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The numerical solution of fluid flow problems gives rise to linear systems that can be rather
challenging for iterative methods. In this paper we compare a number of standard preconditioning
approaches to solve these problems. We test two accelerators, GMRES and DQGMRES, combined
with a few threshold based preconditioners such as ILUT and approximate inverse techniques, on
a number of linear systems arising from various models.
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1. INTRODUCTION

In the past it was often customary to solve the linear systems that arise from
Computational Fluid Dynamics applications by direct methods. These methods
have the advantage of being ‘predictably reliable’ and for this reason they have
been preferred over iterative methods in industrial applications. However, with
the increase of three-dimensional models as well as models that incorporate more
complex phenomena, iterative methods are gaining ground.

A major stumbling block in the acceptance of iterative methods is the difficulty
in getting general purpose preconditioners. Indeed, it is often the preconditioner
rather than the accelerator which can make the difference between success and
failure. Thus, a common cause of failure of iterative techniques is the ‘instability’
of the ILU factorization, a term which is sometimes used to mean that the norm
of (LU)~! can be extremely large. This is caused by the long recurrences in the
forward and backward triangular solutions when the preconditioning operations are
applied. In such situations, the accelerator will generally fail on the preconditioned
system which may well have a condition number that is much worse than that of
the un-preconditioned system.

The standard and inexpensive approaches, such as ILU(0), which work quite well
for elliptic problems, have a great rate of failure in the indefinite case. It is often
the case that this incomplete factorization does not exist and when it does exist,
then it is generally either unstable, or too inaccurate to yield a satisfactory rate
of convergence. One alternative is to use a more accurate factorization, such as
ILUT 5. This yields a better ILU factorization and works well for many cases.
However, it is still prone to instability. To remedy this, a pivoting variant of ILUT
called ILUTP can be used. We discuss one such variant in this paper. Another
alternative is to attempt to solve the normal equations by an Incomplete Choleski
preconditioned Conjugate Gradient method. The IC(0) factorization of positive
definite matrices does not necessarily exist but one can shift the matrix slightly by
adding a multiple of the identity matrix 310, However, the condition number of

* This work was supported by NASA Grant NAG2-904 and by NSF grant number CCR-9214116



2 Y. SAAD

the coeflicient matrix is typically very high and ICCG(0) may not perform well for
these cases. Another class of preconditioners is based on using approximate inverse
techniques, see, e.g., 83912 These are not prone to instability since their corre-
sponding preconditioning operations do not involve linear recurrences. However,
they tend to be more expensive to compute and to require more storage than the
ILU counterparts.

The outline of the paper is as follows. In the next section we present two Krylov
subspace algorithms which emphasize variable preconditioners. Section 3 is an
overview of preconditioners for indefinite problems. In section 4 we present some
numerical experiments and a few tentative conclusions are drawn in Section 5.

2. PRECONDITIONED KRYLOV SUBSPACE METHODS

Iterative techniques based on Krylov subspace projection coupled with suitable pre-
conditioners are currently considered to be the best compromise between efficiency
and robustness. In addition to their advantage over direct methods, in terms of
memory and computational cost, iterative methods are also attractive because of
the simplicity with which they can be adapted to high performance computers.
There are two ingredients in the use of a preconditioned Krylov subspace approach.
First, the original linear system

Az = b (1)

is preconditioned by, for example, transforming it into the “right-preconditioned”
equivalent system

AM~Y(Mz) = b. (2)

where the preconditioned matrix M has the property that it is not too expensive
to compute M ~1'v for an arbitrary v. Thus, the system AM 'y = b is solved
for the unknown y = Mz, and the final z result is obtained through the post-
transformation £ = M ~'y. One can also use left-preconditioning,

M~'Azx =M~

which requires a pre-transformation of the right-hand-side, or the initial residual.
The main difference between these two approaches is that in the right-preconditioned
case, the actual residual norm is available at each step of the iterative process
whereas in the second case only the preconditioned residual is available barring any
additional computations.

The second ingredient in the method is the “accelerator”; typically a conjugate
gradient like method, based on projections on Krylov subspaces. Here we will
describe two techniques which can be used when the preconditioning operations
varies from step to step, a property which can be very useful. The first is a method
presented in 16 and known as FGMRES. This variant is derived by observing that
in the last step of the standard GMRES algorithm 17, the approximate solution z,,
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1s formed as
m
Tm = Xo + E a; My,
i=1

Here, the v;’s are the Arnoldi vectors, M the preconditioner, zg the initial guess
and m the dimension of the Krylov subspace. This is a linear combination of
the preconditioned vectors z; = M~'v;,1 = 1,...,m. Since these vectors are all
obtained by applying the same preconditioning matrix M ! to the v’s, we need not
save them. We only need to apply M ~! to the linear combination of the v's. If
the preconditioner varies at every step, then we need to save the ‘preconditioned’
vectors z; = Mi_lvz- and use them instead of M ~!v; when computing the above
linear linear combination. The resulting ‘flexible’ variant of GMRES is described
below.

ALGORITHM 1 . Flexible GMRES (FGMRES)
1. Start:
Choose zy and a dimension m of the Krylov subspaces.
Define H,,, = {hz,J = 0}i:1,...,m+1; j:l,...,m}~
2. Arnoldi process:
Compute ro = b — Axg, 8 = ||roll2 and v1 = ro/B.
Forj=1,...,mdo
Compute zj := Mj_lvj
Compute w := Az;
Fori=1,...,3, do

hz"j = (w, Uz’)
wi=w— h;jv;
Enddo
Compute hji1; = ||w]|2 and vj41 = w/hjt1;.

Enddo

Define Z,, := (21, ey Zm)-
3. Form the approximate solution:

Compute ¢,, = g + Zmym where

Ym = argmin, ||fe; — Hyyll2 and e; = [1,0, .. 0%,
4. Restart:

If satisfied stop, else set zq — z,, and goto 2.

The Arnoldi loop simply constructs an orthogonal basis of the preconditioned
subspace Span{vy, AMl_lvl, ey AMT;L'Um_l} by a modified Gram-Schmidt pro-
cess, in which the new vector to be orthogonalized is defined from the previous
vector in the process.

Note that if M; = M for j = 1,..., m then the method is equivalent to the stan-
dard GMRES algorithm, right-preconditioned with M. The approximate solution
&y, obtained from this modified algorithm minimizes the residual norm ||b— Az, ||2
over zg + Span{Z,,}, . In addition, if at a given step k, we have Az, = v
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(i.e., if the preconditioning is ‘exact’ at step k) and if the k£ x k Hessenberg matrix
Hy = {hij}ij=1, .k is nonsingular then the approximation zj is exact.

There are many possible applications of the added flexibility provided by FGM-
RES. In our context, we would like to be able to use any secondary iterative proce-
dure as a preconditioner, a feature which is quite helpful in domain decomposition
methods or in any parallel computing implementation. FGMRES even allows the
inner preconditioning steps to be completely asynchronous, a feature which can
help minimize communication and synchronization costs in a parallel approach.

A second variant of the GMRES algorithm described in 18 is the Direct Quasi
Generalized Minimal Residual algorithm, or DQGMRES. This algorithm also has
the feature of being flexible. It is based on the following idea. Instead of or-
thogonalizing the Krylov vectors, we replace the Arnoldi loop by an ‘incomplete
orthogonalization’ process,

ALGORITHM 2 . Incomplete Arnoldi Process:

Forj=1,..,mdo
Compute z; := Mj_lvj
Compute w 1= Az;
For For i = max{l,j—k+1},...,5 do

hiyj = (’LU, 'Ui)
wi=w— h;;v;
Enddo
Compute hjy1 j = [[w]lz and vj41 = w/hji1 ;.

Enddo

Thus, the only difference with the full Arnoldi orthogonalization is that at each
step the current vector is orthogonalized only against the & previous ones instead
of all of them. The vectors generated by the above algorithm are known to be
‘locally’ orthogonal to each other, in that (v;,v;) = &;; for |i — j| < k The matrix
H,, becomes banded upper Hessenberg. As a result of this it can be shown that
the approximate solution at step j can be updated from the approximate solution
at step 7 — 1 via a recurrence of the form

j-1

1
pj — |v— Z TijPi

T;
77 i=j—k+1
rj = Tj-1t P

in which the scalars v; and r;; are obtained recursively from the Hessenberg matrix
Hj. In terms of memory usage note that we now have to keep only the k most cur-
rent v; directions which are needed in the incomplete orthogonalization procedure
and the k most recent ‘search directions’ p;. As a result the algorithm does not
need to be restarted as the classical GMRES and the Flexible GMRES.

An attractive characteristic of DQGMRES is that it is also flezible. The principle
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is similar to that of FGMRES. In both cases we must compute the vectors Mj_lvj
and in the case of FGMRES, we need to save these vectors which requires extra
storage 6. In the case of DQGMRES, the preconditioned vectors only affect the
update of the vector p; in the preconditioned version of the above formula,

j-1
1 -1
pj = — | M; v — E TijDi
"jj -
i=j—k+1

As a result, Mj_lvj can be discarded immediately after it is used. We can simply
overwrite it onto the space used for p;. We should point out that DQGMRES
is similar in nature to the GMRESR family of flexible preconditioning algorithms
introduced by Van der Vorst and Vuik '°. We omit the full description of the
algorithm; for details see 8. It is our experience that DQGMRES is more robust
than the standard restarted GMRES algorithm, in that it is less prone to the
stagnation phenomenon which occurs in the indefinite case.

3. PRECONDITIONING TECHNIQUES

As was stated above a critical component in the success of iterative methods is the
preconditioner. For a system that is poorly preconditioned the iterative process
may require so many steps to converge that a direct solver may actually perform
better. Preconditioning a linear system is typically a difficult task, except in the
traditional elliptic-dominated, one variable-per mesh point cases. Unfortunately,
the best known preconditioning techniques have been developed mainly with these
problems in mind. In this section we give an overview of standard preconditioners
and present some alternatives that are more suitable for indefinite systems.

3.1.  Standard preconditioners

We would like to give a quick overview of commonly used preconditioners. In the
simplest case, M is simply the diagonal or block diagonal of A. This is referred
to as Jacobi (or diagonal), or block Jacobi (block diagonal) preconditioning and is
effective only in special cases, e.g., for transient solutions. The SSOR preconditioner
is defined by
M, =(D—-wE)D (D —wF)
in which D is the diagonal of A, —F its strict lower part, and —F its strict upper
part. In the late 60’s and early 70’s the idea came about to use an M which has
the same form as above with w = 1 but with a D that is defined recursively to
ensure that the diagonal elements of M and A are the same. This lead to the
ILU(0) preconditioner in the special case of 5-point matrices. More generally, if we
denote by NZ(A) the nonzero structure of A, i.e., the set of all pairs (¢,7) such
that a;; # 0 then ILU(0) can be described as follows.
ALGORITEM 3 . ILU(0)
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Fori=1,...,N Do:
Fork=1,...,i—1andif(i,k) € NZ(A) Do:
Compute a;p = aik/akj
Forj=k+1,... and if (i,j) € NZ(A), Do:
compute a;j ‘= a;j — A;pAg ;-
EndDo
EndDo
EndDo

Notice that this is nothing but an (i, k, j) version of Gaussian elimination 7 which
is essentially restricted to the NZ(A) part of the matrix. This algorithm can be
generalized to any preset nonzero pattern. In particular, one can classify the fill-ins
by assigning them a level which is defined from the parents which generated the
element in the elimination 2°. For diagonally dominant matrices, the higher the
level-of-fill the smaller the element. Once the level of fill of each element is defined
we can execute an algorithm similar to the one above, in which NZ(A) is replaced
by NZ,(A) which is the set of all elements whose level-of-fill does not exceed p.
This defines the ILU(p) factorization.

3.2. ILUT and ILUTP

The elements that are dropped in the ILU(p) factorizations depend only on the
pattern of A and not on the values. The property exploited here is that the larger
the level of fill, the smaller the elements, which results in the dropping of smaller
elements in the ILU(p) factorization. However, this property is no longer true for
non-diagonally dominant matrices. Another strategy altogether is to use the same
general structure of the ILU factorization, namely the ¢, k, j variant of Gaussian
Elimination, and to drop elements according to their magnitude. One such strategy
defined in 13, was referred to as ILUT (ILU with threshold).
ALGORITHM 4 . ILUT(p,¢)

Fori=1,...,N Do:
Compute €; := €l|a; .||
Fork=1,...,i—1andifa; #0 Do:
Compute a;j, 1= a;p/ag;
If |a;| > €; Then
Forj=k+1,... Do:
compute a;; 1= ;5 — GjpAg ;.
If |a;;| < € then a;; :=0
EndDo
EndIf
Keep p largest elements in L-part of a; .
and p largest elements in U-part of a; .;
EndDo
EndDo
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An advantage of this algorithm is that the amount of fill-in is controlled. When
€ = 0, then the higher the parameter p, the more accurate the factorization. Re-
ordering for reducing fill-in can help improve the quality of the factorization, and
we refer to * and ® for similar experiments performed with the ILU(0) factorization.

The ILUT factorization can be used to solve indefinite problems, and does work
for a much broader set of matrices than ILU(0). However, there may be problems
computing the factorization itself, because a zero pivot can be encountered. An
obvious solution for cases where ILUT fails to yield a good incomplete factorization
is to perform some form of pivoting. We can perform a form of pivoting that leads
to an algorithm similar, in simplicity and cost, to ILUT. Because of the structure of
ILUT, it is not very practical to perform row pivoting. However, a column pivoting
variant is not too difficult to develop. The algorithm uses a permutation array perm
as well as its reverse permutation array to hold the new orderings of the variables.
These arrays are updated at each step. Once the most significant element in a
row is selected, we define the new i-th variable and update these two permutation
arrays. The matrix elements of L and U are kept in their original labeling. At the
end of the process, we apply the permutation to all elements of A as well as L/U.

The algorithm corresponding to the above modification will be termed ILUTP
(ILUT with Pivoting). The complexity of the ILUTP procedure is virtually iden-
tical with that of ILUT. In addition, our implementation provides for a few pos-
sible options. A tolerance parameter called permitol is included to help determine
whether or not to permute variables. Furthermore, the user may elect to perform
the pivoting only within diagonal blocks of a fixed size. The size mbloc of the blocks
within which to perform the permutations must therefore be provided. If the user
does not wish to restrict permutations to take place within diagonal blocks, then
the value of mbloc to be entered should be any number > n.

For the more difficult matrices, we found that it was usually a good strategy to
always apply a scaling to all the rows (or columns), e.g., so that their 2-norms are
all equal to 1; to use a small drop tolerance (e.g., ¢ = 107%); as well as a large fill
-in parameter (e.g., [fil = 20). As an illustration we show in Table 1 a few results
with both ILUT and ILUTP on some of the harder problems in the Harwell-Boeing
collection. In these tests, the matrices are read and an artificial right-hand-side
is computed so that the solution is known, then GMRES(20) is used to solve the
system with the preconditioner shown. Recall that the parameters in ILUT are the
drop tolerance € and the amount of fill-in allowed in L and in U.

A failure sign in the table means that the method was not able to reduce the
residual norm by a factor of 107 in 300 steps. The above matrices are all from
the Harwell-Boeing collection, except the matrix MAT1 which is a matrix obtained
from a finite volume code applied to the Navier Stokes. In spite of its nice numerical
properties, which characterize matrices arising from finite volume approximations,
the system is not too easy to solve because of the inadequate initial ordering. A
plot of the pattern of the matrix confirms this. In this last case, the Reverse
Cuthill Mc-Kee ordering (RCMK) does an excellent job at reducing the number
of iterations, compared with the original matrix. In fact, column pivoting in this
situation makes the preconditioner poorer not better. There are two conclusions
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ILUT(10, ) | ILUT(20,¢) || ILUTP(10,€) | ILUTP(20, €)
BP1000 Fail Fail 2 14
FS7603 Fail 70 fail 32
SHERMAN5 17 10 17 10
WEST0989 Fail Fail 179 20
MAT1 57 34 48 35
MAT14+RCMK 13 10 140 70

TABLE 1: Iterations to converge with GMRES(20) and ILUT and ILUTP for a few test matrices

from this experiment and other similar ones. First, a poor initial ordering of the
matrix can cause the preconditioner to be very ineffective and it may be beneficial
to apply some reordering to the original matrix. Second, pivoting in ILU, does not
always help. It does seem to help tremendously for those matrices that have very
poor diagonal dominance — and not too much for other cases. The reasons for this
are still unclear and remain to be investigated.

3.3. ILUS

A different type of incomplete factorization can be derived from another form of
Gaussian elimination. Consider the sequence of matrices

A )
w= (00 o)

If we already have the LDU factorization of Ay
Ap = L DUy

then we get the LDU factorization of Ajx41 as

A _ Ly 0 Dy, 0 Ur 2
L= Ly 1 0 dip 0 1

in which
Zk = D;nglvk (3)
v = wpU7'Dt (4)
dey1 = apg1 — YeDrzp (5)

Thus, we can obtain the last row/column pairs of the factorization by solving two
unit lower triangular systems and computing a scaled dot product. This can be
exploited for sparse matrices provided we use an appropriate data structure to take
advantage of the sparsity of the matrices Ly, Uy as well as the vectors vy, wy,
Yk, and z;. A good data structure to use consists of storing the rows / columns

pairs wy, ‘vg as a single row in sparse mode. All these pairs are stored in sequence.
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The diagonal elements are stored separately. We refer to this as the Unsymmetric
Sparse Skyline format (USS in the SPARSKIT notation !*). Each step of the ILU
factorization based on this approach will consist of two approximate sparse linear
system solutions and a sparse dot product. The question that arises here is: how
can we solve a sparse triangular system inexpensively? It would seem natural to
solve the triangular systems (3) and (4) exactly and then drop small terms at the
end, using a numerical dropping strategy. However, the cost of this strategy would
be O(n?) operations at least, which is not acceptable. We note that we only need to
obtain approximate solutions since we are seeking an approximate LU factorization.
The first idea that comes to mind is the truncated Neumann series,

2y =Dy Litvg = DY (I+ Ep + B + ...+ ER)vy, (6)

in which Ey = I — L. In fact, by analogy with ILU(p), it is interesting to note
that the powers of Fj will also tend to become smaller as p increases. A close
look at the structure of Efvj, shows that there is indeed a strong relation between
this approach and ILU(p) in the symmetric case. We now make another important
observation, namely that the vector Eivk can be computed in sparse-sparse mode,
i.e., in terms of operations involving products of sparse matrices by sparse vectors.
Without exploiting this the total cost would still be O(n?). When multiplying a
sparse matrix A by a sparse vector v the operation can best be done by accumulating
the linear combinations of the columns of A. If there are only i nonzero components
in the vector v and an average of v nonzero elements per column, then the total
cost will be 2 x ¢ x v on the average. A sketch of the resulting ILUS algorithm is
as follows.
ALGorITEM 5 . ILUS(¢, p)

Set Ay =Dy =arn1, Ly =U1 =1;
Fori=1,...,n—1 Do:
Compute zp, by (6) in sparse mode.
Compute yy in a similar way;
Apply numerical dropping to yy and zy
Compute di41 via (5)
EndDo

We note that the computation of dj via (5) involves the inner product of two
sparse vectors which is often implemented by expanding one of the vectors into a
full vector and computing the inner product of a sparse vector by this full vector.

There are mainly two advantages to the ILUS approach over the usual 7, k,j
implementation, used in ILUT for example. These are

eIn the symmetric case, ILUS becomes an incomplete Choleski and the generation
of yi is not necessary
eIt is easier to control instability of the factorization.

Regarding the control of instability, in the standard ILU factorizations, we do not
have access to a partial solution with the U factor until this factor is entirely
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computed. This is because the LU factorization is obtained row-wise so at step
k only the first & rows of U are available, and these cannot be used to analyze
instability. In contrast, the partial factors obtained at step k of ILUS are used in
obtaining the solution for step £ 4+ 1 when solving a triangular system. This allows
us to estimate instability and curtail the process if a problem arises. A block-
diagonal factorization can be obtained instead. The only apparent disadvantage of
ILUS is that its data structure is not suitable for implementing partial pivoting.

We also point out that the one can use a simple iterative procedure such as MR
or GMRES(m) to solve the triangular systems in sparse mode. Our implementation
use this approach. It is our experience that these alternatives are not much better
than the Neumann series approach.

9.4. ICNE

One of the first ideas that was suggested for handling symmetric positive definite
sparse linear systems Az = b, that are not diagonally dominant, was to use an
incomplete Choleski factorization on the ‘shifted” matrix A + oI, see, e.g., 1013,
The shift is necessary since the IC(0) factorization does not necessarily exist for
positive definite matrices. The Preconditioned Conjugate Gradient (PCG) can
then be used to solve the preconditioned system. This idea can be applied to the
normal equations. Thus, we can use the special forms of PCG to solve the system
AT Az = ATb (CGNR variant), preconditioned with a matrix M = LLT which is the
IC(0) factorization of the shifted matrix AT A+ al. Similarly, for the CGNE variant
we can use the CG algorithm for solving the system AA”y = b, preconditioned with
an IC(0) factorization for the matrix AAT + aI. One issue which has often been
debated in the past is to find good values for the shift a. There is no easy and
well-founded solution to this problem for irregularly structured symmetric sparse
matrices. One idea is to select the smallest possible o which makes the shifted
matrix diagonally dominant. However, this shift tends to be too large in general
since, as was observed in 13, the IC(0) may exist for much smaller values of o. We
can also try to determine the smallest @ for which the IC(0) factorization exists.
This is unfortunately not the best strategy. As it turns out, we found that in many
examples, the number of steps required for convergence, starts decreasing as «
increases, and then it increases again. This is borne out in Figure 1 for an example
arising from the incompressible Navier Stokes equations.

What seems to be apparent from this plot, is that there is an optimal value
for @ which is far from the smallest admissible one. For small «, the diagonal
dominance of AAT + oI is weak and as a result the computed IC factorization is a
poor approximation to the matrix B(a) = AAT + «. In other words, B(a) is close
to the original matrix AAT | but the IC(0) factorization is far from B(a). For large
« the contrary is true. The matrix B(«) has a large deviation from B(0) but its
IC(0) factorization may be quite good. Therefore, the general shape of the curve
shown in the figure is not too surprising.

A heuristic that worked reasonably well is to select o based on an approximation
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iterations
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FIGURE 1: Iteration count versus shift parameter o

of the equation
dk+1 = Q41 — U%L;T D;llelvk

which is derived from (5), by exploiting symmetry of the original matrix. We
assume that all columns of A are scaled such that their 2-norms are equal to one.
Thus, ag4+1 = 1 and all diagonal elements of Ay, are equal to one. If all elements are
shifted by «, and if the ezact factorization were to be performed instead of IC(0)
then the term ng;T D;nglvk would become vg(Ak + aI)_lvk and we would
obtain the ideal relation,

di41 = app1 + o — vg(Ak + aI)_lvk .

Since the diagonal elements of the matrix Ay are all equal to one, a rough approx-
imation of vl (A + al)~tvy is given by

[lvel3
14+a’

Note that the larger « is the better this approximation. The idea is to choose «
so that the resulting d’s obtained from this approximation would be larger than a
certain number which we take in the form 2¢ for convenience. Let

_ 2
0= max [lugll;

FEERE)

Then, we would like to have,

Ui
d =1 - >2
k41 + « 1+a—€

which, leads to the condition

a>\/n+e+e—1 (7)
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Because of the various approximations made, this strategy is not guaranteed to
work. The larger € the safer the resulting «, i.e., the better the chances that the
IC(0) factorization will exist for the shifted matrix. In our test cases we typically
take € = 0.2. In case of breakdown the easiest solution is to increase €, recompute
a new « and attempt a new IC(0) factorization with this new shift.

3.5. APINV

There is currently a growing interest in techniques which seek to precondition a
linear system by exploiting a sparse approximation to the inverse of A 1.8,3,9,12,11,2
motivated in large part by parallel processing.

One approach of this type consists of finding a matrix M such that AM is close
to the identity matrix. Then the preconditioned system is of the form,

AMy=0b, xz=My.

Each column m; of M can be obtained by approximately solving the linear system
Am; = ej. In 2 we exploited the observation that the iterates produced by algo-
rithms such as GMRES or MR, stay sparse if the initial guess is sparse. Initially,
the approximate inverse M is taken to be the identity matrix. Rough approxima-
tions can be obtained inexpensively by performing a very small number of steps
starting with the columns of the current M. Once a first approximation of M is
obtained we can improve it by incorporating it in an outer loop which takes as
initial guess the columns of the most current M and improves it with a few steps
of sparse-sparse mode iterative technique. A potential improvement can be ob-
tained by using the most recent approximate inverse to precondition the system
solved when approximating a column. We refer to this as self-preconditioning. The
inner-outer algorithm looks as follows.

ALGORITHM 6 . Self-preconditioned Minimal Residual iteration

1. Start: M = My

2. For outer = 1,2,...,n, do

3. For each column j =1,...,n do

4. Define s := Me;

5. For inner = 1,...,n; do

6. ri=¢ —As, z=Mr

7. q:= Az

8. o= %

9. s =s+az

10. Apply numerical dropping to s
11. End do

12. Update j-th column of M: m; := s
13. End do

14. End do



PRECONDITIONED KRYLOV SUBSPACE METHODS FOR CFD APPLICATIONS 13

Approximate inverse preconditioners have the advantage of not requiring any
forward/backward triangular solution sweeps. Instead, the preconditioning opera-
tion requires only a matrix-vector product. This means that there are no potential
instabilities in the preconditioning operations. An additional benefit is that paral-
lelization is trivial.

One of the disadvantages of approximate inverse preconditioners is that it is
not easy to guarantee that the preconditioning matrix M is nonsingular. More
precisely, we can guarantee that M is nonsingular only if the approximation is
accurate enough, which most often leads to unrealistic conditions. Furthermore, in
the non-diagonal dominant case, we do not know in advance whether or not there
exists indeed an approximate inverse which is sparse enough to be practically useful.
This means that the sparse approximate inverse may have to be quite dense in order
to be accurate enough 2. In spite of this, Approximate Inverse preconditioners seem
to constitute a promising alternative to incomplete factorizations for very indefinite
matrices.

4. NUMERICAL TESTS

We tested a few preconditioned Krylov subspace methods based on a set of precon-
ditioners chosen from the ones described above and the accelerators DQGMRES
or FGMRES. We would like to point out that all the test matrices referred to in
this section are available through anonymous FTP; for more information contact
the author.

We first consider a lid-driven cavity problem as modeled by the Navier-Stokes
and continuity equations,

Re(u.Vu) —Vp+ V.Vu
Vu = 0

on a square. The boundary conditions u = (1, 0) on the top edge of the square and
u = (0,0) on the other sides. Rectangular elements were used, with biquadratic
basis functions for velocities, based on nine edge nodes, and linear (discontinuous)
basis functions for pressure based on three internal (Gauss-Legendre) nodes for each
element.

We generated 11 linear systems corresponding to Reynolds number varying from
Re = 0 to Re = 1000. All matrices arise from a regular mesh using 20 x 20
rectangular elements, leading to matrices of size n = 4562 and having nnz =
138, 187 nonzero entries. The ordering of the unknowns was velocity components
followed by pressure. Because of the incompressibility condition, there are many
zero elements within the main diagonal. All matrices were scaled so that the rows
have 2-norm one and then the resulting columns were scaled similarly. Then we
generated a right-hand side by taking the product of A with the vector consisting
of all ones. The initial guess to the solvers are zero vectors. Table 2 shows the
number of matrix-vector products that were needed to achieve convergence. Note
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Re. [ ILUTP(30) | ILUT(30) | ILUTP(15) | ILUS(30) | ILUSNR(30)
0 20 20 38 27 556
100 20 20 41 36 518
200 20 20 42 40 460
300 23 23 54 42 396
400 22 22 63 47 412
500 23 23 61 49 364
600 23 23 74 59 420
700 25 25 51 63 370
800 33 33 60 79 460
900 40 40 126 95 396
1000 79 80 117 132 518

TABLE 2: Number of MatVec’s required for convergence for the driven cavity test problems

that the number of nonzero elements per row required to store the LU factors for
ILUT(k) and ILUTP(k) are 2k in addition to the original number of the original
nonzero elements in each row. For ILUS(k) this number is only k. So ILUS(30) and
ILUT(15) require about the same storage. In view of this, ILUS and ILUT yield
very close performance for roughly the same memory usage. ILUSNR consisted of
solving the normal equations A7 Az = ATb using the preconditioned produced by
ILUS on the shifted matrix A7 A4 aI. In this case, alpha was selected to be a 0.01
times the shift that would ensure diagonal dominance. This is somewhat arbitrary
but the more rigorous choice of the shift dictated by diagonal dominance leads to
slow convergence or non-convergence. A lower alpha was sometimes possible in
these examples, but lead to non-existent factorizations in many other cases. For
the ILUT, ILUTP, and ILUS preconditioners, we used GMRES acceleration with a
Krylov subspace of dimension 20. The algorithms were stopped when the residual
norm has been decreased by a factor of 107.

The ICNE strategy using IC(0) with the shift computed as suggested in Section
3.4. did not perform too well for these examples. Generally speaking most of the
approaches related to the normal equations have not been competitive with the
other ones for the types of problems that are discussed in this paper.

We also worked with a second set of test matrices which originated from the
Package FIDAP 6. We have collected 40 test matrices from different applications
which were provided in the package. They all solve the fully coupled, incompressible
Navier Stokes equation, either in 2-dimensional or three dimensional space. We
show the results with only 29 of the matrices. Some of the problems which we
do not show are too easy to solve. The matrices arise from modeling various
phenomena ranging from turbulent flow to Stokes flow and chemical convection-
diffusion equations. We list below a few characteristics of some of the problems.
For more information, see 6.

o Three-dimensional flows: 2, 40. All others are two-dimensional.
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APINV(60)

Prob N || ILUTP | ILUT | no=1 | n,=2 | no=3 | no =4 | n, =5
02 441 300 2 300 300 300 300 300
03 1821 300 300 300 220 60 57 53
04 1601 9 9 300 300 300 300 300
06 1651 93 300 300 300 300 300 300
07 1633 300 300 55 43 30 25 20
08 3096 300 300 300 300 300 300 300
09 3363 err 300 300 151 119 136 99
10 2410 300 300 300 300 209 129 93
12 3973 58 300 300 300 300 300 300
13 2568 err 300 71 87 57 54 51
14 3251 300 err 300 300 300 300 300
15 6867 300 300 300 138 118 300 300
18 5773 300 300 300 300 300 300 300
19 12005 300 300 300 300 300 300 300
20 2203 9 13 234 182 300 131 298
21 656 9 21 300 300 300 300 300
22 839 4 8 300 300 300 300 221
23 1409 11 16 300 300 300 300 300
24 2283 18 300 300 300 300 300 300
25 848 7 300 300 300 300 300 247
26 2163 300 78 300 300 300 300 300
27 974 4 280 300 300 300 300 300
28 2603 9 10 300 300 300 300 300
31 3909 8 9 300 300 300 300 300
32 1159 23 3 300 300 300 300 300
33 1733 300 300 214 112 144 300 55
35 19716 300 300 300 300 300 300 300
36 3079 8 300 300 300 300 300 300
40 7740 18 18 300 300 300 300 300

TABLE 3: Results for the FIDAP test problems

15



16 Y. SAAD

e Flows involving heat transfer: 9, 13, 14, 32, 33, 35.
o Turbulent flow models: 14, 18, 19, 35,

e Problems leading to symmetric linear systems: 2, 3, 4, 9, 10, 12, 13, 14, 15, 32,
33.

e Other: 12 (Stokes), 2 (Couette flow), 4 (Hamel flow), 7 (Convection).

The accelerator used for all the above problems was DQGMRES(15). Notice that
for the symmetric case, we are not taking advantage of symmetry. We could have
used ILUS with a CG algorithm for these problems instead. The algorithms were
stopped when the residual norm has been decreased by a factor of 10° or the number
of iterations exceeded 300. Thus, a performance showing 300 steps means that the
method did not converge in a satisfactory number of steps.

There are a few problems which could not be solved with either the ILU-type
approach or the APINV approach. One interesting observation from the table is
that the ILUT-type preconditioners and the APINV preconditioners are in some
sense complimentary, in that in many cases where the ILUT approach fails, the
APINYV approach succeeds, and vice-versa.

5. CONCLUDING REMARKS

We would like to make the following tentative concluding remarks. We are cur-
rently investigating a whole range of preconditioning techniques and accelerators
for solving indefinite problems arising from various application areas. The solution
of highly indefinite problems that arise in many of these areas, including fluid flow
problems, can be very hard to solve by general purpose iterative techniques. We
observed that the main source of difficulties lies in the preconditioner which, in
such cases, may give rise to instabilities or inaccurate approximate factorizations.
It is often possible to still solve the linear systems by using more accurate factor-
izations, or approximate inverse preconditioners. The only difficulty with these is
that they are very demanding in terms of memory. In fact, it seems that in order to
gain robustness one must require more memory. It is conceivable that more can be
done from the start, e.g., by formulating a model and a discretization scheme that
will lead to problems that are easier to handle by iterative methods. For example,
one can think of time stepping techniques for steady state problems. Although the
transient solutions may not be needed, it is clear that the intermediate problems are
easier to solve because of the underlying ‘continuation’ approach. This approach,
or any other continuation procedure, may be very slow since we may now have to
solve a very large set of easier problems. The ultimate issue may well be one of
trading large memory usage versus large CPU usage.
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