. In all tests, the right-hand sides were generated by assuming that the exact
solution is a vector of all ones. The initial guess was generated randomly. The program
was stopped when the initial residual (of the outer iteration) in 2-norm was reduced by a
factor of 107. We set an upper bound of 100 for the outer GMRES(20) or GMRES(10)
iteration.

The numerical experiments were conducted on a Power-Challenge XL Silicon Graph-
ics workstation equipped with 512 MB of main memory, two 190 MHZ R10000 processors,
and 1 MB secondary cache.

6.1 A Convection-Diffusion Problem

We consider the convection-diffusion equation
0 0
—Au — Re (sina: cos ﬂya—z — CcOSTE sinya—z> = f(z,y), (10)

on the unit square (0,1)2. Dirichlet boundary values were removed and artificial left-hand
side was used.

Here Re roughly reflects the Reynolds number. Eq. (10) is frequently encountered in
computational fluid dynamics to model transport problems. Eq. (10) is discretized by the
standard 5-point upwind finite difference scheme and the fourth-order 9-point compact
scheme [22] with various (uniform) meshsize h and Re. The resulting matrices are conve-
niently called 5-point or 9-point matrices. In particular, we will refer to a 5-POINT matrix
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discretized by the 5-point upwind scheme using Re = 1 and h = 1/201. This particular
5-POINT matrix has 40,000 unknowns and 199, 200 nonzeros. Similarly, a particular 9-
POINT matrix is constructed by using the 9-point compact scheme with Re = 10,000
and h = 1/201. This 9-POINT matrix has 40,000 unknowns and 357,604 nonzeros. The
5-point matrices are always weakly diagonally dominant as Re increases, due to the large
amount of artificial viscosity added. For constant coefficients, it can be shown [38] that
the 9-point matrices are weakly diagonally dominant only when the cell Reynolds number
(hRe/2) is less than 1 and they lose diagonal dominance quickly as Re increases. Conse-
quently, a 9-point matrix is generally more difficult to solve by iterative methods than a
5-point counterpart with the same discretization parameters.

High Reynolds number flow problems are particularly hard to solve with a standard
multigrid approach [23, 40]. Techniques based on algebraic multigrid or matrix-dependent
grid transfer operators have been used for systems arising from upwind-type discretization
schemes [12, 28]. There is strong interest in the multigrid community to develop multi-level
algorithms which converge independently of the Reynolds number.

In all tables which follow, “lev.” shows the number of levels of reduction used,
“it.” shows the number of outer GMRES(10) or GMRES(20) iterations, “prec.” shows
the CPU time in seconds for the preprocessing phase, “solu.” shows the CPU time in
seconds for the solution phase, “size” shows the dimension of the last reduced system, and
“mem.” shows the total memory requirement in millions of words to store the real values
(excluding integer indices) of the incomplete factorization. In most cases, we focus our
attention on the solution process and do not report the preprocessing CPU time. The main
reason for this is that our preprocessing routines are currently not optimized. Significant
improvements will be achieved by (1) reducing the cost of the search for block-formation
and (2) reducing the cost of inverting the small dense blocks.

We first tested our algorithms with the 5-point matrices generated by fixing Re =1
and varying h. The purpose of this experiment is to show how the algorithms perform
as the size of the linear system increases. We compared ILUT(107#,20), ILUM(1) (1 x 1
block) and BILUM(2) (2 x 2 block). GMRES(20) was used in all outer iterations. The
number of iterations and the (solution) CPU time in seconds per unknown are plotted in
Fig. 4.

We note from Fig. 4 that the number of ILUT iterations increased dramatically as
the size of the linear system increased. On the other hand, the numbers of ILUM(1)
and BILUM(2) iterations were almost independent of the size of the linear system. This
suggests a near grid-independent convergence for ILUM preconditioners. The average CPU
time (the CPU time in seconds per unknown) was increasing for all preconditioners when
the size of the linear system increased. But the increase in ILUM-type preconditioners was
moderate, especially for ILUM(1), compared with that due to ILUT. Hence, ILUM are
more efficient than ILUT. (We did not have a near grid-independent CPU time because
we used a fixed number of 20 level reductions.)

Next, we fixed h = 1/201, but varied Re for the 5-point matrices. We again compare
ILUT, ILUM(1), BILUM(2) and BILUM(3) (3 x 3 blocks) with 10 levels of reduction,
keeping the other parameters the same as above. The number of iterations and the solution
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Figure 4: Performance comparison of ILUT(107%,20), ILUM(1) and BILUM(2) with the
5-point matrices with Re = 1 and varying size of linear systems. GMRES(20) was used

for all outer iterations.

CPU time in seconds are listed in Table 1. It is seen that ILUM(1), BILUM(2) and
BILUM(3) showed convergence that is independent of the Reynolds number Re. But
the convergence of ILUT varied with the magnitude of Re. ILUM took less CPU time
than BILUM(2). This is somewhat expected since the degree of each node of the 5-point
matrices is relatively small and the advantages of using blocks of size 2 are not obvious,
i.e., the sizes of the independent sets of ILUM(1) and BILUM(2) are not too different as
will be seen later (Fig. 7). (However, BILUM(3) seems to do better than BILUM(2) for

this test problem.)

Similarly, we fixed h = 1/81 and varied Re to generate some 9-point matrices. This
time we used 7 = 10~* and p = 40 in ILUT and all the coarsest level of ILUM. For all
ILUM-type factorizations 10 levels of reduction were used. GMRES(20) was the outer
iteration accelerator for all preconditioners. The number of iterations and the solution
CPU time in seconds are tabulated in Table 2. These results show that BILUM with
larger size blocks performed better than ILUM. The ILUM preconditioned solvers showed
convergence almost independent of the Reynolds number Re even when the matrix is far

from diagonally dominant.

We further tested ILUT, ILUM(1) and BILUM(2) preconditioners with 7 = 1073, p =
20 using the 9-POINT matrix. GMRES(20) was used in the outer iterations. Fig. 5

14
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ILUT(107%,20) | ILUM(1) | BILUM(2) | BILUM(3)

Re | it. solu. it. | solu. | it. | solu. | it. | solu.
1 |27 9.66 4 | 528 | 4| 6.66 | 4 | 5.27
10 | 32 11.5 4 | 555 | 4| 695 | 4 | 5.42
102 | 40 14.3 4 1684 | 4| 7.8 |5 | 7.29
103 | 20 6.65 4 | 499 | 4 | 598 | 4 | 4.77
10* | 21 5.82 4 1334 4| 453 | 4| 3.86
10° | 20 5.01 41324 | 4| 418 | 4 | 3.44
108 | 14 3.11 4 1292 | 4| 419 | 4 | 3.41

Table 1: Performance comparison of different ILU algorithms with the 5-point matrix
(h = 1/201,n = 40,000,nz = 199,200). 7 = 10~%,p = 20 and 10 levels of reduction are
used for all ILUM.

ILUT(10~%,20) | ILUM(1) | BILUM(2) | BILUM(3)

Re | it. solu. it. | solu. | it. | solu. | it. | solu.
1|7 0.58 31051 3| 076 | 3| 058
10 | 6 0.50 31066 |3 | 07 | 3| 0.60
102 | 6 0.50 310693 | 079 | 3| 061
103 | 7 0.47 310713 068 | 3| 0.57
104 | 7 0.48 310953 | 078 | 3| 0.66
10° | 11 0.81 4 1240 | 4| 146 | 3 | 0.91
108 | 14 1.02 5137 | 4| 172 | 5| 170

Table 2: Performance comparison of different ILU algorithms with the 9-point matrices
(h =1/81,n = 6,400, nz = 56,644). 7 = 10~*,p = 40 and 10 levels of reduction are used
for all ILUM.
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Figure 5: Performance comparison of ILUT(7 = 1073, p = 20), ILUM(1) and BILUM(2)
with 9-POINT. GMRES(10) was used for the outer iterations.

depicts the 2-norm residual reduction rate with respect to the number of iterations and
the solution CPU time in seconds. In terms of the number of iterations, ILUM(1) and
BILUM(2) were again much better than ILUT, with BILUM(2) being the best. In terms
of solution time, both ILUM preconditioners were faster than ILUT preconditioner. In
contrast with the test results obtained for the 5-point matrices, BILUM(2) was eventually
faster than ILUM(1). This suggests that matrices with denser couplings may be better
solved with BILUM with larger blocks.

Fig. 6 shows a more dramatic comparison with the Harwell-Boeing matrix SAYLR4
[15, 17]. In this case, ILUM(1) and BILUM(2) were much more faster than ILUT both in
terms of iteration counts and CPU times. The performance of the two ILUM algorithms
were comparable and BILUM(2) took only slightly fewer iterations than ILUM(1) did.

Fig. 7 illustrates the effect of the number of levels on the size of the independent
sets for ILUM(1), BILUM(2) and BILUM(3). The matrices tested here are the 5-POINT
and 9-POINT matrices. As is seen larger block methods tend to yield larger independent
sets. Furthermore, the difference between these methods becomes more important as the
matrix becomes denser, i.e., when the degree of each node is higher.
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Figure 6: Performance comparison of ILUT(10~4,20), ILUM(1) and BILUM(2) with the
Harwell-Boeing matrix SAYLR4 (n = 3,564, nz = 22,316). GMRES(10) was used for the

outer iterations.

6.2 Matrices from the Harwell-Boeing Collection

We compare the performance of different BILUM preconditioners with 5 matrices from the
Harwell-Boeing collection [15, 17|, together with our 5-POINT and 9-POINT matrices.
(4 out of the 5 Harwell-Boeing matrices were tested with ILUM in [34] using different
independent set ordering strategy.) We used 7 = 1073 and p = 10 for the reduction
process and the last reduced system. GMRES(10) was used for the outer iterations.
Various levels of reduction were tested. The results, including the preprocessing time, are
given in Table 3.

For ORSREG1 and PORES2, ILUM(1) seems to be slightly faster. They performed
comparably with 5-POINT. For the other four matrices BILUM is more efficient. Note
that ILUM(1) did not converge in all cases with SHERMAN3. The efficiency usually
increased as the size of the blocks became larger. Here, the preprocessing cost is of the
same magnitude of the solution cost, except for the two largest problems (5-POINT and
9-POINT matrices). This high cost is due mainly to the unoptimized code segments used
to find the independent sets.
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ILUM(1) BILUM(2) BILUM(3)
Matrices lev. | it. | prec. | solu. | it. | prec. | solu. | it. | prec. | solu.
ORSREG1 2 4 10.156 | 0.084 | 4 | 0.322 | 0.123 | 4 | 0.294 | 0.150
(n = 2,205) 8 3 10.182 | 0.042 | 4 | 0.413 | 0.085 | 4 | 0.381 | 0.057
(nz = 14,133) 14 | 3 | 0.216 | 0.042 | 4 | 0.445 | 0.089 | 4 | 0.402 | 0.055
20 | 3 10232 | 0.041 | 4 | 0.460 | 0.089 | 4 | 0.407 | 0.054
PORES2 2 - - - - - - - - -
(n =1,224) 8 |40 | 0.119 | 0.398 | 27 | 0.179 | 0.339 | 65 | 0.150 | 0.467
(nz=9,613) 14 119 ] 0.144 | 0.152 | 18 | 0.205 | 0.204 | 58 | 0.162 | 0.352
20 | 19| 0.160 | 0.143 | 20 | 0.223 | 0.229 | 59 | 0.165 | 0.355
ORSIRRI1 2 5 10.076 | 0.057 | 5 | 0.121 | 0.072 | 5 | 0.138 | 0.068
(n =1,030) 8 7 10.080|0.044 | 5 | 0.139 | 0.042 | 5 | 0.133 | 0.033
(nz = 6,858) 14 | 7 |0.090 | 0.034 | 5 | 0.150 | 0.044 | 5 | 0.139 | 0.031
20 | 7 10.092 | 0.034 | 5 | 0.154 | 0.046 | 5 | 0.147 | 0.030
SHERMAN3 2 - - - 9 [ 0.748 | 1.144 | 9 | 0.709 | 1.058
(n = 5,005) 8 - - - 6 | 2327 | 0.836 | 7 | 2.149 | 0.754
(nz = 20,033) 14 | — - - 7 13.822 1 0.983 | 6 | 3.528 | 0.603
20 | - - - 5 [ 5.113 | 0.734 | 8 | 4.700 | 0.772
SHERMANS 2 [ 11]0.195|0.384 | 7 |0.398 | 0.501 | 7 | 0.403 | 0.457
(n =3,312) 8 [12]0.412 | 0.382 | 6 | 0.797 | 0.410 | 6 | 0.754 | 0.308
(nz = 20,793) 14 | 13| 0.766 | 0.430 | 4 | 1.193 | 0.297 | 5 | 1.158 | 0.258
20 |13 |1.214 | 0.459 | 4 | 1.589 | 0.327 | 6 | 1.520 | 0.288
5-POINT 2 5 2781|5344 | 5 | 4794 | 6.717 | 5 | 35.39 | 6.236
(n = 40,000) 8 6 | 12.03 | 6.008 | 6 | 66.63 | 7.699 | 6 | 53.24 | 6.421
(nz=199,200) | 14 | 6 | 22.87 | 5.483 | 6 | 80.42 | 7.496 | 6 | 66.94 | 5.581
20 | 6 | 3259 | 4843 | 7 |91.47 | 8.202 | 6 | 77.43 | 4.694
9-POINT 2 40| 5.555 | 81.21 | — - - - - -
(n = 40,000) 8 | 10| 25.07 | 20.73 | 12 | 68.42 | 21.27 | 6 | 53.05 | 7.648
(nz =357,604) | 14 | 8 | 46.20 | 15.27 | 5 | 84.07 | 8.099 | 7 | 64.80 | 7.433
20 | 8 | 64.70 | 13.84 | 7 | 95.42 | 10.93 | 6 | 73.11 | 5.588

Table 3: Performance comparison of different ILUM algorithms with 7 = 1073 and p = 10.
GMRES(10) is used in the outer iterations. “-” indicates that convergence was not reached
within 100 outer iterations.
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Figure 7: The size of the reduced systems after each level of approximate factorizations
with single dropping tolerance (7 = 10~%).

6.3 Comparison of Different Heuristics

Since our algorithms for finding independent set are entirely based on heuristic arguments,
we would like to test how they perform on real test problems. We tested three heuristics
with BILUM(2), keeping other conditions the same as those used for the tests of Table 3.
The heuristic algorithms we tested are:

1. Forming block pairs using strongest link as in Algorithm 3.2. This is denoted by
BILUM(2) (Strong);

2. Forming block pairs by the weakest link, denoted by BILUM(2) (Weak); and

3. Forming block pairs by the minimal degree (Algorithm 3.3), denoted by BILUM(2)
(Minimal).

Table 4 shows the number of iterations, the solution CPU time in seconds, and the size of
the last reduced system. These results indicate that the heuristic which uses the minimal
degree is the most efficient overall. It is followed by the strongest links strategy and finally
the weakest link strategy is the least efficient. In most cases, efficiency seems to correlate
with a small reduced system, i.e., a heuristic which generates larger independent set tends
to be more efficient.
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BILUM(2) (Strong) | BILUM(2) (Weak) | BILUM(2) (Minimal)
Matrices lev. | it. | solu. size it. | solu. size | it. | solu. size.
ORSIREG1 2 5 | 0.155 1153 4 10.120 | 1205 | 5 | 0.125 1161
(n = 2,205) 8 4 1 0.088 221 5 10.111 | 297 4 | 0.084 235
(nz = 14,133) 14 | 4 | 0.089 85 5 | 0.116 125 4 | 0.088 85
20 | 4 | 0.086 33 5 1 0.116 57 4 | 0.089 31
PORES2 2 - - 792 - - 792 - - 708
(n=1,224) 8 |30 | 0.361 190 30 | 0.361 190 | 27| 0.341 218
(nz=19,613) 14 | 33 | 0.363 82 33 | 0.363 82 18 | 0.209 106
20 | 37| 0.405 34 37 | 0.405 34 20 | 0.232 48
ORSIRRI1 2 5 | 0.070 578 5 10.072 | 550 5 | 0.072 550
(n =1,030) 8 4 | 0.036 102 5 | 0.042 104 5 | 0.043 104
(nz = 6,858) 14 | 4 | 0.035 30 5 | 0.044 34 5 | 0.045 34
20 | 4 | 0.036 10 5 | 0.045 12 5 | 0.045 12
SHERMAN3 2 9 | 1.180 | 3609 9 | 1.136 | 3613 | 9 | 1.150 3589
(n = 5,005) 8 9 | 1.426 | 3023 9 | 1.342 | 3027 | 6 | 0.839 2977
(nz = 20,033) 14 | 9 | 1.346 | 2811 7 | 1.100 | 2803 | 7 | 0.990 2693
20 | 7 | 1.187 | 2679 8 | 1.267 | 2657 | 5 | 0.741 2567
SHERMANS 2 6 | 0.441 | 2936 7 10531 | 2946 | 7 | 0.491 2844
(n =3,312) 8 5 10.336 | 2158 8 | 0.644 | 2428 | 6 | 0.404 2164
(nz = 20,793) 14 | 4 | 0.295 1986 7 10.643 | 2230 | 4 | 0.295 2012
20 | 4 | 0.316 1906 7 10.706 | 2126 | 4 | 0.325 1928
5-POINT 2 5 | 7.00 | 16984 | 5 | 6.888 | 15994 | 5 | 6.726 16258
(n = 40,000) 8 6 | 8.683 | 8998 6 | 8922 | 9990 | 6 | 7.701 7770
(nz=199,200) | 14 | 6 | 8.176 | 6078 7 | 10.22 | 7204 | 6 | 7.498 5174
20 | 7 | 8.899 | 4300 8 | 10.99 | 5408 | 7 | 8.201 3742
9-POINT 2 - 24244 | 36 | 79.14 | 24352 | — - 21396
(n = 40,000) 8 8 | 18.20 | 14150 | 8 | 17.87 | 14662 | 12 | 21.21 11636
(nz =357,604) | 14 | 7 | 15.08 | 9782 7 | 15.56 | 10634 | 5 | 8.103 7488
20 | 7 | 14.67 | 7208 7 | 15.24 | 8118 | 7 | 10.93 5038

Table 4: Performance comparison of BILUM(2) with 7 = 10 3,p = 10 and different
heuristics for finding pair of blocks. GMRES(10) was used in the outer iterations. “-”
indicates that convergence was not reached within 100 outer iterations.
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6.4 Memory Cost

A major advantage of iterative methods over direct methods is that they may require far
less memory. Previous experiments have shown that BILUM factorizations yield better
performance than ILUT. One may ask whether this is achieved at the cost of using more
memory. The amount of memory required by ILUM is highly dependent on the dropping
threshold 7 used in the reduction. Note also that the last reduced system needs to be solved
with the help of ILUT. Depending on the number of levels, this last reduced system and the
corresponding ILUT preconditioner require another 5 —30% more memory. Even with our
current (unoptimized) code, ILUM and BILUM tend to use less memory space than ILUT
does for similar performance with many matrices. Memory costs seem to increase as the
block sizes increase, depending on the density of the matrix. The increase in memory costs
is usually coupled with increase in performance. Table 5 lists the memory requirement
(storing incomplete factorization) and performance for each preconditioner with different
parameters to solve the 5-POINT matrix with GMRES(10). (The data for ILUM and
BILUM include the storage of the last reduced systems and their ILUT preconditioners.)
The best results for each preconditioner are highlighted. The following conclusions can be
drawn for the 5-POINT matrix:

e As the block size increases, so does the memory cost;

e As the number of levels increases, the memory cost increases slightly. However, the
substantial performance improvement outweighs the increase in memory cost;

e Both ILUM and BILUM outperform and use much less memory than ILUT;

e ILUM and BILUM(3) are to some extent comparable if we trade memory cost for
CPU time, while BILUM(2) seems less efficient.

Table 6 lists similar information with the 9-POINT matrix. In this case, ILUT seems
to perform slightly better than ILUM and BILUM with slightly larger memory cost. The
interesting observation is that BILUM is much better than ILUM in terms of both memory
and CPU time, and BILUM(3) is the best among these three.

Our current code relies on a single criterion (threshold tolerance) to control fill-in
in the reduction and it works less efficiently when the matrix is denser. More subtle
dropping strategies for ILUM can reduce the memory cost significantly. For example,
dropping strategy based on the number of fill-ins may be used. Furthermore, it is not
necessary to use ILUT to solve the last reduced system. Other direct or iterative solvers
may be incorporated. In addition the benefit of added parallelism for ILUM are an obvious
added advantage.

6.5 Condition Number of the Reduced Systems

One incentive for using ILUM preconditioning is to reduce the system to a smaller one
which can be solved by a direct or preconditioned iterative method. In doing the reduction,
we expect that the reduced systems become easier to solve as the number of levels increases.
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ILUM(I) | BILUM(?) | BILUM(@) ILUT

T=10"3,p=10 p=20
lev. | mem. | it. | solu. | mem. | it. | solu. | mem. | it. | solu. T mem. | it. | solu.
17 1.26 | 6 | 547 | 1.48 | 7 | 886 | 1.65 | 6 | 480 | 103 | 1.35 | 35 | 11.5
23 1.31 715583 | 1563 | 7| 811 | 1.71 71490 | 107* | 1.58 | 27 | 9.84
29 135 | 7 | 5.02 | 157 | 7 | 7.69 | 1.74 | 7 | 448 | 107® | 1.59 | 27 | 9.94

=103 p=15 p =30
17 | 131 | 6 | 519 | 152 | 7 | 849 | 169 | 6 | 464 | 1073 | 1.35 | 35 | 11.5
23 | 1.35 455 | 1.56 | 7 | 7.99 | 1.73 4.06 | 10~* | 2.32 | 16 | 7.68
29 | 138 | 7 | 484 | 159 | 7 | 754 | 1.76 | 7 | 4.37 | 10°° | 2.37 | 17 | 8.09
T=15x10"%p=10 p = 40
17 | 151 | 5 | 575 | 1.76 | 5 | 7.81 | 1.99 | 5 | 5,73 | 1073 | 1.35 | 35 | 11.5
23 | 161 | 5 | 549 | 1.87 | 5 | 7.66 | 2.07 | 5 | 5.29 | 10=* | 2.96 | 11 | 6.09
29 | 169 | 5 | 523 | 1.93 | 5 | 748 | 212 | 5 | 494 | 10°° | 3.14 | 11 | 6.45
T=15x10"%p=15 p=150
17 | 157 | 4 | 474 | 182 | 4 | 643 | 2.04 | 4 | 455 | 1073 | 1.35 | 35 | 11.5
23 | 1.66 | 4 | 440 | 1.91 | 4 | 6.11 | 2.11 | 4 | 4.00 | 10~* | 3.21 | 11 | 6.39
20 | 1.73 | 4 [ 3.98 | 1.97 | 4 | 5.93 | 2.15 | 4 [ 3.74 | 1075 | 3.87 | 10 | 6.82

(=]
(=]

Table 5: Performance and memory cost comparison of different ILUM algorithms with the
5-POINT matrix. GMRES(10) is used in the outer iterations.

ILUM(1) | BILUM(2) | BILUM(3) ILUT
7=10"3,p=10 p =20
lev. | mem. | it. | solu. | mem. | it. | solu. | mem. | it. | solu. T mem. | it. | solu.
17 | 203 | 8 [ 154 | 174 | 7 [ 115 | 1.96 | 6 | 6.76 | 1073 | 0.98 | 62 | 17.2
23 [ 210 | 8 | 144 | 180 [ 7 [ 111 ] 202 | 7| 699 [107*] 1.27 | 22 | 7.26
29 | 215 | 8 | 13.6 | 1.84 | 7 | 9.03 | 2.06 | 7 | 6.58 | 10~° | 1.40 | 22 | 7.73

r=10"3,p=15 p=30
17 2.11 7 | 14.0 1.79 6 | 10.2 1.99 6 | 6.95 | 1073 | 1.14 | 35| 10.6
23 2.17 13.0 1.83 6 | 9.58 | 2.04 6.18 | 107% | 164 | 20 | 7.61
29 221 | 7 |12.4| 1.86 | 5 | 7.63 | 2.08 | 6 | 5.63 | 107° | 1.92 | 20 | 8.46
T=15x10"%p=10 p =40
17 2.58 7| 177 | 2.08 7 | 14.5 2.39 6 | 9.22 | 1073 | 1.29 | 24 | 7.76
23 2.7 7 | 16.9 2.18 6 | 11.9 | 2.49 6 | 838 | 107% | 1.94 | 11 | 4.70
29 2.81 7 | 16.8 2.25 6 | 11.7 | 2.57 6 | 785 | 1075 | 232 | 11 | 5.30
T=15x10"%p=15 p =50
17 2.69 5 | 13.0 2.15 10.6 | 245 5 1802|1073 | 141 24 | 8.12
23 2.81 7| 17.8 2.23 10.1 2.53 6 | 869 | 10~* | 2.19 | 10 | 4.58
29 2.89 6 | 14.8 2.29 9.81 2.60 51660 | 1075 | 264 | 10 | 5.21

N |
(=]

Q| U Ot

Table 6: Performance and memory cost comparison of different ILUM algorithms with the
9-POINT matrix. GMRES(10) is used in the outer iterations.
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Figure 8: Condition numbers of a 9-point matrix and the reduced systems from ILUM
and BILUM with 7 = 10~%.

In other words, we expect the condition number of the reduced systems to be smaller than
that of the full system. Fig. 8 depicts a relation between the condition numbers in 1-norm
of a 9-point matrix (Re = 10,000,n = 1,600, nz = 13,924) and the reduced systems from
ILUM(1), BILUM(2) and BILUM(3) with 7 = 10%. It is seen that the condition numbers
are decreasing as the number of levels increases. It seems that the decreasing rate of the
condition numbers slows down after several levels of reduction, especially for ILUM(1).
This can be explained as the ILUM factorizations become less efficient (due to single
dropping strategy) as the reduced systems become dense. Strategies should be ultimately
designed to determine the number of levels and the degree of dropping dynamically. Ideally,
it is best to stop when the final resulting reduced system is easy enough to solve. Heuristic
criteria based on degree of diagonal dominance, number of nonzero elements, etc., might
be developed.

7 Concluding Remarks

Numerical experiments indicate that the block ILUM preconditioning strategy presented
here is generally more robust, and often more efficient, than both the point ILUM strat-
egy and the dual-threshold ILUT preconditioning techniques. Our tests with convection-
diffusion problems showed convergence that is nearly independent of the Reynolds number.
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Convergence was also found to be nearly independent of the mesh-size of the underlying
system. The results compared favorably with similar problems tested with the geometric
or matrix-dependent multigrid methods [12, 28, 39]. Our algorithms, however, are purely
algebraic and do not make any assumptions on properties of the linear system.

Thus, ILUM-type preconditioners can be viewed as multi-level variants of Incom-
plete LU factorizations which combine the benefits of generality and robustness of ILU
techniques with those of grid-independent convergence enjoyed by multi-grid methods.

The numerical experiments that we conducted in this paper used small blocks. Use
of larger blocks may be more efficient for certain types of problems and for some parallel
computers. However, as the block-sizes become larger, sparsity should be exploited again.
Ultimately, this general approach will provide a general framework that encapsulates the
coarse-grain domain decomposition-type approach as well as the fine-grain point-ILUM
approach which is more akin to the multigrid viewpoint. Further studies are planned in
this direction.
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