
Multilevel preconditioners constructed from

inverse–based ILUs

∗Matthias Bollhöfer and †Yousef Saad

May 17, 2004

Abstract

This paper analyzes dropping strategies in a multilevel incomplete LU decomposi-
tion context and presents a few of strategies for obtaining related ILUs with enhanced
robustness. The analysis shows that the Incomplete LU factorization resulting from
dropping small entries in Gaussian elimination produces a good preconditioner when
the inverses of these factors have norms that are not too large. As a consequence
a few strategies are developed whose goal is to achieve this feature. A number of
“templates” for enabling implementations of these factorizations are presented. Nu-
merical experiments show that the resulting ILUs offer a good compromise between
robustness and efficiency.

Keywords: incomplete LU-decompositions, ILU, preconditioning, multilevel
ILU, approximate inverse, algebraic multilevel method, iterative solver.

AMS subject classification: 65F05, 65F10, 65F50, 65Y05.

1 Introduction

In recent years, research on “black-box” techniques for solving sparse linear systems of
equations has accelerated due to two factors. First, linear systems are becoming ever more
difficult to solve due to their bigger sizes. In spite of recent progress in parallel direct solvers
[8, 20, 13], practitioners are looking at cheaper alternatives. The second factor is that
preconditioning methods have also made some tangible progress in improving robustness.
Iterative methods based on Preconditioned Krylov subspace techniques are increasingly

∗Dept. of Mathematics, MA 4-5, TU Berlin. Supported by DFG research center FZT-86 “Math-
ematics for key technologies” in Berlin. email: bolle@math.tu-berlin.de. URL: http://www.math.tu-
berlin.de/∼bolle/.

†Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E.,
Minneapolis, MN 55455. Work supported by the National Science Foundation under grants NSF/ACI-
0305120 and NSF/INT-0003274, and by the Minnesota Supercomputer Institute. Institute. email:
saad@cs.umn.edu, URL: http://www.cs.umn.edu/∼saad/

1

viewed as attractive alternatives to direct solvers, both for structured problems such as
those arising from discretized partial differential equations, and for systems arising from
applications areas which yield highly unstructured systems and for which iterative methods
were viewed as ineffective in the past.

One essential improvement for the use Krylov subspace solvers consists of preconditioning
methods [18], in particular methods based on incomplete LU decompositions [16]. One
of the first attempts at using Krylov subspace methods as a general purpose ’black-box’
solver was by Simon [21] who used standard (symmetric) reordering techniques from direct
solution methods to preprocess matrices prior to applying level-of-fill ILU. More recent
work which employs nonsymmetric reordering strategies [10, 2] indicates that systems
arising from a wide range of applications can be successfully solved by this approach in
conjunction with ILUs.

Apart from this progress, there still remains a drawback of incomplete LU decompositions
which is that they are sensitive to parameters such as the drop tolerances, or certain
static reordering strategies. Progress has been made in improving the stability of ILUs by
taking into account the inverse triangular factors [5, 3, 14]. Also combining incomplete LU
decompositions in a hierarchical fashion with preordering pivoting strategies [17] helps in
improving stability of the preconditioner.

In this paper we will discuss the rationale for a new multilevel strategy which mainly
focuses on keeping the inverse triangular factors bounded. This is justified by an analysis
that indicates that stability can be enhanced by this approach.

2 Impact of dropping on the preconditioned system

This section analyzes how a perturbation introduced by dropping small terms while com-
puting incomplete LU decompositions affects the preconditioned system. This analysis will
help design incomplete LU factorization preconditioners with improved robustness.

2.1 The inverse error for a single level

We start with a partial factorization of our matrix that is terminated after k steps. We
assume that the initial n× n nonsingular matrix A is rearranged as

P>AQ =

(
B F
E C

)

,

where the leading matrix B is nonsingular and of size k × k and P and Q are suitably
chosen permutation matrices. Suppose that this matrix is approximately factored as

(
B F
E C

)

=

(
L̃B 0

L̃E I

)(
D̃B 0

0 S̃

)(
ŨB ŨF

0 I

)

+ Ek ≡ L̃kD̃kŨk + Ek.(1)

Here, L̃B and Ũ
>
B are unit lower triangular and D̃B is diagonal. The matrix S̃ is an approx-

imation to the Schur complement S = C −EB−1F . Assume for simplicity that we do not

2

encounter zero pivots. We note that in principle one could generalize the following analysis
using pivoting. To keep the analysis simple we assume that no pivoting is necessary for
this partial incomplete factorization.

At any given step l = 1, . . . , k entries of L̃l and Ũ>
l may be dropped in some positions

(m, l), where m > l. We represent these dropped values by an n× n matrix

Vl =
(
v1 · · · vl 0 · · · 0

)
=

@
@

0

0

@@ 0

0

(2)

for L̃l and

Wl =

w>
1
...
w>
l

0
...
0

=

@
@

0

0

@@

0 0

(3)

for Ũl. The elimination process adds one row/column at every step l.
Depending on how the approximate Schur complement S̃ is defined a different error matrix
Ek will be obtained. We will only distinguish between two choices.

S-Version: Corresponds to the “simple” approximate Schur complement defined by

S̃ = C − L̃ED̃BŨF .(4)

T-Version: This corresponds to the more expensive Schur complement proposed in [22]
and defined by

T̃ =
(

−L̃EL̃
−1
B I

)
P>AQ

(
−Ũ−1

B ŨF

I

)

.(5)

Note that the T-version of the Schur complement results from applying the inverse factors
L̃−1
k to the left and Ũ−1

k to the right to P>AQ and taking the lower right block. Obtaining
T̃ does not really require inverting L̃B and ŨB. It can be computed by updating T̃ by a
low-rank matrix at each step l = 1, . . . , k.

The next result shows how the error matrix Ek can be characterized for the two choices of
the approximate Schur complement.

Lemma 1 Using the above notation we obtain for the S–version (4)

Ek = VkD̃k + D̃kWk,(6)

and for the T–version (5),
Ek = VkD̃kŨk + L̃kD̃kWk.(7)

3

Proof.
We will show this by induction. Initially at step l = 0 there is no error present and we set
V0 =W0 = 0 and L̃0 = Ũ0 = I.

Now going from step l − 1 to step l (l 6 k) we have

P>AQ = L̃l−1D̃l−1Ũl−1 + El−1.

To distinguish between step l − 1 and l we add a subscript l to all matrices. We partition
the approximate Schur complement S̃l−1 from D̃l−1 as

S̃l−1 =

(
β f>

e Ĉ

)

.

At step l we get
L̃l = L̃l−1

(
I + [y − v] e>

l

)
.

where

y =

0
0

β−1e

← size = l − 1
← size = 1
← size = n− l

is the leading column of the approximate Schur complement divided by the diagonal entry
and

v =

0
0

β−1εe

denotes the vector of those entries from y that are dropped at step l. For the U-part, we
similarly obtain

Ũl = (I + el(z − w)>)Ũl−1,

where
z> =

(
0 0 f>/β

)

and
w> =

(
0 0 ε>

f /β
)

denotes the vector of those entries from z being dropped.

We now consider the S–version and T–version separately, beginning with the S–version.
For the S–version the next approximate Schur complement S̃l is set as

S̃l = Ĉ − (e− εe)β
−1(f − εf)

>.

It follows that

L̃lD̃lŨl

=

LB,l−1 0

LE,l−1

(
1 0

e−εe

β
I

)

DB,l−1 0 0
0 β 0

0 0 S̃l

UB,l−1 UF,l−1

0

(

1
(f−εf)>

β

0 I

)

4

=

(
LB,l−1 0
LE,l−1 I

)

DB,l−1 0 0
0 β (f − εf)

>

0 e− εe Ĉ

(
UB,l−1 UF,l−1

0 I

)

= L̃l−1D̃l−1Ũl−1 − vβe>
l − elβw

>

By induction we already have

L̃l−1D̃l−1Ũl−1 = P>AQ− El−1 = P>AQ− Vl−1D̃l−1 − D̃l−1Wl−1

and by definition we have v = Vlel and w> = e>
l Wl. The leading l× l part of D̃l is diagonal

and the (l, l) entry is just β. Thus we obtain

L̃lD̃lŨl = P>AQ− Vl−1D̃l−1 − D̃l−1Wl−1 − vβe>
l − elβw

> = P>AQ− VlD̃l − D̃lWl,

which shows (6).

We now consider the T–version. In contrast to the S–version, for the T-version now we get
for T̃l

T̃l =

(

−(e− εe)
1

β
, I

)

S̃l−1

(−(f − εf)
> 1
β

I

)

= Ĉ − e
1

β
f> + εe

1

β
ε>
f .

From this it follows that

L̃−1
l P>AQŨ−1

l = L̃−1
l

(

L̃l−1D̃l−1Ũl−1 + El−1

)

Ũ−1
l

= (I − (y − v)e>
l)D̃l−1(I − el(z − w)>)

+L̃−1
l Vl−1D̃l−1(I − el(z − w)>)

+(I − (y − v)e>
l)D̃l−1Wl−1Ũ−1

l

= D̃l + vβe>
l + elβw

>

+L̃−1
l Vl−1D̃l−1

+D̃l−1Wl−1Ũ−1
l

For the last equation we used the definition of D̃l and in particular that of T̃l. Also note
that only the leading l−1 columns of Vl−1D̃l−1 are nonzero (analogously e

>
l D̃l−1Wl−1 = 0).

It is easy to verify that vβe>
l = L̃−1

l vβe>
l since the leading l entries of v are zero. A similar

argument can be made for elβw
>. Altogether we have

L̃−1
l P>AQŨ−1

l = D̃l + L̃−1
l VlD̃l + D̃lWlŨ−1

l

since vβe>
l and elβw

> are the l column/row of VlD̃l and D̃lWl. This completes the proof. 2

A corollary of the representation of the error is obtained when we consider the inverse error

Fk = L̃−1
k EkŨ−1

k .(8)

5

Corollary 2 Under the assumptions of Lemma 1 we have for the S–version

Fk = L̃−1
k VkD̃kŨ−1

k + L̃−1
k D̃kWkŨ−1

k .(9)

and for the T–version we obtain

Fk = L̃−1
k VkD̃k + D̃kWkŨ−1

k .(10)

An important consequence of Corollary 2 is that the inverse triangular factors L̃−1
k and Ũ−1

k

amplify the size of the entries being dropped during the incomplete LU decomposition. For
the S–version this impact is likely to be stronger since both inverse factors contribute to
the error at the same time.

An interesting observation can be made when taking a detailed look at the patterns of the
inverse errors. To do this, partition Vk and Wk as

Vk =
(

VB 0
VE 0

)

≡

@
@

0

0

@@ 0

0

 , Wk =

(
WB WF

0 0

)

≡

@
@

0

0

@@

0 0

 .(11)

Then the inverse error of the S–version can be sketched with a pattern

Fk =

@
@

0

0

@@

(

@
@@

)

︸ ︷︷ ︸

(L̃−1
k

VkD̃k)·Ũ−1
k

+

@
@@

(

@
@

0

0

@@

)

︸ ︷︷ ︸

L̃−1
k

·(VkD̃kŨ−1
k

)

,

which shows that the error produced by dropping in the lower triangular part also con-
tributes to the upper triangular part and vice versa. However this is different for the
T–version. Here we have

Fk =

@
@

0

0

@@ 0

0

︸ ︷︷ ︸

L̃−1
k

VkD̃k

+

@
@

0

0

@@

0 0

︸ ︷︷ ︸

D̃kWkŨ−1
k

,

showing that dropping in the lower/upper triangular part produces errors in these parts
only, and by the definition of the approximate Schur complement there clearly will be no
perturbation in the lower right block. Note also that for the T–version, there are no errors
in the (2,2) block, which is not surprising since the Schur complement is in fact computed
exactly from applying the inverses of the (inexact) factors Lk and Uk to P>AQ.

Let d̃1, . . . , d̃k be the leading k diagonal entries of D̃k. If we keep in mind that the entries
being dropped at step l are the entries in column l of Vl and W>

l , then we can see that for
the S–version we have

Fk =
∑

l6k

(

L̃−1
k vld̃le

>
l Ũ−1

k + L̃−1
k eld̃lw

>
l Ũ−1

k

)

.(12)

6

And, analogously for the T–version,

Fk =
∑

l6k

(

L̃−1
k vld̃le

>
l + eld̃lw

>
l Ũ−1

k

)

.(13)

Equation (12) implies that the perturbation introduced at step l of the incomplete LU
decomposition is given by

L̃−1
k vld̃le

>
l Ũ−1

k

from the L-part and
L̃−1
k eld̃lw

>
l Ũ−1

k

from the U–part. For the T–version one can skip one of the inverse factors as can be seen
from (13). This indicates that it is wise to incorporate the norm ‖L̃−1

k ‖ into the dropping
strategy at step l when entries of Ll. In principle one should also include the norm ‖Ũ−1

k ‖
in the S–version case when dropping in Lk. Similar arguments apply when dropping in Uk.
Unless we control the growth of L̃−1

k and Ũ−1
k and keep their norm below a constant κ, the

error introduced by dropping at step l can be arbitrarily amplified by the inverse factors.

Corollary 3 Assume that ‖L−1
l ‖ 6 κ and ‖U−1

l ‖ 6 κ for steps l = 1, . . . , k, where κ > 0
is a prescribed bound. Denote by d̃l be the leading diagonal entry of the approximate Schur
complement at step l.

1. Let s̃lj and s̃il for i, j > l the entries in the leading column and row of the approximate
Schur complement at step l. Suppose that the S–version is used and entries s̃lj, s̃il
are dropped only if

κ2|s̃lj| 6 ε|d̃l|, κ2|s̃il| 6 ε|d̃l|,
then

Fk =
k∑

l=1

FL,l +
k∑

l=1

FU,l.

where FL,l and FU,l are rank–1 matrices such that any entry is bounded by ε|d̃l|.

2. Let t̃lj and t̃il for i, j > l the entries in the leading column and row of the approximate
Schur complement at step l. In case of the T–version assume that for i, j > l, t̃lj and
t̃il are dropped only if

κ|t̃lj| 6 ε|d̃l|, κ|t̃il| 6 ε|d̃l|,
then

Fk = FL,kD̃k + D̃kFU,k.
where

max
i,j

e>
i |FL,k|ej 6 ε, max

i,j
e>
i |FU,k|ej 6 ε.

Proof.
The results follow immediately from the assumptions and Equation (12) for the S–version
case and (13) for the T–version case. 2

7

2.2 The Multilevel framework

Multilevel ILU procedures do not usually proceed until k = n but rather stop at a certain
step k, and post-pone factoring the remaining part to the next level. Thus, one can write
at a given level η,

P>AηQ =

(
B F
E C

)

=

(
L̃B 0

L̃E I

)(
D̃B 0

0 S̃

)(
ŨB ŨF

0 I

)

+ Ek → Aη+1 = S̃

Post-poning the factorization of Aη+1 ≡ S, may be mandatory because the prescribed
bound may otherwise be exceeded. When considering the next level matrix Aη+1, spe-
cific techniques, such are nonsymmetric permutations, can be invoked to ensure that the
factorization at this level is more accurate and reliable. The simple version of the Schur
complement is often preferred since it leads to less fill–in than the T–version. However,
the stability analysis seen above has shown that this version is much more sensitive to
perturbations. On the other hand the T–version gains from its higher robustness but it
will suffer from the fact that it is more expensive to compute and it may have significantly
more fill–in.

A natural way of combining the S–version and the T–version in a multilevel framework,
could be to approximate B only using the S–version. This could still give a good approxi-
mation as long as B is, say, close to being diagonal dominant. But for the next level which
requires the remaining Schur complement, one could switch to the T–version. This leads
to the M-version

M-version: Define the approximate Schur complement via,

M̃ =
(

−L̃EL̃
−1
B I

)
P>AQ

(
−Ũ−1

B ŨF

I

)

,(14)

at step k and via the S-version prior to step k.

The motivation for this variant is that in a multilevel approach, it sometimes possible to
ensure that the factors of the B block are nicely bounded. In this situation it pays to
compute the Schur complement more accurately and the T–version may be ideal for this.

Corollary 4 Suppose that the partial incomplete LU decomposition is computed via the
M–version, i.e., from step l = 1, . . . , k the S–version is used, but at step k, the remaining
approximate Schur complement is defined via the T–version. Set

Π =

(
0 0
0 I

)

.

Then the inverse error satisfies

Fk =
(

L̃−1
k VkD̃kŨ−1

k + L̃−1
k D̃kWkŨ−1

k

)

− Π
(

L̃−1
k VkD̃kŨ−1

k + L̃−1
k D̃kWkŨ−1

k

)

Π.(15)

8

Proof.
Since we compute until step k the incomplete LU decomposition via the S–version, we will
have until that step

Ek = VkD̃k + D̃kWk.

As we now switch to the T–version it means that we precisely have

M̃ =
(
0 I

)
L̃−1
k (P

>AQ)Ũ−1
k

(
0
I

)

⇒
(
0 I

)
Fk
(
0
I

)

= 0.

This means that there will be no error in the lower right block. 2

The inverse error that has been computed so far is based on the assumption that the
approximate factorization from (1) is used with either the S–version or the T–version as
approximate Schur complement. Since we would like to use this ILU in a multilevel context,
we do not have to keep the factors L̃E and ŨF . Instead we can substitute them by EŨ

−1
B D̃−1

B

and D̃−1
B L̃−1

B F . Keeping in mind that we will not compute these factors explicitly but only
solve systems with them this leads to the approximate factorization

(
B F
E C

)

=

(
L̃B 0

EŨ−1
B D̃−1

B I

)

︸ ︷︷ ︸

L̃k

(
D̃B 0

0 S̃

)

︸ ︷︷ ︸

D̃k

(
ŨB D̃−1

B L̃−1
B F

0 I

)

︸ ︷︷ ︸

Ũk

+Ek.(16)

In this case one can easily see that the error and the inverse error only show up in the
B–part and the C–part.

Theorem 5 Suppose that we use the partial incomplete LU decomposition from (16). Let
Vk and Wk be partitioned as in (11). Then the following holds for the inverse error.

1. In case of the S–version we obtain

Fk = L̃−1
k

(
VBD̃B + D̃BWB 0

0 0

)

Ũ−1
k .

2. For the M–version we obtain

Fk = L̃−1
k

(
VBD̃B + D̃BWB 0

0 0

)

Ũ−1
k − ΠL̃−1

k

(
VBD̃B + D̃BWB 0

0 0

)

Ũ−1
k Π,

where Π is chosen as in Corollary 4.

Proof.
From (16) one can immediately see that

Ek =
(
∗ 0
0 ∗

)

9

Then the assertion follows immediately from Corollary 2, Corollary 4. 2

Remark. In principle for the T–version the same approach leads to analogous bounds
which are more complicated. But one essential property will be lost: Entries dropped in
the lower triangular part would only contribute to the perturbation in this part (similar
for the upper triangular part).

2.3 The inverse error contribution from lower levels

In the multilevel context the best we can achieve is to find permutation matrices PC and
QC for the approximate Schur complement S̃ such that

P>
C S̃QC

P>
C M̃QC

P>
C T̃QC

= LCDCUC + EC ,

where DC is diagonal, ‖L−1
C ‖, ‖U−1

C ‖ 6 κ with a reasonable small inverse error FC =
L−1
C ECU−1

C . In this case we finally end up with an approximate factorization

(
I 0
0 L−1

C P>
C

)

L−1
k P>AQU−1

k

(
I 0
0 QCU

−1
C

)

=

(
DB 0
0 DC

)

+

(
I 0
0 L−1

C P>
C

)

Fk
(

I 0
0 QCU

−1
C

)

+

(
I 0
0 FC

)

.

This result indicates that the inverse error might be amplified by the additional inverse
factors L−1

C and U−1
C from the lower levels. Although this is an extremal case and we expect

this to rarely happen in practice, this suggests again that it is strongly advisable to keep
also the inverse factors L−1

C and U−1
C bounded.

2.4 Perturbation of the approximate Schur complement

The results discussed so far dealt with perturbations introduced by dropping compared
with the diagonal part and the remaining approximate Schur complement

D̃k =

(
D̃B 0

0 X̃

)

,

where X̃ is one of S̃, M̃ , or T̃ . Nothing has been said so far about the error between the
approximate Schur complements S̃, M̃ and T̃ and the exact Schur complement S = C −
EB−1F . This information is of great importance since the approximate Schur complement
will be used as input matrix for the next level. The perturbation results deal only with
the approximate Schur complement and as long as the inverse triangular factors are kept
bounded it is likely that the errors are small. But in a relative sense even small perturbations

10

may have a serious impact on the preconditioned system if the diagonal entries of Dk

become small in absolute value. This may be a property of the underlying original system.
But this may in particular happen if the approximate Schur complement becomes ill–
conditioned.

For this reason we will investigate the error introduced to the approximate Schur–
complement by computing the incomplete LU–factorization. An incomplete LU–
decomposition results in an approximate factorization from (1) of the type

A = L̃kD̃kŨk + Ek,

where it is assumed that no pivoting is necessary to ensure that ‖L̃k‖, ‖Ũk‖ 6 κ. Suppose
that we can also exactly factor A as

A = LkDkUk,

where

Lk =
(

LB 0
LE I

)

, Uk =
(

UB UF

0 I

)

, Dk =

(
DB 0
0 S

)

,

and LB, U
>
B are unit lower triangular, DB is diagonal and S is the exact Schur complement.

Comparing the exact Schur complement and the approximate Schur complements we find
that

L̃−1
k LkDkUkŨ−1

k = D̃k + Fk
Looking only at the lower right block yields

S̃

M̃

T̃

= S − L̃EL̃

−1
B (LB − L̃B)DB(UB − ŨB)Ũ

−1
B ŨF − (0, I)Fk

(
0

I

)

.(17)

From this equation we can see that the error between the exact and approximate Schur
complements is driven by

1. the previous error LB − L̃B and UB − ŨB between both factorizations,

2. the inverse error (0, I)Fk
(

0
I

)
produced by dropping and the choice of the approximate

Schur complement and,

3. the norm of the inverse triangular factors L̃−1
k and Ũ−1

k (i.e. ‖L̃EL̃
−1
B ‖, ‖Ũ−1

B ŨF‖ 6 κ).

Suppose that the error from previous steps is bounded by ε. If we ensure that at step k
entries are dropped such that ‖(0, I)FK

(
0
I

)
‖ 6 ε and that ε2κ2 6 ε, then the remaining

error in (17) will reveal the same order ε. We will summarize this observation in a theorem.

Denote the entries of the approximate Schur complements S̃(l), T̃ (l) after l = 1, . . . , k steps
of incomplete Gaussian elimination by s̃

(l)
ij (t̃

(l)
ij respectively). To simplify the analysis we

assume that
Γ > |s̃(m)

ll |, |t̃
(m)
ll | > γ,(18)

11

m = 0, . . . , k, l = 1, . . . , k. For the leading k diagonal entries this means that they are
approximately of the same order. Initially this can be achieved by scaling and reordering
which will in fact be done in the section on numerical examples.

Theorem 6 Under the assumption (18) the following holds provided that the inverse tri-
angular factors are bounded by some prescribed constant κ. Assume that the prescribed drop
tolerance ε is less than 1

κ2 .

1. For the S–version we suppose that in every step m, m = 1, . . . , k the entries lim and
umj of L̃m and Ũm are dropped only if

|l̃im|, |ũmj| 6
ε

κ2
.

Then there exists a constant K such that for any entry i, j of the Schur complements
we have

|sij − s̃ij| 6 Kε

2. For the M–version we consider the same conditions as for the S–version. Then there
exist a constant K such that for any entry i, j of the Schur complements we have

|sij − m̃ij| 6 K(κε)2.

3. We finally require for the T-version that in every step m, m = 1, . . . , k the entries
lim and umj of L̃m and Ũm are dropped at most if

|l̃im|, |ũmj| 6 ε.

Then there exist a constant K such that for any entry i, j of the Schur complement
we have

|sij − t̃ij| 6 K(κε)2.

Proof.
Suppose that at step m we have

|s(m)
ij − s̃

(m)
ij | 6 Kε,

for the S– and M–version, respectively |s(m)
ij − t̃

(m)
ij | 6 Kε for the T–version.

Because of (18) it follows that there exists a further constant C such that

|lij − l̃ij|, |uji − ũji| 6 Cε, j = 1, . . . ,m, i > j.

From (17) we obtain that after step m+1, the error |s(m+1)
ij − s̃

(m+1)
ij | and |s(m+1)

ij − t̃
(m+1)
ij |

can be bounded by

max |L̃EL̃
−1
B (LB − L̃B)DB(UB − ŨB)Ũ

−1
B ŨF |+max |(0, I)Fk

(
0

I

)

|.

12

For the first part we obtain the bound

max |L̃EL̃
−1
B (LB − L̃B)DB(UB − ŨB)Ũ

−1
B ŨF | 6 Γε2κ2.

Since εκ2 < 1, we see that

max |L̃EL̃
−1
B (LB − L̃B)DB(UB − ŨB)Ũ

−1
B ŨF | 6 Γε.

Suppose we can show that the entries |s(m+1)
ij − s̃(m+1)

ij | and |s(m+1)
ij − t̃(m+1)

ij | are bounded by
Kε, then the same has to hold for the (m+1). column of Lm+1− L̃m+1 and U>

m+1− Ũ>
m+1,

since by hypothesis (18) the diagonal entries of the approximate Schur complement are
uniformly bounded away from zero.

It remains to show that we can bound the error |s(m+1)
ij − s̃

(m+1)
ij |, |s(m+1)

ij − t̃
(m+1)
ij | by Kε,

i.e. we have to show that

max |(0, I)Fk
(
0

I

)

| 6 Lε

for some constant L.

1. According to Theorem 5, for the S-version we will have

Fm+1 = L̃−1
m+1

(
VBD̃B + D̃BWB 0

0 0

)

Ũ−1
m+1.

Thus, if the entries in LB and UB in every step are dropped at most if they are less
than ε/κ2, then the inverse error is also bounded by a constant L times ε. From this

it follows that the error |s(m+1)
ij − s̃

(m+1)
ij | remains below a constant times ε.

2. For step 1, . . . , k, the M-version and the S-version are the same. The difference be-
tween the M-version and the S-version is that after the final step k the remaining
Schur complement is computed in a different way, i.e. the lower right block of the
inverse error Fk vanishes.

3. For the T-version we note that by Corollary 2 the inverse error Fm is given by

Fm = L̃−1
m VmD̃m + D̃mWmŨ−1

m .

I.e. only the entries that are dropped in L̃m and Ũm are only amplified by one inverse
triangular factor. But by construction there is no inverse error in those positions,
where the entries of the approximate Schur complement T̃ are located. Thus we
don’t have to divide by κ (or κ2). Since εκ2 < 1, the error between the exact and the
approximate Schur complements can be estimated by some constant K times ε.

2

Remark.

13

• For Theorem 6 it is essential to require that (18) be fulfilled. This is needed to
ensure that the leading k diagonal entries of the approximate Schur complement are
uniformly bounded away from zero as well as to protect L̃EL̃

−1
B (LB − L̃B)DB(UB −

ŨB)Ũ
−1
B ŨF from being amplified by too large diagonal entries in DB.

This certainly indicates a strong need for preordering and scaling algorithms that
properly prepare the leading block B. To safeguard this process, small diagonal pivots
should be moved to the end. This is a side-effect of keeping the inverse triangular
factors below a bound κ, since κ|s(m)

mm| > maxi,j{|s(m)
im |, |s

(m)
mj |} is necessary to keep the

inverse triangular factors below κ.

• From Theorem 6 we may conclude that the entries of L̃k and Ũk outside the leading k×
k block are not needed at all. This is only true if the approximate Schur complement
is not computed from these entries but using L̃k, Ũk from (16). Otherwise, using
Corollary 2 we need to keep

max |Fm+1| = max |L̃−1
m+1Vm+1D̃m+1Ũ−1

m+1 + L̃−1
m+1D̃m+1Wm+1Ũ−1

m+1| 6 Lε,

which shows that even the entries in the E and F block need to be less than ε/κ2.

3 Inverse–based multilevel ILUs

Corollary 2 suggests that, whenever possible, Incomplete LU factorizations should be com-
puted in such a way that the inverse triangular factors remain bounded. While keeping the
entries of L and U small is straightforward, e.g. with the help of pivoting, making the same
demand for the inverse matrices is more delicate. We have adopted a strategy to achieve
these features, which is based on combining the following three ingredients.

1. A static pre-ordering of the system that puts the original matrix A in the form

P>AQ =

(
B F
E C

)

where the leading block B is likely to have nicely bounded inverse triangular factors.

2. A partial incomplete LU factorization which approximately factors P >AQ and uses
pivoting to keep the inverse triangular factors below a given bound κ. The factor-
ization is partial in that it only proceeds with the elimination of the unknowns
corresponding to the B block. Details are given below.

3. A multilevel setting, possibly a recursive one, which completes the partial incomplete
factorization of Step 2. Indeed, this amounts to (recursively) repeating the previous
two steps on the Schur complement system resulting from step 2.

A few clarifications are now given for steps 2 and 3. Step 2 starts with a new reordering
P>AQ → P̂>AQ̂ of A with a smaller leading block. This reordering consists of moving

14

rows and columns to the end that are responsible for undesired large inverse factors. In
other words, we obtain

P̂>AQ̂ = P̃>(P>AQ)Q̃ = P̃>

(
B F
E C

)

Q̃ =

B11 B12 F1

B21 B22 F2

E1 E2 C

 ≡
(

B̂ F̂

Ê Ĉ

)

.

The incomplete factorization is then computed for

P̂>AQ̂ =

(
B̂ F̂

Ê Ĉ

)

≈
(

LB̂ 0
LÊ I

)

︸ ︷︷ ︸

L

(
DB̂ 0
0 S

)(
UB̂ UF̂

0 I

)

︸ ︷︷ ︸

U

,(19)

where LB̂, U
>

B̂
are unit lower triangular factors, DB̂ is diagonal and S is the approximate

Schur complement. The partial incomplete factorization is performed ensuring that the
inverse triangular factors fulfill ‖L−1‖, ‖U−1‖ 6 κ.

Further comments on these three pieces of the factorization are given next.

3.1 Template 1: Pre-orderings

Standard static ordering techniques can be used to give some desirable properties to the
original matrix. Among these are all the graph based routines to reduce fill-in or more
recent approaches to improve diagonal dominance. A few popular examples of fill-reducing
methods are the reverse Cuthill-McKee (RCM), the multiple minimum degree ordering
(MMD), the nested dissection (ND), or the approximate minimum fill (AMF). See [11] for
an overview of some of these reorderings, and [15, 1] for the AMF ordering.

The nonsymmetric orderings used in MC64 [10] and in the ddPQ strategy [18] attempt
to improve the diagonal dominance of the matrix in different ways. THE objective is to
rearrange the columns and/or the rows such that the diagonal part gets a maximum weight.
In [10] scaling is part of this approach but fill reduction is performed by a static (symmetric)
post-ordering of the resulting matrix. In contrast, ddPQ assumes that some scaling is done
a priori and the reordering is performed as a compromise between diagonal dominance and
fill.

3.2 Template 2: Partial incomplete LU decomposition

A partial (I)LU of a partitioned matrix is a factorization of the matrix in the form of the
right-hand side of (19). Any Gaussian elimination-based procedure can be adapted to yield
a partial factorization. However, the most attractive method exploits the Crout–version
of Gaussian elimination, see [9, p. 50] and [14]. The Crout (sometimes referred to as the
Crout-Doolittle) algorithm computes the k-th colmun of L and the k-th row of U at step k.
A partial factorization consists of performing a number, say p, steps of this algorithm and
then computing the Schur complement. There are several advantages of Crout-versions of
ILU some of which are discussed in [14].

15

In the context of the partial ILU factorization needed for a multilevel scheme, diagonal
pivoting is necessary. In fact pivoting is an integral part of the reordering scheme. Diagonal
pivoting relies on various estimates for the inverse triangular factors, see e.g., [6, 12]. When
the estimated norm of the inverse triangular factor exceeds the prescribed bounds, then
the associated column and row is pushed to the end (see Figure 1). From the point of view
of implementation, a diagonal pivoting strategy of this type can be easily added to the
Crout factorization.

Figure 1: Diagonal pivoting in the Crout version

@
@@

@
@@

∗
↗

↘

@
@@

@
@@

∗

@
@@

@
@@

∗

factor

skip

3.3 Template 3: The multilevel scheme

The next part of the preconditioner involves recursivity by repeating the first two steps
on the approximate Schur complement resulting from Step 2. This leads naturally to a
multilevel strategy. To solve a linear system using this multilevel ILU we could simply
proceed as in [19]. Based on the underlying approximate factorization

P>AQ =

(
B F
E C

)

≈
(

I 0
EB−1 I

)(
B 0

0 S̃C

)(
I B−1F
0 I

)

the associated preconditioner would require the application of

(P>AQ)−1 ≈
(

B̃−1 0
0 0

)

+

(
−B̃−1F

I

)

S̃−1
C

(

−EB̃−1 I
)
.(20)

Here B̃ is the approximation to B corresponding to an ILU of B, and a solve with S̃C in
(20) corresponds to a recursive solve invoking the next ’coarser’ level.

4 Numerical tests

This section presents numerical experiments to test the inverse–based multilevel ILU ap-
proach. We begin by pointing out that the algorithms described in this paper are part of

16

a recently released package called ILUPACK [4] which is available online. Along with the
package, the ILUPACK web-site [4] also posts a rather exhaustive set of experiments with
various publically available test matrices. The numerical computations were performed on
an IBM RISC 6000 with four Power 3-II processors (375 MHz). 64-Bit address length and
up to 4 GB memory were used. All codes use optimization.

The discussion of the experiments centers around two main questions:

• How does the reliability depend on the drop tolerance? (sensitivity)

• How many problems (statistically) can be solved with an incomplete LU factorization
(with or without multilevel) if we fix the number of nonzeros of L, U relative to the
nonzeros of A.

We will compare three approaches,

1. ILUTP ([16, 18]) using a binary search tree.

2. The inverse–based ILUTC [14], which computes a single ILU without pivoting and
uses the inverse triangular factors within dropping.

3. the inverse–based multilevel ILU as described in Section 3, hereafter referred as ILU-
PACK. According to the theory presented here we will use the S-version (SIMPLE
version) and the M-version (DEFAULT version).

These methods are combined with several reordering strategies

(a) approximate minimum fill (AMF) [1],

(b) multiple minimum degree (MMD) [11],

(c) reverse Cuthill-McKee (RCM) [11] and,

(d) for the multilevel strategy we will also use ddPQ, a strategy recently presented in
[17].

A recent algorithm called MC64 [10] and designed to improve the diagonal dominance is
also included in the numerical results for comparison, and in order to see how MC64 can
help improve performance.

All codes that are used refer to their versions as they were implemented in ILUPACK [4].
As iterative solver restarted GMRES(30) [18] is used. The iteration is stopped, whenever
the residual is reduced by

√
eps ≈ 1.5 · 10−8. The iterative process is deemed to have failed

if more than 500 steps are required or a breakdown occurs.

For the inverse-based multilevel ILU we prescribe the bound κ for the inverse factors.
However, dropping is not performed with respect to some drop tolerance divided by this
bound κ, but by the estimated maximum norm κ̃ of L−1

k and U−1
k at step k of the algorithm,

which may be less than κ. This is done because one cannot predict a priori whether this
bound κ is ever attained. So using κ̃ = max(‖L−1

k ‖, ‖U−1
k ‖) is a good compromise. As

mentioned earlier the inverse norms are estimated by essentially using the results of [6].

17

Figure 2: Numerical sensitivity of ILUTP (PDE problems)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
ILUTP, percentage of problems solved

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM

Figure 3: Numerical sensitivity of inverse-based ILUTC (PDE problems)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
IB−ILUC, percentage of problems solved

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM

18

Figure 4: Numerical sensitivity of ILUPACK, S-version, κ = 10 (PDE problems)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
ILUPACK−S, percentage of problems solved, kappa=10

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM
PQ

4.1 Sensitivity with respect to the drop tolerance

The first set of numerical experiments investigates how the success of the incomplete LU
decomposition is affected by the choice of the drop tolerance. To measure this sensitivity
to drop-tolerance, we use 81 test problems from partial differential equations available at
the Davis collection [7]. Figures 2, 3, 4 show the relative number (percentage) of problems
solved using a specific ILU (ILUTP, inv.-based ILUTC, and inv.-based multilevel ILU) and
one of the above orderings (AMF/MMD/RCM/PQ). We show the results for the S-version
of the inverse–based multilevel ILU (referred to as ILUPACK) and κ = 10.

Figures 2, 3, 4 show clearly that the multilevel ILU is the least sensitive to the given
drop tolerance. Using MC64 [10] one could even improve the results further. However,
we noticed that for this class of problems only slight improvement were made. Note that
matrices arising from partial differential equation are typically symmetrically structured
and that orderings like AMF, MMD and RCM, and ILUs such as ILUTC and the inverse-
based multilevel ILU preserve symmetry.

4.2 Efficiency via fill–in

The above statistics regarding the dependence of the drop tolerance give only a partial idea
on the efficiency of the methods. To get a more detailed view on the fill–in of the triangular
factors resulting from the incomplete factorizations, we now study how the number of
successfully solved systems is related to the fill–in resulting from the factorization. In a
typical situation, an ILU which allows more fill-in is more accurate and should therefore
yield faster convergence. The relevant results are in Figures 5, 6, and 7.

19

Figure 5: ILUTP, successful computation versus fill–in (PDE problems)

 0.5 1.0 1.5 2.0 3.0 4.0 6.0 8.0 10.0
0

10

20

30

40

50

60

70

80

90

100
ILUTP, percentage of problems solved

fill−in factor

pe
rce

nta
ge

AMF
MMD
RCM

Figure 6: Inverse-based ILUTC, successful computation versus fill–in (PDE problems)

 0.5 1.0 1.5 2.0 3.0 4.0 6.0 8.0 10.0
0

10

20

30

40

50

60

70

80

90

100
IB−ILUC, percentage of problems solved

fill−in factor

pe
rce

nta
ge

AMF
MMD
RCM

20

Figure 7: ILUPACK, S-version, κ = 10, successful computation versus fill–in (PDE prob-
lems)

 0.5 1.0 1.5 2.0 3.0 4.0 6.0 8.0 10.0
0

10

20

30

40

50

60

70

80

90

100
ILUPACK−S, percentage of problems solved, kappa=10

fill−in factor

pe
rce

nta
ge

AMF
MMD
RCM
PQ

It turns out again that the fill–in of the triangular factor of the inverse-based multilevel
ILU is the least related to the number of problems that could be solved. Better results can
again be obtained by using MC64.

4.3 Unstructured problems

To give an idea on how the inverse-based multilevel ILU performs on highly unstructured
problems we consider a set of 33 test problems from chemical engineering. These matrices
are typically highly indefinite and pivoting, or an a–priori nonsymmetric reordering, is often
helpful. To show this we first present in Figures 8, 9, 10 the statistics on the sensitivity with
respect to the drop tolerance (in analogy to the set of PDE problems) when the original
matrices are considered.

It is important to mention that ILUPACK does not implement pure versions of the standard
symmetric orderings like AMF, MMD or RCM. Since these do not include any pivoting
they are likely to fail on highly unstructured problems. The multilevel ILU in ILUPACK
uses only diagonal pivoting, so it was configured so as to automatically switch to the
ddPQ ordering when the other simple orderings (AMF, MMD or RCM) fail to produce
a sufficiently large leading diagonal block B. This explains why in Figures 8, 9, 10 the
orderings like AMF, MMD or RCM perform quite well despite the high indefiniteness of
the test problem class.

Due to the high indefiniteness of this problem class, MC64 dramatically improves the
numerical performance. On the other hand, relative to ILUTP and ILUTC, the inverse-

21

Figure 8: Numerical sensitivity of ILUTP (Chem. Engin.)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
ILUTP, percentage of problems solved

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM

Figure 9: Numerical sensitivity of inverse-based ILUTC (Chem. Engin.)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
IB−ILUC, percentage of problems solved

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM

22

Figure 10: Numerical sensitivity of ILUPACK, S-version, κ = 10 (Chem. Engin.)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
ILUPACK−S, percentage of problems solved, kappa=10

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM
PQ

based multilevel ILU is only mildly affected by this reordering (cf. Figures 11, 12, 13).

We should point out again that ILUTC does not include any form of pivoting. This explains
why it fails without MC64 for most problems but works very well after MC64 has been
applied.

4.4 Variants of the inverse-based multilevel ILU

The previous results compare the new inverse-based multilevel ILU with existing ILU
approaches in general terms. In this section we briefly comment on the impact of parameters
such the bound κ for the inverse triangular factors, as well as the choice between the S-
version and the M-version.

Recall that the norms of the inverse factors are kept below a threshold κ which is a
parameter of the algorithm. In our numerical tests we found that the influence of the
prescribed bound κ on performance is relatively mild. This is caused by the use of the
maximal norm of the estimates κ̃ for ‖L−1

k ‖ and ‖U−1
k ‖ as substitute for κ. Clearly κ

remains an upper bound, but since it is not clear whether this bound will ever be reached
by the inverse triangular factor, the estimate κ̃ seems to be a good compromise. Only κ̃ is
used for dropping in conjunction with the drop tolerance.

The theory developed in earlier sections suggests that the M-version will be less sensitive
to the drop tolerance since the corresponding approximate Schur complement is more
accurate. However, this is likely to comes at a higher expense in terms of fill–in. By using
a coarser approximation of the Schur complement the S-version is likely to require smaller
drop tolerances. This was confirmed in the numerical examples.

23

Figure 11: Numerical sensitivity of ILUTP+MC64 (Chem. Engin.)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
ILUTP, percentage of problems solved WITH MC64

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM

Figure 12: Numerical sensitivity of inverse-based ILUTC+MC64 (Chem. Engin.)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
IB−ILUC, percentage of problems solved WITH MC64

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM

24

Figure 13: Numerical sensitivity of ILUPACK+MC64, S-version, κ = 10 (Chem. Engin.)

 0.5 0.25 0.1 0.05 2.5e−2 1e−2 1e−3 1e−4 1e−5
0

10

20

30

40

50

60

70

80

90

100
ILUPACK−S, percentage of problems solved, kappa=10, using MC64

drop tolerance

pe
rce

nta
ge

AMF
MMD
RCM
PQ

We now show in a few tables, test examples where fixed parameters are used. For ILUTP
and ILUTC a drop tolerance of ε = 10−3 is used. For the inverse-based multilevel ILU,
a significantly coarser drop tolerance ε = 10−1 and κ = 10. We examine some sample
problems which arise in the numerical treatment of partial differential equations. Therefore
we use RCM as a fixed ordering. The results are summarized in Tables 1, 2, 3 and 4. The
results show that ILUTP with RCM is fairly robust, but this robustness comes at an
exceedingly high memory cost. On the other hand, the multilevel inverse-based ILU from
ILUPACK consumes very little memory, though at least the S-version fails to solve two of
the problems.

5 Conclusion

While it is clear that iterative solvers are unlikely to ever compete with direct solution
methods in terms of robustness and generality, one can certainly argue that recent progress
in the field has considerably shortened the gap between the two classes of methods. The
ingredients in this progress came in big part from a better understanding of the impact of
dropping on the inverse factors. As long as ILU techniques were only applied to easy prob-
lems arising from elliptic-type PDEs, little attention was paid to these inverses because
their condition numbers are often within reasonable range. When the success of ILUs grew
and its range of applicability expanded, it was realized that the classical ideas that were
behind the development of ILU basically failed. Recent work [3] showed that it becomes
critical in this situation to analyze the effect of dropping on the inverse factors, and a
further analysis of this was given in Section 2. In particular, it becomes critical to design
the preconditioners in such a way that the perturbation of the inverse factors, caused by

25

Table 1: ILUTP+RCM with ε = 10−3 for selected PDE problems

name nnz(L+U)
nnz(A)

GMRES ILU GMRES total

steps time time time

kim1 1.7 7 3.9e+0 1.4e+0 5.30e+0

rma10 4.0 17 3.5e+1 5.4e+0 4.04e+1

garon2 7.9 12 1.1e+1 1.1e+0 1.21e+1

rim 3.2 49 7.6e+0 6.2e+0 1.38e+1

raefsky3 3.5 7 2.7e+1 1.1e+0 2.81e+1

venkat01 4.2 5 1.6e+1 1.5e+0 1.75e+1

wang4 6.1 12 1.4e+0 7.4e-1 2.14e+0

e40r0000 8.4 11 1.9e+1 1.4e+0 2.04e+1

e40r5000 10.2 7 2.7e+1 9.9e-1 2.80e+1

Table 2: inverse-based ILUC+RCM with ε = 10−3 for selected PDE problems

name nnz(L+U)
nnz(A)

GMRES ILU GMRES total

steps time time time

kim1 1.8 6 1.4e+1 1.2e+0 1.52e+1

rma10 5.3 6 3.4e+1 2.6e+0 3.66e+1

garon2 8.1 12 7.7e+0 1.3e+0 9.00e+0

rim 5.4 — 1.2e+1 — —

raefsky3 4.4 6 2.7e+1 1.1e+0 2.81e+1

venkat01 4.6 5 1.6e+1 1.7e+0 1.77e+1

wang4 7.3 10 2.1e+0 7.1e-1 2.81e+0

e40r0000 10.0 6 1.9e+1 9.8e-1 2.00e+1

e40r5000 13.0 — 2.6e+1 — —

26

Table 3: inverse–based multilevel ILU+RCM, S-version with ε = 10−1 and κ = 10 for
selected PDE problems

name levels GMRES ILU GMRES total
nnz(L+U)
nnz(A)

steps time time time

kim1 1 0.8 78 6.6e+0 1.3e+1 1.96e+1

rma10 7 1.7 135 2.9e+1 3.4e+1 6.30e+1

garon2 4 1.6 49 3.3e+0 2.3e+0 5.60e+0

rim 13 1.6 — 1.2e+1 — —

raefsky3 5 0.5 — 4.8e+0 — —

venkat01 4 1.4 10 7.6e+0 3.0e+0 1.06e+1

wang4 3 1.6 54 9.7e-1 2.1e+0 3.07e+0

e40r0000 3 1.3 101 3.0e+0 7.6e+0 1.06e+1

e40r5000 5 3.2 28 1.8e+1 2.6e+0 2.06e+1

Table 4: inverse–based multilevel ILU+RCM, M-version with ε = 10−1 and κ = 10 for
selected PDE problems

name levels GMRES ILU GMRES total
nnz(L+U)
nnz(A)

steps time time time

kim1 1 0.8 78 6.7e+0 1.2e+1 1.87e+1

rma10 6 2.4 31 1.0e+2 1.0e+1 1.10e+2

garon2 3 1.9 27 1.4e+1 1.2e+0 1.52e+1

rim 10 2.2 — 3.1e+1 — —

raefsky3 3 0.5 81 1.3e+1 7.8e+0 2.08e+1

venkat01 4 1.4 10 2.2e+1 2.9e+0 2.49e+1

wang4 4 1.6 45 2.8e+0 1.6e+0 4.40e+0

e40r0000 3 1.4 37 9.2e+0 2.1e+0 1.13e+1

e40r5000 4 4.4 22 8.4e+1 2.4e+0 8.64e+1

27

dropping, remain small. From a practical implementation viewpoint, this calls for a multi-
level strategy which strives to yield bounded inverse factors of the B block corresponding
to the “fine” level. Then, recusivity can be invoked to deal with the Schur complement
resulting from the Fine-Coarse partitioning.

A package based on three “templates” for implementing the basic ideas has been imple-
mented and thoroughly tested. Numerical experiments indicate that this multilevel ILU
can be a good alternative to direct solvers in most cases. They also show that nonsym-
metric reorderings, diagonal pivoting, and efficient Crout implementations can contribute
to a better robustness and efficiency of the preconditioner. The code and a large set of
experiments are available online, see [4].

Still lacking is a parallel implemention of the algorithms. While the algorithms have not
been designed with parallelism in mind, many of the ideas are extensible to parallel envi-
ronments, at a minimum via a domain decomposition viewpoint.

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996.

[2] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM J. Sci. Comput., 22:1333–1353, 2000.

[3] M. Bollhöfer. A robust and efficient ILU that incorporates the growth of the inverse triangular
factors. SIAM J. Sci. Comput., 25(1):86–103, 2004.

[4] M. Bollhöfer and Y. Saad. ILUPACK — preconditioning software package. available online
at http://www.tu-berlin.de/ilupack/.

[5] M. Bollhöfer and Y. Saad. On the relations between ILUs and factored approximate inverses.
SIAM J. Matrix Anal. Appl., 24(1):219–237, 2002.

[6] A. Cline, C. B. Moler, G. Stewart, and J. Wilkinson. An estimate for the condition number
of a matrix. SIAM J. Numer. Anal., 16:368–375, 1979.

[7] T. Davis. University of florida sparse matrix collection. NA Digest, 97, June 7, 1997. URL:
http:www.cise.ufl.edu davissparse.

[8] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. Technical Report TR-03-006, Univ. of FLorida, Dept. of Computer and Information
Science and Engineering, 2003. Submitted to ACM Trans. Math Software.

[9] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon
Press, Oxford, 1986.

[10] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889–901, 1999.

[11] J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

28

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, third edition, 1996.

[13] A. Gupta. Improved symbolic and numerical factorization algorithms for unsymmetric sparse
matrices. SIAM J. Matrix Anal. Appl., 24:529 – 552, 2002.

[14] N. Li, Y. Saad, and E. Chow. Crout versions of ILU for general sparse matrices. SIAM J.

Sci. Comput., 25(2):716–728, 2004.

[15] E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up sparse matrix
ordering. SIAM J. Matrix Anal. Appl., 1998.

[16] Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numer. Lin. Alg. w. Appl.,
1:387–402, 1994.

[17] Y. Saad. Complete pivoting ilu: a multilevel approach. Research Report UMSI 2003-191,
University of Minnesota, Super Computing Institute, Minneapolis, Minnesota, 2003.

[18] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM Publications, second edition,
2003.

[19] Y. Saad and B. J. Suchomel. ARMS: An algebraic recursive multilevel solver for general
sparse linear systems. Technical Report umsi–1999-107, University of Minnesota at Min-
neapolis, Dep. of Computer Science and Engineering, 1999.

[20] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with
pardiso. J. of Future Generation Computer Systems, 20(3):475–487, 2004.

[21] H. D. Simon. Incomplete LU preconditioners for conjugate gradient type iterative methods.
In Proceedings of the SPE 1985 reservoir simulation symposium, pages 302–306, Dallas, TX,
1988. Society of Petroleum Engineers of AIME. Paper number 13533.

[22] M. Tismenetsky. A new preconditioning technique for solving large sparse linear systems.
Linear Algebra Appl., 154–156:331–353, 1991.

29

