[LUs and Factorized Approximate Inverses are
Strongly Related. Part I: Overview of Results

*Matthias Bollhofer and fYousef Saad

March 21, 2000

Abstract

This paper discusses the relations between a broad class of incomplete LU fac-
torization techniques and factorized sparse approximate inverse techniques based
on computing triangular matrices Z, W such that Z ' AW is approximately diag-
onal. We will show that most of these approaches are essentially equivalent to
approximately inverting the triangular factors obtained from a modified incom-
plete LU factorization of the initial system.

Keywords: sparse matrices, LU, modified ILU, sparse approximate inverse,
AINV.
AMS subject classification: 65F05, 65F10, 65F50.

1 Introduction

Iterative methods which combine preconditioning techniques, such as incomplete factor-
izations, with Krylov—based acceleration, see e.g., [21, 10, 2, 12|, are among the most
efficient, techniques for solving linear systems of the form:

Az = b, (1)

*Fakultdt fiir Mathematik, Technische Universitdt Chemnitz, D—-09107 Chemnitz, Germany. Sup-
ported by the University of Minnesota and by grants of the DFG BO 1680/1-1. This research was
performed while visiting the University of Minnesota at Minneapolis. email: bolle@mathematik.tu-
chemnitz.de, URL: http://www.tu-chemnitz.de/~bolle/.

tDep. of Computer Science and Engineering, University of Minnesota, 4-192 EE/CSci Building,
200 Union St., SE, Minneapolis, MN 55455-0154. Work supported by NSF and by the Minnesota
Supercomputing Institute. email: saad@cs.umn.edu, URL: http://www.cs.umn.edu/~saad/

where A € R™" is nonsingular and b € R" is a given right hand side. Traditional
preconditioners are based on approximately solving the system (1) and the most popular
of these are based on approximate factorizations obtained from direct solution methods,
such as the LU factorization [9], pp. 92ff. Alternative techniques recently appeared
which compute approximate solutions of (1) via an approximate inverse of A, instead of
a factorization. One motivation for using such preconditioning techniques is parallelism.
Another motivation is that the /LU preconditioners, which have been developed for M
matrices [19], often fail for indefinite matrices.

A few of these approximate inverse techniques are based on minimizing the norm
Il — AM]|| in some appropriate norm [15, 13, 11, 7]. Others compute the approximate
inverse in factored form by seeking two sparse unit upper triangular matrices W, Z,
and a diagonal D, such that ZTAW = D, see e.g. [21, 4, 5, 3, 14]. The latter class of
preconditioners turns out to have an algebraic behavior that is similar to the well-known
case of the incomplete LU decompositions, e.g. they are stable for M~ and H-matrices.
This is the perfect analogy to the result on incomplete LU decompositions in [19, 18].

The purpose of this paper is to take an in-depth look at the relationships between these
different preconditionings, using the incomplete LU decomposition as a reference point.
In particular, we will show that these methods generate factors which can be viewed as
approximations of the inverses of the triangular factors obtained by adapting incomplete
LU decompositions. With a slight modification of the strategies to drop entries we will
also show that matrices resulting from these methods can be viewed as the exact inverses
of triangular factors obtained via an incomplete LU decomposition. Specifically, what
is required is to suitably modify or construct modified approximate Schur—complements
such that the inverse factors are those (or at least close to those) obtained by factorized
approximate inverse techniques. On the other hand most of the methods which directly
compute a factorized approximate inverse of A can essentially be viewed as variations
differing in the way the approximate Schur-complement in the incomplete LU decompo-
sition is defined. The connection between I LU-type algorithms and approximate inverse
techniques discussed in this paper is summarized by the illustration in Figure 1.

2 Incomplete LU factorizations

Incomplete LU factorizations approximately construct a factorization

A~ LDU

Figure 1: Relation ILUs — factorized sparse approximate inverses

I LU-type methods

Modified ILU

I1LU ILUS
Algorithm 1 Algorithm 12
Thm 6 Thm 8 Thm 13

e
rank—1 update bordering
Algorithm 4 Algorithm 11
k column wise update j
Algorithm 9
Prop 10 Thm 14

AINV —type methods

where L, U are lower triangular matrices with unit diagonal. A partial LU factorization,
when it exists, can be expressed by the equation

B F| |Lg O D 0 Up Ur)
E C| |Lg I 0o S 0o I |’
where Lg, Uy € R¥* are lower triangular matrices with unit diagonal and Dp € RF* is
diagonal. In the simplest case when k& = 1, this means that Ly =Ug =1,Dp = B = Ay;.

Otherwise Lg, Dg, Ug refer to an already computed LU—-decomposition of B. We obtain
LpDgUp =FE € RVFk LpDgUp = F € RE"F and finally

S =C — LgDgUp € R*kn=k (3)

denotes the so—called Schur-complement and the exact LU decomposition is obtained
by applying (2) successively to the Schur-complement, using k£ = 1, at each step. The
successive application of this process ends up with the factorization S = LgDgUg. If
this decomposition exists it can be re—substituted in (2) to obtain

pel=lm Ll el) "

which completes the LU decomposition.

In incomplete factorizations, entries are dropped during this procedure in the L, U fac-
tors and the Schur—complement. A strategy which could be applied is the following.
Consider sets R,C C {2,...,n} and drop entries in the first column of L belonging to
C. An analogous strategy is applied for U with respect to R. By this procedure the
matrices Up = B™'F, Ly = EB~! are replaced by approximations U, Lg, i.e.,

1

Resulting choices for the approximate Schur-complement are

AR g

S = C—LgDgUp (6)
S = C—Lplz'F - (E - iEL;;B) U5 Up (7)
S C— LgLg'F (8)
S C — EUZ'Up (9)

These approximations are obtained from various different expressions of the Schur—
complement that are derived from equation (2). For example, upon multiplying both
sides of (2) to the right by the inverse of the last factor of the right-hand-side, and
equation the (2,2) blocks of the resulting matrices leads to (9). Other ways of defining
an approximate Schur—complement can be derived from other equivalent expressions
of the Schur—complement. In practice, (6) is the most common scheme for defining
Incomplete LU factorizations, see, e.g. [19] or [20]. Typically, (6) produces the smallest
amount of fill-in compared with the other formulas.

2.1 K,I,J implementations

A sample routine for performing an incomplete LU decomposition is given by the fol-
lowing abstract algorithm. The MATLAB notation [1] is used for convenience. For two
integers k, [, k : [denotes the sequence (k, k+1,...,[) with the convention that whenever
k > [the set is empty. For a matrix A = (4ij),_, ,, ;1 _,, we define

Ak:l,q:r = (Aij)i:k,...,l,j:q,...,r'

The notation : as a subscript indicates that all columns/rows entries are taken. Thus,
A. o denotes the second column of A and A, denotes its second row.

Algorithm 1 (Incomplete LU factorization (ILU))
Let A = (Aij)ij € R™". Compute an ILU factorization A ~ LDU.

L:U:I,SIA,DHZAH,C:RZQ.

fJork=1:n-1
1

Ly = 0, Usen=1[1 D }'Skitim |-
kin,k |:Slc+1:n,kak1:| k,k: [kk Pkk+1:]

Apply a dropping rule to Lygi1.pk, Uk g+1m and include all (1, k) in C, (k,m) in R
for which of Ly, Uy m have been dropped
Compute Ski1:mk+1:n according to one of the possible choice from (6)-(9),
i.e. compute Ski1:nk+1:m Jrom one of the following options.
Sk+1:n,k+1:n - Lk+1:n,kakUk,k+1:n
Sk+1:n,lc+1:n - Lk+1:n,kSlc,k+1:n - (Sk+1:n,k - Lk+1:n,kak) Ulc,k+1:n
Sk+1:n,lc+1:n - Lk+1:n,kSlc,k+1:n
Sk+1:n,k+1:n - Sk+1:n,kUlc,k+1:n
Dk+1,k+1 = Sk+1,k+1
end

Sk+1:n,k—|—1:n =

The above algorithm is based on the so-called K, I, J version (or 'rank-one’ update ver-
sion) of Gaussian elimination. One of its drawbacks lies in its practical implementation.
At every step of the process rows i + 1 to n of the matrix S (which typically would be
represented by a single data structure) are altered, leading to a need for expensive linked
lists, or the use of elbow room. In spite of these drawbacks the algorithm is attractive for
several reasons, and it has been used by a few authors as to develop incomplete factor-
izations. One of its advantages is the ease with which powerful pivoting and reordering
strategies can be implemented.

At this point we point out an important observation on the approximate Schur—
complement — and this may cause some confusion. Instead of applying (2),(3) succes-
sively for the case k¥ = 1 and deriving the Schur-complement step by step from equations
(6)—(9) as it is done in Algorithm 1, we can alternatively obtain the approximate Schur—
complement after, say [steps by immediately taking the same equations from (6)—(9)
with the already computed blocks Lg, Lg, Ug, Ur. As it turns out, this leads to precisely
the same approximate Schur—complement.

Lemma 2 Suppose that | steps of Algorithm 1 have been performed with one of the four
options based on (6) - (9). Then the same matriz S = Sji1.m141:m can be obtained by

B F .
£ C } with
B e R, C € Rt and the other blocks of A, L,U analogously partitioned.

applying formulas (6)—(9) to the initial matriz A partitioned as A = [

Proof. For (6) the result is easy to show. We will only show (8) since the proof for
(7) and (9) is analogous. The proof is based on observing the effect of the successive

transformations (8) on the global original matrix, and follows a standard argument used
in Gaussian elimination. At step 7,

-1

1 0 0 .
A™ =10 1 0] A%M=(I-1lLel) A™
0 —Liyim; 1

where [; denotes the n-dimensional vector consisting of the vector L;;1.,; completed by
i zeros above it. Indeed, the (2,2) block of size (n—14) X (n—1) in the above matrix is the
same as the one obtained from the transformation (8). Consider now the result of accu-
mulating these transformations for £ consecutive steps. The inverse of each elementary
factor I — e/ is I + l;e] . The inverse of the accumulated transformations is therefore,

T T T T T T
1 .« e = “ e

The above equality follows from a simple inductive argument. This is precisely the matrix

Ll:k,l:k 0

Lk—l—l:n,l:k 1
The corresponding (2,2) block of the matrix A™" gives precisely the desired result (8)
with a block size of k. a

2.2 1, K, J variants of ILU

An alternative implementation of /LU, and a common one used in the context of pre-
conditioners, is based on the I, K, J version of Gaussian elimination. This is sketched in
the next algorithm.

Algorithm 3 (Incomplete LU factorization (/LU))
Let A = (Ay);; € R". Compute an ILU factorization A ~ LDU.

L=U=1,S=A,C=R=0.

fori=1:n

forj=1,...,i—1 and when w, # 0
w; = w;/Dj;
Apply a rule to drop wj. If w; is dropped, C :=C U {(4,7)}
Zf w; 75 0, Wijt1m = Wj41:p — ijj,j—i—l:n

end

Apply a dropping rule to wj/w; for all j > i and include all (i,j) to R for which
w; has been dropped
Define D;; = w;, Ui,i:n = wz’:n/Dz'z', Li,l:i—l = W11

end

Note that this algorithm is again expressed in terms of dropping sets C, R for row i of L
and U. These sets can be selected statically in the level-of-fill strategy or dynamically
as in the ILUT strategy. In the case of static dropping strategies it is known that
Algorithm 3 and Algorithm 1 with S defined by (6) will deliver the same factors when
the patterns C, R are the same for both algorithms. However this relation is still true,
if a dropping rule according to some fixed drop tolerance 7 is applied.

In practice, incomplete factorization algorithms are typically organized such that the
L,D,U factors are stored in one single data structure. The attraction of the above
implementation is clear: the rows of L and U are determined one a time and are easily
added to the existing data-structure.

2.3 Dropping Strategies

As was mentioned earlier, there are two broad classes of dropping strategies. First there
are strategies which drop elements based on the pattern of the matrix only. This includes
the level-of-fill strategy [19]. Another class of methods is based on dropping elements
dynamically, based on their magnitude. A number of other strategies combine graph
based methods with threshold dropping.

A well-known class of strategies for discarding elements in the LU factorization is one
that is based on using the graph (i.e., pattern) of the matrix. For example the I LU(0),
the simplest of these techniques, discards any fill-in. This means that Gaussian elimina-
tion is essentially performed only on the pattern of A and any fill-in generated is simply
ignored. Various generalizations of this method have been developed, see e.g., [21] for
an overview. In addition to graph-based criteria there are a number of strategies that
determine the sparsity pattern C, R throughout the process by monitoring the growth
of the elements. In this case only small entries are dropped. Strategies of this type are
also discussed in [21].

It is important to point out here that the results we show concern not only the ‘static’
dropping strategies but also some dynamic dropping, e.g. with respect to a prescribed
drop tolerance 7, similar to the threshold based ILUT preconditioning. To be more spe-
cific, throughout the paper we assume that any dropping rule we use for sparsifying a
vector has information about its numerical values and its associated coordinates. For ex-
ample, in Algorithm 1 the dropping rule for Ly 1., the coordinates (k+1,k), ..., (n, k)

7

in addition to the numerical values Lj1., 4. In the sequel, whenever we successfully
apply a dropping rule the coordinates are added to the dropping sets (in Algorithm 1,
C,R).

Indeed with some more complicated dynamic dropping, different versions of Gaussian
elimination and different procedures that would otherwise deliver the same results in ex-
act Gaussian elimination, may lead to different I LU factorizations because the dropping
strategies may yield different patterns. In general threshold based methods are harder
to analyze than pattern-based algorithms.

3 Relations between AINV and ILUs

In recent years new preconditioners were proposed, that belong to the broad class of
approximate inverse techniques. Among these methods, are those that calculate directly
an approximate inverse M to A, see, e.g., [7, 11]. Another subclass of methods obtain
this approximate inverse in a factored form. Specifically, unit lower triangular matrices
W and Z are found such that WTAZ ~ D, where D is a diagonal matrix. A proposed
method in this category, called AINV, was proposed in [4, 5].

3.1 AINV

The method in [4, 5] computes a decomposition of the form WTAZ = D, where W, Z
are unit lower triangular matrices, and D is a diagonal. In the exact factorization case,
the matrices W and Z are the inverses of L' and U, respectively, in the standard LDU
decomposition A = LDU, when this decomposition exists. The matrices W and Z can
be directly computed by biorthogonalization. Indeed, since

WTA=DU

is upper triangular, we immediately get (W.;)TA.; = 0 for any j < 4, which means
that column ¢ of W is orthogonal to the first ¢ — 1 columns of A. Alternatively, we
can also try to make columns 7 + 1,...,n of W orthogonal to the first 7 columns of A.
This makes it possible to successively orthogonalize all columns of W against each of
the columns of A. During this procedure one can drop small entries or entries outside a
certain sparsity pattern leading to an incomplete biorthogonalization process and finally
to a factored approximate inverse. There are several advantages of having the inverses
of a triangular matrix available — see the introduction. One of the most important
reasons for the current interest in approximate inverse type preconditioners is their
appeal for parallel processing. It is worth mentioning that there has been some work

on methods for inverting triangular matrices which are computed from a standard LU
factorization, based on the same motivations, see [8]. However these do not compute
factored approximate inverses and will not be considered here since they are based on
using a standard incomplete LU decomposition and inverting the resulting triangular
factors.

Algorithm 4 (Factorized Approximate INVerse, rank—1 update version)
Let A = (Ay),; € R®". Compute Al~ZD'WT,

p=q=1(0,...,0),Z=W=1,C=R=0.
N——
Jori=1:n
Define p,q either by (10) or by (11)

Di:n = ATZW,zna Qicn = Ai,:Z:,i:n (10)

Pizn = Z;—;'ATI/V:,Z':na Qiin = WIAZ,zn (11)

Set Dit1mn = pi-f—l:n/pia Qit+1n = Qi—f—l:n/qi and apply a d’f'Oppan rule to DPitim,; Qit1in
include all (7,7) to C, (3,k) to R for which p;, g, have been dropped
I/V:,i—}—l:n = I/V:,i—|—1:n - W,ipi+1:n; Z:,H—l:n = Z:,i—|—1:n - Z:,'L'Qi+1:n
apply a dropping rule to Wi, it1., define C; by those (1, k) for which Wy is dropped
apply a dropping rule to Zy; i1z, define R; by those (k,l) for which Zy is dropped
end
Choose diagonal entries of D as the components of p or q.

Clearly, if no entry is dropped and if there exists an LDU decomposition of A, then
W = L~ T, Z = U~'. In this case it can be immediately seen by induction that after
step ¢ of the algorithm, columns 7 + 1,...,n of W are orthogonal to column 1,...,:
of A and likewise columns ¢ + 1,...,n of Z are orthogonal to rows 1,...,7 of A. It is
remarkable that the computation of Z and W can be performed independently for (10).
In other words, the sets R, R; do not affect the computation of W and the sets C,C; do
not affect the computation of of 7 .

It is important to note that the AINV method uses R = C = (0 and only R;, C;
are chosen by discarding entries in Z, W that are less than a certain drop tolerance.
Moreover it has been pointed out in [4], that dropping entries of p,q produces poor
results. We will still consider this variant for generality and because it has an interesting
direct connection with ILU. In [4, 5] p, ¢ were defined via (10), while in [14, 3] for the
case of symmetric positive definite matrices (11) is used (In this situation, W = Z).

Clearly, the strict biorthogonality property of the exact factorized inverse does not hold
anymore if a drop tolerance is introduced. Interestingly, however, stability can be proved

9

for H-matrices, in the case incomplete LU factorizations as well as for AINV'. So, there
must be a close connection between both classes of algorithms and the next algorithm
will provide a first bridge between both approaches. Essentially, incomplete LDU fac-
torization can be computed, and its factors L, U can be inverted on the fly, leading to a
progressive form of a factored inverse. Specifically, if at step ¢+ — 1 we have a matrix U
of the form,

the i-th step will compute the entries U;;11., and add them to the current U to get
Unew- Let ¢ be the row vector ¢" = U;, — ¢/ . Note that the ’diagonal’ element ¢; of ¢
is zero. Then,

Unew =U+ eiqT

Because of the structure of U and ¢ it is easy to see that ¢' U = ¢, and so
Unew = (I + eiqT)U

Therefore,
Ul =U ' I+eq) ' =U"'I—-egq").

new

Of course analogous arguments will hold for L. This provides a formula for progressively
computing L~T,U~"! throughout the algorithm. We call the inverse factors Z, W as in
Algorithm 4.

Algorithm 5 (/LU with progressive inversion of L,U)
Let A = (Ay),; € R¥". Compute A~ LDU, A~ ~ ZD™'WT.
L:U:I,S:A,Z:W:I, D11:A11,C:R:®
fori=1:n-1
Set,p:{ 0 forj <i :{ 0 fork <i
- Sji/Sii otherwise ’ k Sik/Si otherwise
Apply a dropping rule to pii1m, ¢iy1.m and include those (4,1) to C, (i, k) to R for
which p;, qx have been dropped
Set: Li=e;+p; U.=¢] +q"; W=W({—ep"); Z=2Z(I —eq")
Apply a dropping rule to Wi ii1., define C; by those (I, k) for which Wy, is dropped
apply a dropping rule to Zy,i1m, define R; by those (k,l) for which Zy is dropped
Define Sit1m it1:n from one of the options in Algorithm 1
Set: Dit1iv1 = Sit1i1
end

The notation of Algorithm 5 already suggests that Z, W coincide with those of Algorithm
4. This is confirmed by Theorem 6.

10

Theorem 6 Suppose that in Algorithm 4 and Algorithm 5 the same dropping rules are
applied to p,q (same C, R) and that there is no dropping rule applied to W, Z (empty sets
Ci,Ri, it =1,...,n). Then certain choices of S in Algorithm 5, and p,q in Algorithm 4
will imply the following identities.

Choice of || Alg. 5 Alg. / Alg. 5 Alg. 4 Alg. 5 Alg. /
S/pa | (8 (10) (7) (11) (9) (10)
U U U
L™ = Wags/4 L™ = Wagsa
Identities U™ = Zags)a U™ = Zags)a
diag (Dags) = paiga | diag(Daygs) = {]qjjllgj diag (Dags) = qaiga
g.

Proof. We will only prove the first result for W and p, since the proof for the other
cases is analogous. We will show by induction on ¢, that W is identical in both methods
after any step ¢, that the first ¢+ diagonal entries of D coincide with p;.; and that

Si+1:n,i+1:n = |: 0 Infi] WTA [IO) :| - (12)
Initially, for 7 = 0 there is nothing to show since obviously W = I in both algorithms
and S = A. Now suppose that W is identical before we enter step 7 of each algorithm.
Suppose that the first 1 —1 diagonal entries of D coincide with the first + — 1 components
of p and that

0

Sz:n,z:n [0 In—z+1 :|W A |: In—i—f—l :| -

We immediately obtain
p;rn = Wj;nA i — Si:n,i-

(old)
From this it follows that p; = s;; and pz(zelwrz =12 ~EE% = Litim,i- Since we choose the same

dropping rule for both algorithms, this equality still holds after sparsifying these entries.

Obviously the update procedure
new old) old) (new
WEZ-l—l n W(z—l—l n W(Z(-I-l 73

from Algorithm 4 is the nontrivial update part on

W(new) — W(old) (I _ eipT)

11

in Algorithm 5. Now for S;;1.ni+1.,» We have the update procedure

new old old
Sz'(—|—1:71),i—|—1:n = Sz'(+1:)71,i—|—1:n_Li+15n;iSi(,i+%:n

1 0| s

— |: 0 In—z' :| . (new) I (ol(’i)—H'
L pi—|—1:n i Si+1:n,i+1:n
[1 0] (old)\ T [0

= [0 In—i } (new) I [0 In—i-l—l } (W) A 0
L "Piy1m £ I, ;

0
= [0 0 Li; J(Wr)TA| 0
In—i
This completes the proof. O

This surprising result is not too unexpected. As pointed out earlier, in Algorithm 4 (and
as well in the ATNV method) one can compute Z, W independently of each other for
(10). However, in an I LU method where dropping strategies are applied to the L and
U factors at the same time, we have an interaction between the computation of the
inverses.

3.2 Consequences

An important consequence of the above result is that with the introduction of factorized
sparse approximate inverse in Algorithm 4 we can apply the whole theory available for
incomplete I LU decompositions. As an example consider the stability of the ILU for
H-matrices. It has well-known, that for any choice of C, R the ILU decomposition of
an H-matrix exists. See [19, 18] for details. It immediately follows that Z, W of the
Algorithm 4 exist for this case. Likewise for M-matrices we know that the computed
L,U are again M-matrices. Consequently Z, W have to be nonnegative in this case.

We obtain one immediate conclusion for the symmetric positive definite case.

Corollary 7 Let A be symmetric positive definite. Suppose that Algorithm 4 and Algo-
rithm 5 apply the same dropping rule to p,q and that no dropping is applied to W, Z.
If p,q in Algorithm 4 are defined via (11) and if S in Algorithm 5 is defined via (7),
then both Algorithms do not break down. In addition both methods compute the same
W,Z and W = Z. The diagonal entries of S in Algorithm & are positive and coincide
with the entries of p = q in Algorithm 4.

12

Proof. This follows immediately from Theorem 6 and Lemma 2. O

As mentioned earlier, Algorithm 4 is more general than the original AINV algorithm
[4, 5] which does not drop entries in the update factors from p, ¢ but only to the updated
matrices Z, W. The problem is that small entries |p;/p;| may multiply large entries of Z.
discarding entries in the approximate inverse that might be not small at all. To interpret
AINYV as a form of ILU, the definition of the approximate Schur-complement must be
adapted. So far the computation of the Schur—complement in Algorithm 1 corresponds
to the definition in (7), (8). The key to get the connection between AINV and an ILU or
modified ILU is equation (12). Once we construct our Schur—complement such that this
relation holds between AINV and a modified /LU, we can immediately conclude that
both algorithms compute comparable W, Z. By construction of the AINV we cannot
expect that W, Z will be inverses of some triangular factors L, U. But what we might
expect is that ||[L=!—W T || is small, i.e. that W can be viewed as sparse approximation to
the inverse of L. For this purpose consider an artificial algorithm, in which we just define
the Schur—complement via (12). Due to this special definition of the Schur—complement
we can only expect W to be close to L™'.

Theorem 8 Suppose that in Algorithm 5 and Algorithm 4 dropping is performed ac-
cording to some drop tolerance € € (0,1). To be more precise, suppose that in step i of
Algorithm 5 an entry Lj; is discarded only if |Lj;| max{1}U{|Wi|: k < i} < e while no
dropping is applied to p in Algorithm 4, i = 1,...,n. Suppose that in both Algorithms
Ci is chosen such that Wy is dropped from Wiiiv1m of Wil < €. If the (modified)
Schur—complement Siy1.pi+1:m @S defined via

_ T
Sz'—l—l:n,z'—}—l:n — W;,«H_l;nA:,i—l—l:n;

then for any k > 1:
(L™)i = Wia| <e(2(k = 1) = 1)

and the diagonal entries of D are those of p.

Proof. It is clear by construction that the diagonal entries of D at the end coincide
with the components of p in Algorithm 4. Denote by L; 1., ; the ¢th column of L before
dropping is applied in step ¢ of Algorithm 5. Then we have
—_ new — old — old
(L T)g:i—l),i—f—l:n = (L T)gzi—)l,z'—f—l:n — (L T)gzi—)l,i(LZH:n,i +f7)
(L_T)glej—u{)n = _LiT—H:n,i - fT=

where f denotes the error vector obtained by dropping entries of L;y1.,; according to
our dropping strategy. The matrix W in Algorithm 4 will be

ld ld
Wl(zliu{,)zﬂn = Wl(;(;—)1,z'+1:n - Wl((;—)l,ngljwn) +E

13

(new) __ (new)
pitlm = “Piytp T €

where E, e refer to the related error matrices. By construction we have L;;1.,; = pfﬁelwg,
since both algorithms compute the same W. It follows that

Wi (L) <t >

and
L e A N e
Continuing this estimate for + = 1,2, ..., n yields the desired result. O

Clearly one gets an analogous theorem for the relation between U ! and Z.

An equivalent alternative to Algorithm 4, at least without dropping was suggested in [5]
and was referred to as the SDS version of AINV. The method consists essentially of
computing the approximate inverses Z, W column-wise instead of using rank-1 updates
as in Algorithm 4.

Algorithm 9 (Factorized Approximate INVerse, column-wise update version)
Let A = (Ay);; € R¥™. Compute A~ = ZD'W'T.

p=q=(0,...,0),Z:W=D:In,p1=q1=A11,(‘:=§R=QZZ~=%=®,i=1,...,n
N—_——
fori=2:n
Jor j=1:i—1
Define Pj,Q; either by (18) or by (14)

P=AlW,, Q=47 (13)
pP; = Z:,TjATVV:,z', Q; = W,TjAZ=,i (14)

Set P; = Pj/pj, Q; = Q;/q; and apply a dropping rule to P;, Q;.
If P; is discarded, R :=RU{(¢,7)}. If Q; is discarded, € :== €U {(j,7)}.
Wy=W,-W, P, Z,=2,— 72 ;Q; and apply a dropping rule to Wh.;;, Z1.5;.
If Wy; is discarded, R; := R; U{(3,k)}. If Zy; is discarded, €; := €; U {(l,7)}.
end
Define P; = p;, Q; = q; either by (13) or by (14) for j = i.
end
Choose diagonal entries of D as the components of p or q.

14

This algorithm is almost identical to Algorithm 4 except that the updates in Z, W are
now performed subsequently, column by column while in Algorithm 4 the updates are
performed simultaneously for all columns. The simple relation between both algorithms
is stated in the following Proposition which can be verified in a straightforward fashion
by adding the statement “If Wy, is dropped, C; := Cp U {(i,k)}, if Z); is dropped,
R =R, U{(l,7)}” to the inner loop of Algorithm 9 to get Cx, R; from Algorithm 4.

Proposition 10 Suppose that in Algorithm 4 and Algorithm 9 we have C =R =R =
¢ = (. Suppose in addition that the same dropping rule is applied to W, Z in both
algorithms. Then Algorithm 4 and Algorithm 9 compute the same Z, W, p,q.

In fact the equality between both algorithms also includes the case that each column
is sparsified only once. For Algorithm 9 this would be the natural dropping rule, i.e.,
entries of Z.;, W.; would be discarded only if j = 7 — 1. For step ¢ of Algorithm 4 the
associated dropping rule would sparsify only column ¢ + 1 of Z, W which might lead to
a giant fill-in for Z, W.

4 Incomplete factorizations via bordering

In this section we discuss the relation between approximate inverses obtained by a
bordering technique, suggested in [21]. The main idea is to successively invert the leading
main principal matrices of a given nonsingular matrix A = (Aij)z‘,jzl,...,n by applying
inverses of an upper and lower triangular matrix from both sides. In other words for

(Alzk,l:k Al:k,k—|—1) _ <B F>
At Akt1k41 E C

and £k =1,...,n—1 a problem of the following form is considered:

Ws We\' (B F\(Zs Zz\ _{ Ds 0
0 1 E C o 1 /)7\Lo0 S
where Zp, W are upper triangular matrices with unit diagonal and Dy is diagonal.

Suppose that approximate solutions Zg, Dg, W have already been computed, then we
can obtain Zp, S, Wg from the equations

B"Wy = —-ET
BZp = —F (15)
S = C+WiyF+EZp+WgBZp.

15

Instead of solving a system with B, the relation W4 BZp ~ Djp is exploited to approxi-
mate Zr, Wg by discarding some entries according to a dropping rule. To allow for more
generality, we will consider four different approximate Schur-complements in analogy
with Algorithm 12.

Algorithm 11 (Factorized Approximate Inverse Using Bordering)
Let A = (Aij)ij € R*»". Compute a factorized approzimate inverse A~ ~ ZD ‘W,

Z:W:D:]n,DH =A11,§R=QI:Q).
fori=2:n
P = D;ilfl,l:iflle:ifl,l:iflAiT,l:i—l; Qui1 = D;ilfl,l:iflWlT:ifl,l:iflAliifl,i
Apply a dropping rule to Pi.;_1, Q1.i—1
If P; is dropped, R :=RU{(4,7)}. If Q; is dropped, € := €U {(j,)}
Wi = Wit 1Pric1, 21 = —Zii1,1:-1Q1—1
Apply a dropping rule to Wi 14, Z1i-1,4
Let R; be the set of all (i, k) for which Wy; has been dropped.
Let €; be the set of all (1,4) for which Zy; has been dropped.
Compute D;; from one of the following options.

Dy = Ay— Pl A 1151Qui (16)
D; = A+ W1—|;—if1,iA1:i71,i + A1 21, + W£71,1A1:i71,1:i71Z1:i71,i (17)
D; = A+ Wl—l;—i_l,iAlzi—l,i (18)
Dy = Ay+ A1 211, (19)

end

Essentially the same technique to compute a banded factorized approximate inverse for
a banded symmetric positive definite matrices can already be found in [16]. A general-
ization to the general case but without sparsifying is given in [17]. The main difference
is that the roles of Z and W are interchanged and that the initial matrix is overwritten.

Like in the case of Section 3 we cannot expect to have an exact relation between Algo-
rithm 11 as it stands now and an I LU. For this reason we have to simplify the dropping
strategy, i.e. we first consider the case €; = R; = (. It is interesting that with this
restriction we can immediately find an /LU such that the inverses correspond to those
computed by Algorithm 11. The ILU we use for comparison slightly differs from the
one in the introduction and we will refer to it as LU S, since this algorithm [6, 21], was
designed for matrices stored in a so—called skyline format.

The main idea is to compute an (approximate) LU decomposition of each leading main
principal matrix of A, i.e. one considers equation (2) with A replaced by Ay, 1, and
k =i — 1. In other words, the Schur-complement in (2) is only a number.

16

Algorithm 12 (Incomplete Skyline LU factorization (ILUS))
Let A = (Ay);; € R". Compute an ILUS factorization A~ LDU.

L:D=U=In,D11 :All,i)%:@:(?)

fori=2:n
Lijgioa = Ai,l:i—lUl_:z'l—l,l:i—lD;il—l,lzi—l; Utiim1 = Diz'l—l,hz'—lLi}—1,1:i—1A1:i—1,i
Apply a dropping rule to L; 11, Uri1,.
If L;; is dropped, R :== RU{(:,7)}. If Uj; is dropped, € .= €U {(j,7)}
Compute Dy; according to one of the possible choices from (6)—(9), i.e. compute
D;; from one of the following options.

(Ay — Livi1D1i11:-1Un1

|:Au - Li,l:iflLizl_1,1;,‘_1141:1'71,2'_

Dii = 4 (Ai,l:ifl - Li,1:i71Lﬂﬁl,l;i,lflniq,u’fl) Uf;ilfl,l;i,lUuq,i

-1
Aii - Li,l:i—lL1;,'1_1,1;Z'_1A1:i—1,i
Aii - Ai,l:i—lU1;i_171;i_1U1:i—1,i

\
end

In [21] Dzz = Azz - Li,l:i—lDlzi—l,lzi—lUl:i—l,i is used. In addition dropping is performed
with respect to a different strategy, since solving systems with Li.;_j 1.1, Urii—1,1:-1
becomes very expensive as 7 increases. But for our investigation on the relation between
approximate inverses and incomplete LU—decompositions we only need this strategy. It
is obvious that the four options of Algorithm 12 correspond to (6)—(9) by considering
only the leading 7 x ¢ block of A.

Theorem 13 Assume that for any i = 2,...,n, R; = €; = 0. Suppose that Algorithm
12 and Algorithm 11 use the same dropping rule to L,U and P, (@, i.e. the same sets
€, R are generated. Assume that in step i of both algorithms, Dy is chosen the same
way, t.e. in step © we have for D;; the choices

Algorithm 12\ (6) | (7) | (8) | (9)
Algorithm 11 || (16) | (17) | (18) | (19)

Then Algorithm 5 and Algorithm 11 compute the same matriz D and

L'"=w, U'=7Z

Proof. We use induction on 7. Suppose that Ll_:iT,l:i = Wi, Ul_:il,l:i = Zi.4,14 and that
both algorithms have computed the same D;;. Obviously this is true for s = 1. Now row

17

i+ 1 of Lin Algorithm 12 will be p" := A; 11 ﬂiljlziD;il,l:i after sparsifying p with
respect to some dropping rule. In the same way we obtain ¢ := D}y, L7, ;A1 for
Utiijit1-

On the other hand we will compute precisely the same values P;; = p,@Q1; = ¢ in

Algorithm 11. Moreover dropping is applied to the same vectors with the same dropping
rules. Let us call p, ¢ the sparsified vectors. It follows that

Li;1: 0 Uit G
L1141 = [%.ZT,L@ 1] y Uliiyr,1:41 = [16’1'1 (1] }
and
L—T _ Wl:i,l:i _Wl:i,lziﬁ -1 _ Zl:i,l:i _Zl:z',l:iqA
1:g41,10541 — 0 1) li+1,1054+1 — O 1 .

But this is precisely the way Z, W are defined in Algorithm 11 and since there is no addi-
tional sparsification done we have that Lf:;l’l:iﬂ = Whiiit1,10i41, U17:i1+1,1:i+1 = Z1:i1,15i41-
Finally, for any choice of D;;;;+1 mentioned above we immediately obtain that both

algorithms compute the same value. o

This result between Algorithm 11 and Algorithm 12 is the perfect analogy to the rela-
tion between Algorithm 4 and Algorithm 1. This analogy seems to be reasonable since
Algorithm 4 and Algorithm 11 combined with a simplified dropping strategy are set up
in an analogous way to Algorithm 1 and Algorithm 12.

There is also a surprisingly simple connection between Algorithm 11 and Algorithm
9. Clearly we should require that 8 = € =) in both cases since otherwise this leads
to a connection between Algorithm 11 and Algorithm 12 but also between Algorithm
9 and Algorithm 1 (i.e., in case both algorithms would refer to different incomplete
LU-decompositions). Since Algorithm 9 can in principle compute Z, W independently
of each other, at least for the two specific cases (8),(9) it is clear that we only have to
consider the case when one of R;, €; is empty.

Theorem 14 Consider Algorithm 9, and Algorithm 11 where no sparsifying is applied
to P,Q (R =¢&=0). Assume that in Algorithm 9, R; = & = 0 for any step j <i—1,
i.e. sparsifying is done only once per column in the final step 7 =1 — 1.

Assume, in addition, that Algorithm 9 applies the same dropping rule to Wi.i—1:, Z1:i—1,
in step 7 =1 —1 as Algorithm 11.

If Algorithm 9 computes P by (18) and if Algorithm 11 computes D;; by (18), then both
algorithms compute the same W, D, provided that no dropping is applied to Z (same
%, sz:(l),z:?,,n)

18

If Algorithm 9 computes Q by (13) and if Algorithm 11 computes Dy by (19), then both
algorithms compute the same Z, D, provided that no dropping is applied to W (same
Q:,', %:@,’LZQ,,TL)

Proof. It suffices to show only the relation for the matrix W. To avoid confusion, we
note that during this proof we always refer to P as the choice of P in Algorithm 9.
In Algorithm 9 we introduce an auxiliary matrix Z which will be initialized as Z = I,
during each step of Algorithm 9 we compute beside P; the auxiliary value

pj = A—[,_’LWJ'
As for P; we divide pj by pj, i.e. pj = lsj/pj. Then we update Zin any step by

and no sparsifying is done. We will show that Z of Algorithm 9 corresponds to Z in Al-
gorithm 11. Suppose that at some step 7, both matrices have computed the same Wi 1.,
that the diagonal entries of Dy 1,; of Algorithm 11 coincide with first ¢ components of p.
Finally assume that 21:,-,1:,- of Algorithm 9 is associated with Z;, 1,; from Algorithm 11.
This is obviously true for i = 1. Alggrithm 9 updates column i of W, Z. Initially we have

W.; = e;, Z.; = e;. Denote by Py, P;.; the column vectors with components Py, ..., P;,
Py, ..., P;. When we refer to P;, P; we mean these variables after the division by p;.

Since Z.; is not referenced during the inner loop we immediately have
5 _ -1 T
P = D1n>1,1:i71W1:if1,1:i71A1:i71,i

and
7% _ 7 D _ 7% -1 T
Zl:ifl,i - _Zl:ifl,l:iflpl:ifl - _Zl:ifl,l:ileln‘_1’1;i_1Wl;ifl,l;iflAl:ifl,i

This is already precisely the way Z;.,_1, is defined in Algorithm 11.

We will show that for any j =1,...,7 — 1 we will have

This is obviously true for 7 = 1. Now suppose that this formula is correct for 1,...,5—1.
In this case we obtain
A -1
Zl-jj — _Zl:j—lylij—1Dl:j—l,l:j—1W1Tj71,1:j71A11j—1,J'
4, 1
and
AiZ. ;= Aij — Airij—1Z15-1151D7 1 15 1 Wi 11514115 (21)

19

Denote by W(f) the updated version of W.; after step j. Starting with W:E?) = ¢; we find
that _
W(f) =€ — W,1:jf1P1:j71-

We compute P; by substituting the latest update W(‘Z) of W.; by e, = W. 1.1 P1.;_1 and
get
AI]-I/VS_I) = ATJ (ei = Wiaj—1Prijo1)

-
= Azg —A Wl:jfl,l:jflpl:jfl

1ij—1,j
But since
T AT . -1
Pl:j—l = Az,l:]—IZI:J—1,1:]—1D1:j—1,1:j71

we finally end up with

1 N .

ATJW(j) = Aij - AIj—l,jWI:j—l,l:j—lDlzgl'—1,1:j—1Z1T:j—1,1:j—1Az'T,1:j—1- (22)
Fortunately formula (22) for AI]-VV:E{_I) matches with formula (21) for A;.Z.; which
proves (20).

After we have established (20) we obtain that both algorithms compute the same Pj.;_;
and therefore both Algorithms compute the same

Wl:i—l,i = _lei—l,l:i—lplzi—l-

Since we apply sparsification at the same place to the same vectors, these vectors will
coincide after being sparsified. It is clear by construction that D;; and p; will also be
the same. O

Roughly spoken we have to apply Algorithm 11 with sparsifying either only in W or
only in Z to obtain the same W/Z as in Algorithm 9. In this case for both Algorithms,
sparsifying is done only once at the end for each column. The key relation between both
algorithms here is (20). It gives us a dual representation of the coefficients P during the
update of W.; that does not depend on the updated vectors of W ;.

5 Conclusions

We have shown a number of inter-relations between factorized approximate inverse and
related incomplete factorizations of the I LU type. We also established relations between
different approaches to compute factorized approximate inverses. It is an interesting fact

20

to see that approximate inverse methods are intimately related to ILU factorizations.
They can be viewed as a process for obtaining the inverses of the L and U factors directly
from the elementary subfactors that arise in Gaussian elimination. What is interesting,
is that with an appropriate set of assumptions on the patterns used for dropping, many
other relationships can be established. This equivalence permits to establish some results
on existence and, more generally, to better understand the algorithms. For example, it
is now clear that /LU and AINV factorizations are two extremes where elementary
factors are all inverted (in AINV) or kept are they are (in ILUs) — but it is clear that
there is a sea of variation in between these extremes and it is quite conceivable that
better methods would be adaptive algorithms that lie in between — where adaptivity
here is understood in relation to stability.

References

[1] MATLAB - The language of technical computing. The MathWorks Inc., 1996.

[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press, New York, 1994.

[3] M. Benzi, J. K. Cullum, and M. Tuma. Robust approximate inverse preconditioning for
the conjugate gradient method. Technical report LA-UR-99-2899, Los Alamos National
Laboratory, Scientific Computing Group, 1999.

[4] M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate inverse preconditioner for
the conjugate gradient method. SIAM J. Sci. Comput., 17:1135-1149, 1996.

[6] M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for nonsymmetric
linear systems. SIAM J. Sci. Comput., 19(3):968-994, 1998.

[6] E.Chow and Y. Saad. ILUS: an incomplete LU factorization for matrices in sparse skyline
format. International Journal for Numerical Methods in Fluids, 25:739-748, 1997.

[7] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations.
SIAM J. Sci. Statist. Comput., 19:995-1023, 1998.

[8] A. C. V. Duin. Scalable parallel preconditioning with the sparse approximate inverse of
triangular matrices. Preprint, Rijksuniversiteit Leiden, Department of Computer Science,
1997.

[9] G. Golub and C. V. Loan. Matriz Computations. The Johns Hopkins University Press,
third edition, 1996.

[10] A. Greenbaum. lterative Methods for Solving Linear Systems. Frontiers in Applied Math-
ematics. STAM Publications, 1997.

21

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverses. SIAM
J. Sci. Comput., 18(3), 1997.

W. Hackbusch. [terative Solution of Large Linear Systems of Equations. Springer Verlag,
New York, 1994.

I. E. Kaporin. New convergence results and preconditioning strategies for conjugate
gradient method. Numer. Lin. Alg. w. Appl., 1(2):179-210, 1994.

S. Kharchenko, L. Kolotilina, A. Nikishin, and A. Yeremin. A reliable AINV—type precon-
ditioning method for constructing sparse approximate inverse preconditioners in factored
form. Technical report, Russian Academy of Sciences, Moscow, 1999.

Y. Kolotilina and Y. Yeremin. Factorized sparse approximate inverse preconditionings I.
theory. SIAM J. Matriz Anal. Appl., 14:45-58, 1993.

J.-C. Luo. An incomplete inverse as a preconditioner for the conjugate gradient method.
Computer & Math. w. Appl., 25(2):73-79, 1993.

J.-C. Luo. A new class of decomposition for inverting asymmetric and indefinite matrices.
Computer & Math. w. Appl., 25(4):95-104, 1993.

T. Manteuffel. An incomplete factorization technique for positive definite linear systems.
Math. Comp., 34:473-490, 1980.

J. Meijerink and H. A. V. der Vorst. An iterative solution method for linear systems of
which the coefficient matrix is a symmetric m—matrix. Math. Comp., 31:148-162, 1977.

Y. Saad. ILUT: a dual treshold incomplete ILU factorization. Numer. Lin. Alg. w. Appl.,
1:387-402, 1994.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

22

