Recommender Systems: User Experience and System Issues

Joseph A. Konstan
University of Minnesota

konstan@cs.umn.edu
http://www.grouplens.org

About me …

• Professor of Computer Science & Engineering, Univ. of Minnesota
• Ph.D. (1993) from U.C. Berkeley
 • GUI toolkit architecture
• Teaching Interests: HCI, GUI Tools
• Research Interests: General HCI, and ...
 • Collaborative Information Filtering
 • Multimedia Authoring and Systems
 • Visualization and Information Management
 • Medical/Health Applications and their Delivery

A Quick Introduction

• What are recommender systems?
• Tools to help identify worthwhile stuff
 • Filtering interfaces
 • E-mail filters, clipping services
 • Recommendation interfaces
 • Suggestion lists, “top-n,” offers and promotions
 • Prediction interfaces
 • Evaluate candidates, predicted ratings

Scope of Recommenders

• Purely Editorial Recommenders
• Content Filtering Recommenders
• Collaborative Filtering Recommenders
• Hybrid Recommenders

Wide Range of Algorithms

• Simple Keyword Vector Matches
• Pure Nearest-Neighbor Collaborative Filtering
• Machine Learning on Content or Ratings

Classic Collaborative Filtering

• MovieLens*
• K-nearest neighbor algorithm
• Model-free, memory-based implementation
• Intuitive application, supports typical interfaces
 • *Note – newest releases use updated architecture/algorithm
Select Items; Predict Ratings

Understanding the Computation

<table>
<thead>
<tr>
<th></th>
<th>Hoop Dreams</th>
<th>Star Wars</th>
<th>Pretty Woman</th>
<th>Titanic</th>
<th>Blimp</th>
<th>Rocky XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>D A B D ?</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>A F D F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan</td>
<td>A A A A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat</td>
<td>D A C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean</td>
<td>A C A C A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ben</td>
<td>F A F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nathan</td>
<td>D A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Understanding the Computation

<table>
<thead>
<tr>
<th></th>
<th>Hoop Dreams</th>
<th>Star Wars</th>
<th>Pretty Woman</th>
<th>Titanic Blimp</th>
<th>Rocky XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>?</td>
</tr>
<tr>
<td>John</td>
<td>A</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>?</td>
</tr>
<tr>
<td>Susan</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Pat</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Ben</td>
<td>F</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nathan</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MovieLens

Freely accessible at: http://www.movielens.org
Talk Roadmap

- Introduction
- Algorithms
- Research Overview
- Influencing Users
- Recommending Research Papers
- Rethinking Recommendation

Collaborative Filtering Algorithms

- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
- Burke's Survey of Hybrids
- Graph Techniques
- Horting
- Clustering
- Classifier Learning
 - Naive Bayes
 - Bayesian Belief Networks
 - Rule-induction
Collaborative Filtering Algorithms

- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
 - Burke’s Survey of Hybrids
- Graph Techniques
- Clustering
- Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction

Item-Item Collaborative Filtering

Used for similarity computation
Item-Item Matrix Formulation

- Target item
- 5 closest neighbors
- Raw scores for prediction generation
- Approximation based on linear regression

Item-Item Discussion
- Good quality, in sparse situations
- Promising for incremental model building
 - Small quality degradation
 - Big performance gain

Collaborative Filtering Algorithms
- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
 - Burke's Survey of Hybrids
 - Graph Techniques
 - Clustering
 - Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction

Dimensionality Reduction
- Latent Semantic Indexing
 - Used by the IR community
 - Worked well with the vector space model
 - Used Singular Value Decomposition (SVD)
- Main Idea
 - Term-document matching in feature space
 - Captures latent association
 - Reduced space is less-noisy

SVD: Mathematical Background

The reconstructed matrix $R_k = U_k S_k V_k^T$ is the closest rank-k matrix to the original matrix R.

SVD for Collaborative Filtering

1. Low dimensional representation $O(m+n)$ storage requirement
2. Direct Prediction
Singular Value Decomposition
Reduce dimensionality of problem
- Results in small, fast model
- Richer Neighbor Network
Incremental Update
- Folding in
- Model Update

Collaborative Filtering Algorithms
- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
 - Burke's Survey of Hybrids
 - Graph Techniques
 - Horting
 - Clustering
 - Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction

Talk Roadmap
- Introduction
- Algorithms
- Research Overview
- Influencing Users
- Recommending Research Papers
- Rethinking Recommendation

Current and Recent Research
User Experience
- Impact of Ratings on Users
- New User "Orientation"
- Confidence Displays
- Interface Design
- Human-Recommender Interaction
Algorithmic and Systems Issues
- Beyond Accuracy: Metrics and Algorithms
- Buddies and Multi-User Recommendations
- Influence and Shilling
Eliciting Participation in On-Line Communities
- Reinventing Conversation
- User-Maintained Communities
Extending Recommendation to New Domains
- Recommending Research Papers

Talk Roadmap
- Introduction
- Algorithms
- Research Overview
- Influencing Users
- Recommending Research Papers
- Rethinking Recommendation

Does Seeing Predictions Affect User Ratings?
- RERATE: Ask 212 users to rate 40 movies
 - 10 with no shown prediction
 - 30 with shown predictions (random order): 10 accurate, 10 up a star, 10 down a star
- Compare ratings to accurate predictions
 - "Prediction" is user's original rating
 - Hypothesis: users rate in the direction of the shown prediction
The Study

Please rate the movies listed below. These ratings will not be saved to your profile.

<table>
<thead>
<tr>
<th>Predicted Rating</th>
<th>Your Rating</th>
<th>Genre</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>Drama</td>
<td>The Godfather</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Comedy</td>
<td>The Shawshank Redemption</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Action</td>
<td>The Dark Knight</td>
</tr>
</tbody>
</table>

Seeing Matters

- **Prediction shown?**
 - Not shown
 - Shown

Accuracy Matters

- **Prediction manipulation**
 - Down: 20% Ratings %
 - Accurate: 60% Ratings %
 - Up: 20% Ratings %

Domino Effects?

- The power to manipulate?

Rated, Unrated, Doesn’t Matter

- Recap of RERATE effects:
 - Showing prediction changed 8% of ratings
 - Altering shown prediction changed 12%
- Similar experiment, UNRATED movies
 - 137 experimental users, 1599 ratings
 - Showing prediction changed 8% of ratings
 - Altering shown prediction changed 14%

But Users Notice!

- Users are often insensitive...
- UNRATED part 2: satisfaction survey
 - Control group: only accurate predictions
 - Experimental predictions accurate, useful?
 - ML predictions overall accurate, useful?
 - Manipulated preds less well liked
 - Surprise: 24 bad = MovieLens worse!
Talk Roadmap

- Introduction
- Algorithms
- Research Overview
- Influencing Users
 - Recommending Research Papers
 - Rethinking Recommendation

Recommending Research Papers

- Using Citation Webs
- For a full paper, we can recommend citations
 - A paper “rates” the papers it cites
 - Every paper has ratings in the system
- Other citation web mappings are possible, but many are have problems

Pure Experiment Results -- Online

- Worst algorithm returned good results over 25% of the time
- 76% of users got at least one good recommendation
- Users happy with one good recommendation in list of five

What’s Next?

- Short-Term Efforts
 - Task-specific recommendation
 - Understanding personal bibliographies
 - Privacy issues
- Longer-Term Efforts
 - Toolkits to support librarians and other power users
 - Exploring the shape of disciplines
 - Rights issues

Task-Specific Recommendations

- Many different user needs
 - Awareness in area of expertise
 - Find specific work in area of expertise
 - Explore peripheral or new area
 - Find people with relevant expertise
 - Reviewers, program committees, collaborators
 - Reading list for students, newcomers
 - Individuals or groups
- Different algorithms fulfill different needs

Talk Roadmap

- Introduction
- Algorithms
- Research Overview
- Influencing Users
- Recommending Research Papers
- Rethinking Recommendation
Evaluating Recommendations

- Prediction Accuracy
 - MAE, MSE
- Decision-Support Accuracy
 - Reversals, ROC
- Recommendation Quality
 - Top-n measures
- Item-Set Coverage

From Items to Lists

- Do users really experience recommendations in isolation?

Making Good Lists

- Individually good recommendations do not equal a good recommendation list
- Other factors are important
 - Diversity
 - Affirmation
 - Appropriateness
- Called the “Portfolio Effect”
 [Ali and van Stam, 2004]

Topic Diversification

- Re-order results in a rec list
- Add item with least similarity to all items already on list
- Weight with a ‘diversification factor’
- Ran experiments to test effects
Experimental Design

- Books from BookCrossing.com
- Algorithms
 - Item-based CF
 - User-based CF
- Experiments
 - On-line user surveys
 - 2125 users each saw one list of 10 recommendations

Online Results

![Graph showing comparison between Item-based CF and User-based CF](graph.png)

Diversity is Important

- User satisfaction more complicated than only accuracy
- List makeup is important to users
- 30% change enough to alter user opinion
- Change not equal across algorithms

Human-Recommender Interaction

- Three premises:
 - Users perceive recommendation quality in context; users evaluate lists
 - Users develop opinions of recommenders based on interactions over time
 - Users have an information need and come to a recommender as a part of their information seeking behavior

HRI Pillars and Aspects

HRI Process Model

- Makes HRI Constructive
 - Links Users/Tasks to Algorithms
 - Need New Metrics
New Metrics

- Benchmark a variety of algorithms
- Need several metrics inspired by different HRI Aspects
- Examples:
 - Ratability
 - Boldness
 - Adaptability

Metric Experimental Design

- ACM DL Dataset
 - Thanks to ACM for cooperation!
 - 24,000 papers
 - Have citations, titles, authors, & abstracts
 - High quality
- Algorithms
 - User-based CF
 - Item-based CF
 - Naïve Bayes Classifier
 - TF/IDF Content-based
 - Co-citation
 - Local Graph Search
 - Hybrid variants

Ratability

- Probability a user will rate a given item
 - “Obviousness”
 - Based on current user model
 - Independent of liking the item
- Many possible implementations
 - Naïve Bayes Classifier

Ratability Results

- Mean Ratability
 - Top-10
 - Top-20
 - Top-30
 - Top-40

Boldness

- Measure of “Extreme Predictions”
 - Only defined on explicit rating scale
 - Choose “extreme values”
 - Count appearance of “extremes” and normalize
- For example, MovieLens
 - 0.5 to 5.0 star scale, half-star increments
 - Choose 0.5 and 5.0 as “extreme”

Boldness Results

- Ratio to Expected
 - Top-10
 - Top-20
 - Top-30
 - Top-40
Adaptability

- Measure of how algorithm changes in response to changes in user model
 - How do users grow in the system?
 - Perturb a user model with a model from another random user
 - 50% each
 - See quality of new recommendation lists

Adaptability Results

![Adaptability Results](chart.png)

Conclusions

- From humble origins ...
 - Substantial algorithmic research
 - HCI and online community research
 - Important applications
 - Commercial deployment

Acknowledgements

- This work is being supported by grants from the National Science Foundation, and by grants from Net Perceptions, Inc.
 - Many people have contributed ideas, time, and energy to this project.
Recommender Systems: User Experience and System Issues

Joseph A. Konstan
University of Minnesota

konstan@cs.umn.edu
http://www.grouplens.org