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Figure 1: Eye gaze, head orientation, and head position are used to predict the participant’s future path direction after a decision waypoint. 
 

 
Abstract 
 
This paper reports preliminary investigations into the extent to 
which future directional intention might be reliably inferred from 
head pose and eye gaze during locomotion. Such findings could 
help inform the more effective implementation of realistic 
detailed animation for dynamic virtual agents in interactive first-
person crowd simulations in VR, as well as the design of more 
efficient predictive controllers for redirected walking. In three 
different studies, with a total of 19 participants, we placed people 
at the base of a T-shaped virtual hallway environment and 
collected head position, head orientation, and gaze direction data 
as they set out to perform a hidden target search task across two 
rooms situated at right angles to the end of the hallway. Subjects 
wore an nVisorST50 HMD equipped with an Arrington Research 
ViewPoint eye tracker; positional data were tracked using a 12-
camera Vicon MX40 motion capture system. The hidden target 
search task was used to blind participants to the actual focus of 
our study, which was to gain insight into how effectively head 
position, head orientation and gaze direction data might predict 
people's eventual choice of which room to search first. Our results 
suggest that eye gaze data does have the potential to provide 
additional predictive value over the use of 6DOF head tracked 
data alone, despite the relatively limited field-of-view of the 
display we used. 
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1   Introduction 
 
Head tracking is an essential component of every virtual reality 
system, required for the presentation of perspectively correct 
imagery.  Eye tracking requires extra effort and cost, in the form 
of additional hardware and software as well as the inconvenience 
of a cumbersome calibration process, yet gaze information, if it 
were available, might offer multiple advantages in diverse VR 
applications.  In this paper, we specifically consider the question 
of how gaze information might help us to infer where someone is 
intending to walk, particularly in the case where a decision 
between two alternative walking directions needs to be made. 
 
One important potential application for such information is in the 
design of more effective controllers for redirected walking.  
Redirected walking was introduced by Razzaque et al. [2001] as a 
method for enabling users to experience the illusion of physically 
walking through a larger virtual space within the confines of a 
smaller physical area. Redirection is achieved by judiciously 
introducing subtle discrepancies into the typical 1-1 mapping 
between a user’s actual locomotor actions in the physical space 
and the observed effect of those actions in the virtual world. For 
example, a very simple redirection controller might allow a user 
to move forward at a speed that is 7x faster in the virtual world 
than in the real world [Interrante et al. 2007] or to turn around by 
360˚ in the virtual world while turning only 180˚ in reality 
[Williams et al. 2007]. While classical redirection controllers rely 
on instantaneous measures of attributes such as head position, 
head orientation, and velocity to inform the implementation of 
simple heuristics such as “steer-to-center” or “steer-to-orbit” 
[Hodgson and Bachman 2013], many in the research community 
have recognized the enhanced potential for more effective 
redirection when a person’s future locomotion path is either 
known in advance or can be inferred [e.g. Nitzche et al. 2004, 
Nescher and Kunz 2012, Goldfeather and Interrante 2012, Zmuda 
et al. 2013, Zank and Kunz 2015]. 
 
A second important application for eye gaze information is in the 
realistic and effective animation of autonomous virtual agents.  
Our typical experience of the everyday world is as a shared space, 
so much so that architects routinely incorporate human figures 
into their drawings of planned spaces, both to provide a sense of 
scale and to “bring the drawing to life” [Anderson 2002]. Beyond 
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the numerous challenges in automating realistic locomotor 
behavior at the macro level [Karamouzas et al. 2014], correctly 
modeling detailed behavior such as gaze direction can be 
important not only to the visual realism of the avatar animation 
but also to the potential effectiveness of the avatar’s non-verbal 
communication [Ruhland et al. 2014].  
 
2   Related Work 
 
Real-world studies of gaze behavior during locomotion have 
mainly focused on the role of gaze in maintaining postural and 
locomotor stability. Early studies found that the head is generally 
oriented in the direction of travel, that head reorientation occurs in 
near temporal coincidence with gaze realignments when subjects 
turned by 30˚–60˚, and that, when the route is obstacle-free, gaze 
is primarily directed either straight ahead or at the goal [Hollands 
et al. 2002, Patla 2004], results that echo observations of eye gaze 
behavior while driving [Land and Lee 1994]. However, later work 
began to raise some concerns about the extent to which these 
earlier findings might have been unduly influenced by the design 
of the experimental setup [Pelz et al. 2009], and more recent work 
suggests that gaze direction in fact anticipates head orientation, 
which in turn anticipates the reorientation of other body segments 
[Bernardin et al. 2012, Wilkie et al. 2010].  None of these studies, 
however, have involved a decision-making component. 
 
Classical research in gaze behavior during decision-making 
[Shimojo et al 2003, Glaholt and Reingold 2009] suggests to us 
that by observing people’ eye gaze as they walk, we may be able 
to infer their future locomotor intent significantly in advance of 
the point at which that locomotor decision needs to be 
instantiated. As summarized in a recent review [Orquin and Loose 
2013], when presented with an alternative force-choice task in an 
image-viewing setting, people reliably look longer and more often 
at the alternative they eventually choose.  In addition, there is a 
slight bias towards eventually choosing the alternative they look 
at first, and peoples’ last fixation before their decision tends to be 
on the chosen alternative. Somewhat surprisingly, given that 
people are of course free to look wherever they want, studies 
conducted in natural (as opposed to picture-viewing) contexts 
have found that most gaze is goal-directed and only moderately 
affected by salience [Tatler et al. 2011].  
 
While there has been an abundance of prior research in gaze 
behavior, little of that work has focused on assessing the potential 
of using gaze to dynamically predict where people intend to walk 
while proceeding towards a potential wayfinding decision point. 
Most relevant to the implementation of appropriate gaze behavior 
for signaling the future directional intent of autonomous agents, 
Nummenmaa et al. [2009] found that when seated observers were 
asked to watch a video of an approaching avatar, displayed on a 
20” computer monitor, and to press a key to indicate which way 
they would choose to pass, while the character either looked 
constantly to one side, or approached with a straightforward gaze 
that suddenly shifted to one side, subjects consistently chose to 
pass on the side the avatar was looking away from.  This suggests 
that people can infer future locomotor intent from the gaze 
behavior of animated agents, at least when implicitly prompted to 
do so, and underlines the potential importance of implementing 
correct agent gaze behavior in situations where collision 
avoidance is a concern. 
 
Most closely related to the work we describe here is a very recent 
paper by Zank and Kunz [2016], which focuses on the potential 

for using gaze direction in a redirected walking controller.  
Following a similar but slightly different experimental design as 
ours, they find that predictive models based on gaze direction 
typically allow the earlier correct prediction of a user’s eventual 
turn direction than models that rely on positional data alone, 
though at a small cost of more frequent late incorrect predictions.  
Our work complements these findings by providing additional 
data obtained under slightly different conditions, contributing to 
the development of a comprehensive, integrated understanding of 
the potential advantages of collecting eye gaze data for use in 
conjunction with head position and head orientation information 
to infer a person’s most likely future heading direction after 
reaching a distant decision point. 
 
3   Our Experiment 
 
In this study, we measure the head pose, head orientation and eye 
gaze direction of participants as they navigate down the length of 
a virtual hallway (figures 1 & 2). The participants are directed to 
approach a doorway at the end of the virtual hallway and, as a 
distractor task, asked to count the number of circles that appear in 
a virtual picture frame that hangs on the wall within the rooms 
beyond those doors. Our true intention is to determine which of 
the two virtual doorways the participant will visit first, using the 
head tracking and eye gaze direction data. We performed two 
pilot studies, followed by a final experiment. 
 
 
 
 
 
 
	
		
 
Figure 2. (left) Downward view of the virtual hallway. 
Participant starts at the narrow end and walks over to one of the 
doorways. (middle) View of the virtual hallway, as seen by the 
participant. (right) View inside the right doorway.  
 
3.1   Participants 
 
The first pilot study had six participants (5 male and 1 female), 
ages ranging from their 20’s to their 60’s. The second pilot study 
had six participants (4 male and 2 female), in their 20’s and 30’s. 
This study had seven participants (all male), in their 20’s and 
30’s. Participants were recruited from our University and local 
community, and were compensated with $10 gift cards. 
 
3.2   VR Equipment & Software 
 
Participants wore an nVisorST50 optical see through head-
mounted display equipped with an Arrington Research ViewPoint 
eye tracker (see figure 2). During the experiment, the participant’s 
view of the real world was blocked so that they saw only the 
virtual scene. The display field of view was 40˚ horizontal, and 
separate SXGA (1280 x 1024) images were presented to each eye. 
Positional data were tracked using a 12-camera Vicon MX40+ 
motion capture system. Head position (XY coordinates) and 
orientation (rotational yaw) were recorded using the Vicon 
DataStream SDK 1.4 (x64). The eye tracking system was 
calibrated using the ViewPoint EyeTracker software from 
Arrington Research, and eye tracking data were collected using a 
C-language DLL provided by Arrington. The Unreal Engine 4 

32



was used for creation of the virtual hallway and to run the virtual 
reality simulation. We wrote a C-language DLL wrapper to 
retrieve frames of eye tracking data from the Arrington DLL. We 
also wrote a C# program to retrieve frames of head tracking data 
from the Vicon motion tracking system. For each frame of head 
tracking data, the C# program also retrieved a data frame of eye 
tracking data. Head tracking and eye tracking data were thereby 
recovered synchronously and saved to a log. 
 
 
 
 
 
 
 
 
 
Figure 3. Our nVisor ST50 Head-Mounted Display with Arrington 
eye tracking camera and retroreflective motion tracking dots. 
 
3.3   Method Overview & Hypothesis 
 
We collected head position, head orientation and gaze direction 
data as participants walked from the narrow end of a T-shaped 
virtual hallway towards one of two virtual doorways at the end of 
the hallway (see figure 2). The goal of our experiment was to 
assess the extent to which the information provided by each of 
these data streams forecasts the participant’s eventual choice of 
which room to enter first. To blind participants to the true purpose 
of our experiment, we devised a cover story which was that we 
were seeking to understand where people look when they search 
for targets in an image, under natural viewing conditions. 
 
At the start of each trial, participants stood at the end of a long 
hallway and their task was to enter each of the rooms at the end of 
the hallway and report the number of circles in each image (see 
figure 4). Between every trial, the experimenter changed the 
images in the virtual picture frames with a keystroke. We 
performed six trials for each of the seven participants in this 
study.  
 
	
	
	
	
	
	
Figure 4. Examples of the photos that appeared in the virtual 
picture frames. The participant is asked to count the circles in 
each photo (2 circles on left, 1 circle on right). 
 
Prior to this reported experiment, we conducted two pilot studies, 
with six participants each. In the first pilot study, we recorded 
binary information about the eye gaze direction (i.e. whether it 
was on the left side or the right side of the display’s midline). 
While the results were encouraging, we recognized that more 
complete data would help us make more nuanced predictions of 
the destination, so we elected to measure the actual magnitude of 
eye gaze direction (in radians) in later studies. In the second pilot 
study, we collected six trials of data from each of six different 
participants. From this study we determined that it would be 
necessary to account for slippage in the head mounted display 

(HMD) as the participant walks around. We then experimented 
with various mechanical and procedural measures to try to prevent 
HMD slippage but determined that such measures could not be 
used if they impeded participants’ perceived freedom of head 
movement. Therefore, for our final experiment, we introduced 
improvements to the experimental procedure both to reduce the 
likelihood of slippage between the calibration and 
experimentation phases (e.g. conducting the full eye tracking 
calibration process from a standing position, so that the 
participant does not need to stand up from a chair and risk moving 
the HMD) and to allow us to estimate and correct for any slippage 
that does occur. Preventing slippage in the HMD is important to 
ensuring the accuracy of the eye tracking measurements. 
 
3.3.1   Experimental Protocol 
 
The experimenter helps the participant put on the HMD securely 
(but to the participant’s comfort) and position the eye tracking 
camera and IR light (see figure 3) so that the eye appears on-
camera (as viewed using the ViewPoint EyeTracker software that 
comes with the Arrington eye tracker). The participant is asked to 
move their right eye to the 4 compass directions, so that the 
experimenter can observe whether tracking is ever lost. The 
camera position is adjusted, if necessary. The process of adjusting 
the camera is frequently time-consuming. The experimenter then 
helps the participant prepare for eye tracking calibration by 
leading the participant to a computer screen which is positioned at 
head height. The HMD’s eye cover plate is off at this time. The 
experimenter instructs the participant to look through the HMD, 
and to center the right eye on the computer screen. The participant 
is told to position the right eye so that the eye does not see a pair 
of red tape strips affixed to the right and left edges of the 
computer monitor, but DOES see a pair of green vertical lines 
displayed as a bitmap image along the inner edges of the monitor, 
on the left and right sides. This procedure is used in order to 
center the participant on the computer screen, enabling definition 
of a coordinate system to track eye coordinates in the range [0, 1]. 
This [0, 1] range was verified in pilot testing by the experimenter, 
and in later data analysis we reviewed a plot of each participant’s 
eye movements to verify that the movements were within the [0, 
1] range. Eye tracker calibration is done using the Arrington 
software. The participant views a sequence of green squares that 
appear at all vertices of a grid, all across the computer monitor. 
After calibration is complete, the participant leaves the computer 
screen. The computer screen is not used at any further points of 
the experiment. The HMD and eye tracker devices are connected 
to our computer systems using a bundle of cables. The cables are 
long enough to afford the participant full access to all points of 
the virtual hallway. The participant is told to hold the cable 
bundle in one hand, so that the cable bundle does not tug on the 
head during walking. The participant is led to the starting point, 
which is demarcated with tape on the floor of the physical lab 
space. This tape in the physical lab space corresponds to the far 
end of the virtual T-shaped hallway. The virtual hallway model is 
launched using the Unreal Engine software. The virtual scene is 
now visible to the participant on the HMD. The physical cover 
plate is affixed to the HMD so that the participant no longer sees 
the physical lab in front of the HMD, and can focus on viewing 
the virtual hallway model. 
 
From this position in the virtual hallway, the participant can see 
three sconces hanging on the virtual wall (one on the left wall, one 
in the middle, and one the right wall – see figure 2). Before each 
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trial, we collect a data log while the participant gazes at the 
middle sconce, and use the median head yaw (i.e. the h term in 
Equation 3) from these data logs to compute a display slippage 
correction factor, γ, to compensate for any slippage that might 
have occurred in the HMD during the trials since eye tracking 
calibration (see next section for details). We also collect data logs 
while the participant gazes at the other two sconces, in order to 
avoid biasing the participant. The order in which they are asked to 
gaze at the three sconces is randomized. 
 
For each trial: 

a) Experimenter collects a separate data log while the 
participant gazes at each of the middle, left and right 
sconces, in a randomized order. 

b) Experimenter initiates the data collection program and 
invites the participant to start walking when ready. 

c) Participant walks over to a doorway and tells the 
experimenter how many circles appear in the picture. 
The picture only becomes visible after the participant 
enters the doorway, thereby forcing the participant 
choose a door. 

d) Participant walks to the other doorway and verbally 
reports the number of circles. 

e) Experimenter stops the data collection program. 
f) Participant returns to the starting point. 
 

3.4   Data Analysis 
 
We wish to predict which of the two virtual doors the participant 
will approach first in the virtual hallway. We consider the 
following inputs:  
 

1) Head direction vector 
2) Gaze direction vector 
3) Participant’s current XY position in the hallway 
4) XY position of each doorway’s midpoint 

 
Head direction is given as a yaw rotation, in radians, by the Vicon 
tracking system. The gaze direction is defined as: head direction + 
eye gaze direction relative to head + γ. γ is the display correction  
factor that compensates for HMD slippage between trials. The Y 
axis of our Vicon tracking system runs along the length of the 
virtual hallway. We measure the participant’s walking progress 
using the Y axis coordinate. We partition the Y axis into segments 
of 100 mm and report the proportions of predictions within each 
segment (see figures 7, 8 & 9). The dependent variable is a 
prediction of the destination: {left door, right door, 
indeterminate}. For the data samples within each segment, we 
predict the destination door using each of the following three 
methods.  
 

1) Head Direction Method 
2) Gaze Direction Method 
3) Position Method (relative to virtual hallway midline) 

 
Head direction is used to predict the outcome as follows: We draw 
a vector from the participant’s current position to the right door, 
and a vector from the current position to the left door. We find the 
angles β1 and β2, between the head direction and these other two 
directions, as shown in figure 5. The smaller angle indicates the 
prediction. In figure 5, we predict the right door, since β2 < β1. 
An indeterminate prediction occurs if the difference between β1 
and β2 is less than a threshold (see the Data Cleanup section of 
this paper for details).  

Position is used to predict the outcome as follows: If the 
participant is to the right of the midline that divides the virtual 
hallway, then we predict the right door. If the participant is to the 
left of the midline, then we predict the left door. Otherwise we 
issue a prediction of ‘indeterminate’. The midline is parallel to the 
Y axis, and slightly offset from the Y axis. 
 
 
 
 
 
 
 
 
Figure 5 (left). Geometry that is used by the Head Direction and 
Gaze Direction prediction methods. 
Figure 6 (right). Trigonometry that is used to convert the eye 
tracking measurement, a, to an angle, α, (in radians). 
 
Figure 6 illustrates the conversion from eye tracking coordinates, 
a, in a range [0, 1.0] to an angle, α, in radians. The display 
slippage correction factor is computed for each trial. The average 
display correction factor across the 42 trials is small: -0.00721326 
radians. The PC screen (shown as the horizontal line in figure 6) 
is present during the one-time calibration process, but not 
thereafter. We use the one-time measurements taken from the PC 
screen, along with the following trigonometry, to convert the eye 
tracking measurement into an angle. 
 

𝑑 = !
!"# (!)

   (1) 

𝛼 = atan (!
!
) (2) 

𝛾 =  − !
!
− ℎ  (3) 

𝛼 =  𝛼 + 𝛾  (4) 
 

In these equations:  h is the median head rotation (yaw) while the 
participant views the middle sconce, before the trial begins; d is 
the distance between the participant’s right eye and the computer 
screen during calibration; α is the angle (in radians) of the right 
eye’s gaze; z is half the width of the computer monitor screen (in 
mm); θ is half of the horizontal field of view of the HMD (as 
found on the nVisor data sheet); the -π/2 term corresponds to the 
axis of walking (i.e. the Y axis), in the coordinates of our Vicon 
tracking system; γ is the correction factor that we add to the 
participant’s gaze direction to account for slippage in the HMD; a 
is the gaze space coordinate read directly from the Arrington 
software, in the range [0, 1.0]; and 𝛼 is the eye angle, corrected to 
account for any slippage of the HMD on the participant’s head, 
which may have occurred subsequent to eye tracking calibration.  
Head direction (yaw) is provided directly by the Vicon tracking 
system (in radians). Gaze direction, in world coordinates, is the 
sum of 1) head direction 2) the display slip correction factor, γ, 
and 3) the gaze direction relative to the head, α. 
 
3.5   Data cleanup & Validation 
 
Before analyzing our data, we subjected it to a careful clean-up 
process.  First, we filtered the data stream for outliers due to 
glitches in tracking. We detected bad values in the head direction 
data by looking for a sharp gradient in the data stream. Through 
this process we removed 9 data points (out of a total set of over 
25,000).  Additionally, we determined a noise threshold in the eye 
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tracking data of 0.01 radians. We measured this noise threshold 
by having the experimenter stare straight down the hallway for a 
few seconds, without moving, and collecting a data log. This 
noise threshold accounts for the “indeterminate” outcome for the 
Head Direction and Gaze Direction prediction methods. If the 
difference between β1 and β2 is less than that noise threshold, we 
issue an indeterminate prediction. 
 
We wrote software to replay movies of experimental trials and 
verify the gaze direction by drawing the gaze point as a moving 
sphere in the scene. This process helped us to understand 
participants’ eye movements. We also reviewed plots of the raw 
eye tracking data, verifying that the values fell within the range 
[0, 1]. Further, we reviewed plots of the head directions and gaze 
directions for each of the 42 trials, ensuring that the radian 
measurements looked reasonable.  Additionally, the experimenter 
collected 7 validation trials on himself, each with a known 
structure. For example, in one validation trial, he intentionally 
pointed his head at the left door for the entire length of the 
hallway while fixating his eyes at the right door. He verified that 
the Head Direction prediction method predicted the left door, 
whereas the Gaze Direction prediction method predicted the right 
door at all points along the walking path. The predictions of each 
of these 7 validation trials were as expected. 
 
4   Results 
 
We report the following views of the data:  
 
1) Predictions of the destination door, reported for every 100 

mm segment of the Y axis (see Figures 7, 8 & 9) 
2) Plots that show the walking path of selected trials with 

erroneous predictions, where each data point is color-coded 
according to the destination that the data point predicts (see 
figures 10, 11 & 12) 

3) Head and gaze directions averaged over each 100 mm 
segment of the Y axis (see figures 13 & 14)  

4) Plots that show the averaged XY positions across all 
participants for trials that ended at the left virtual doorway 
and for trials that ended at the right virtual doorway (see 
figure 15) 

5) Plots that show the averaged head direction and averaged 
gaze direction for each 100 mm segment along the Y axis 
(see figures 16 & 17) 

 
5   Discussion 
 
The plots in figures 7, 8 and 9 depict the mixture of prediction 
outcomes using each of the 1) head direction, 2) gaze direction 
and 3) position methods. We stop making predictions at Y =          
–1700 mm because the doorways lie just beyond that point. For 
each prediction method, the average predictions improve as the 
trial proceeds (i.e. as the participant advances from 2500 mm to –
1700 mm). Notice that there are some incorrect predictions for 
each of the methods, even in the final bucket. Figure 10 shows the 
two trials that account for these incorrect predictions in the Head 
Direction prediction method. The final bucket (which occurs 
between –1600 mm and –1700 mm, just above the “–1.7m” tic 
mark) is shown in figure 10 to contain numerous data points that 
predict the right door (and are therefore colored green), whereas 
we would expect these points to predict the left door (and be 
colored blue). These two trials were the only trials that contained 
incorrect head direction predictions in the last segment. In the  

        
Figure 7. The predictions for each 100 mm segment of the Y axis, 
using the Head Direction prediction method. Walking proceeds 
from 2500 mm to –1700 mm. 

 
Figure 8. The predictions for each 100 mm segment of the Y axis, 
using the Gaze Direction prediction method. 

 
Figure 9. The predictions for each 100 mm segment of the Y axis, 
using the Position prediction method. 
 
other 40 trials, the last bucket was fully predictive of the left door. 
Figure 11 shows two trials where the gaze direction prediction 
method yielded incorrect predictions at a late stage. Figure 12 
shows two trials where the position prediction method yielded late 
incorrect predictions.  
 
The plots in figures 13 and 14 depict the overall trends in head 
direction and gaze direction. Figure 13 shows head directions 
(green) and gaze directions (blue) for trials that ended at the right 
virtual doorway. Figure 14 shows the same, but for trials that 
ended at the left virtual doorway. The horizontal axis corresponds 
to 100mm segments of the Y Axis (the axis of walking). The 
vertical axis corresponds to the average direction of all data points 
within that segment. The plots for the 30 trials that ended in the 
right doorway show that, on average, within a segment, the gaze 
direction turns toward the destination door with a greater
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Figure 10. Experimental trials for two different participants, 
where the Head Direction method results in a late incorrect 
prediction. These trials are the only two trials in which there were 
incorrect predictions in the final 100 mm segment, which occupies 
[–1.6m to –1.7m] along the Y axis (indicated by the tic marks). 
Walking proceeds from Start to P2 (left door). 
 

 
Figure 11. Experimental trials for two different participants, 
where the Gaze Direction method produces notable incorrect 
predictions. Walking proceeds from Start to P1 (right door). 
 

 
Figure 12. Experimental trials for two different participants, 
where the Position Method produces a late incorrect prediction. 
Walking proceeds from Start to P1 (right door). 
 
magnitude the head direction. The plots for the 12 trials that 
ended in the left doorway show somewhat more variability, but 
tell the same story. The participant walks from Y = 2500 mm (on 
the right side of figures 13 & 14) and stops walking just beyond Y 
= -1700 mm (on the left side of figures 13 & 14). This effect is 
further illustrated in figures 16 and 17, which diagrammatically 
show the head and gaze directions at 100 mm segments along the 
walking path. Notice the difference between the averaged head 
directions and gaze directions. The gaze directions tend to point to 
the destination door with a greater magnitude at an earlier point 

	
Figure 13. Head and gaze directions for each segment of 100 mm 
along the Y Axis, averaged over the 30 total trials where the 
participant walked to the right door first. Walking starts slightly 
above 2500 mm (on the right) and ends slightly below -1700 mm 
(on the left). 
 

 
Figure 14. Head and gaze directions for each segment of 100 mm 
along the Y Axis, averaged over the 12 total trials where the 
participant walked to the left door first. Walking starts slightly 
above 2500 mm (on the right) and ends slightly below -1700 mm 
(on the left). 
 

 
Figure 15. Averaged XY positions for the trials that ended at the 
left and right doors, respectively. 
 
than the head directions. This effect is especially pronounced in 
the 30 trials that end at the right door, likely due to the greater 
quantity of data (compared to trials that ended at the left door, of 
which there were only 12). The gaze directions “fan-out” more 
noticeably than the head directions. 
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The diagram on the left of figure 15 shows the averaged XY 
positions of the participant for the 12 trials where the participant 
chose the left door. The diagram on the right shows the average 
XY positions for the 30 trials where the participant chose the right 
door. These averaged plots begin at the start of data collection and 
run until -1700 mm along the Y axis, just before the participant 
reaches the doorways.  
 

 
Figure 16. The average head directions and gaze directions are 
drawn at each 100 mm segment along the walking path, up to the 
-1700 mm mark. Directions are averaged over the 30 trials that 
end at the right door. 
 

 
Figure 17. The average head directions and gaze directions are 
drawn at each 100 mm segment along the walking path, up to the 
-1700 mm mark. Directions are averaged over the 12 trials that 
end at the left door. 
 

  
Figure 18 (left). Logistic Regression model for gaze data. 
Figure 19 (right). Logistic Regression model for head data. 
 
Using a 3-way ANOVA (4 subject x 42 distance interval x 2 turn 
directions) to analyze the gaze data of the subset of subjects who 
chose each door at least some of the time, we found a statistically 
significant main effect on gaze angle of the ultimate door choice: 
{F(1,795) = 451.72, p<0.01}.  Considering a normalized gaze 
direction of 0 = pointing directly at the left door and 1 = pointing 
directly at the right door, the population marginal mean of gaze 
direction was 0.3706, se = 0.0088 when the left door was chosen 
and 0.6361, se = 0.0088 when the right door was chosen. This 

indicates that relative gaze direction (considered in aggregate over 
all of the 42 distance intervals) has the potential to be diagnostic 
of door choice. 
 
Similarly, using a 3-way ANOVA (4 subject x 42 distance 
interval x 2 turn directions) to analyze the head orientation data of 
the four subjects who chose each door at least some of the time, 
we found a statistically significant main effect on head orientation 
of the ultimate door choice: {F(1,795)=783.03 p<0.01}.  
Considering a normalized head direction of 0 = pointing directly 
at the left door and 1 = pointing directly at the right door, the 
population marginal mean of head direction was 0.3965, se = 
0.0060 when the left door was chosen and 0.6362, se = 0.0060 
when the right door was chosen.  This indicates that relative head 
direction (considered in aggregate over all 42 distance intervals) 
has the potential to be diagnostic of door choice. 
 
The population marginal means of relative gaze orientation over 
the 30 trials in which people eventually chose the right door were 
significantly different between the start of the trial (where the 
mean gaze orientation was 0.5054, se = 0.0421) and at distances 
beyond 2.7m from the start (1.4m from the end, where the mean 
gaze orientation was 0.7555, se = 0.0421).  Likewise, the 
population marginal means of relative head orientation were 
significantly different between the start of the trial (where the 
mean head orientation was 0.5375, se = 0.0257) and at distances 
beyond 2.8m from the start (1.3m from the end, where the mean 
head orientation was 0.6957, se = 0.0257). We observe that gaze 
orientation turned significantly towards the right at a slightly 
earlier point along the hallway than head orientation did, 
suggesting that gaze angle has the potential to be a slightly earlier 
predictor of eventual door choice than head angle.  In addition, we 
note that the population marginal mean of gaze orientation was 
slightly closer to 1 at the end of these trials (0.8778) than the 
population marginal mean of head orientation was (0.8441), 
suggesting that as people start to turn their head to the right in 
anticipation of choosing to enter the right door, they also turn 
their eyes even further in that same direction, on average. 
 
Across the trials where people eventually chose the left door, 
there were no significant differences in the population marginal 
means of relative gaze orientation between any points along the 
hallway; however, the population marginal means of relative head 
orientation were significantly different between the start of the 
trial (where the mean head orientation was 0.5060, se = 0.0342) 
and at distances beyond 3.7m (0.4m from the end, where the mean 
head orientation was 0.3149, se = 0.0342).  This supports the 
notion that head orientation may be a more reliable predictor of 
the eventual direction of travel than gaze orientation in some 
cases. 
 
Finally, we used logistic regression to fit a predictor Fg(x) to the 
relative gaze orientation data (figure 18) and a predictor Fh(x) to 
the relative head orientation data (figure 19). From these plots, 
which show the relative gaze or head orientation along the 
horizontal axis and the probability of choosing the right vs left 
door along the vertical axis, with the actual data plotted in blue 
and the fitted function plotted in red, we can see that there is a 
significantly larger range over which the gaze data cannot yield a 
reliable prediction, relative to the head orientation data, and we 
also see that the gaze data cannot reliably predict a choice of the 
left door.  The broader distribution of blue circles across the range 
from 0 to 1 in figure 18 relative to figure 19 shows how the gaze 
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direction tended to extend more nearly towards the doors than did 
the head direction, and the fact that this broad distribution occurs 
for both eventual door choices reflects the tendency, in at least 
some cases, for people to fixate each of the doors before making a 
final decision. 
 
Conclusions 
 
Overall, we obtained a greater proportion of correct predictions 
(81.66% vs. 76.19% for the eventual choice of left door and 
80.71% vs. 77.46% for the eventual choice of right door) using 
head orientation than gaze orientation.  At the same time, over all 
of the trials that ended in a choice of the left door, the average 
relative gaze orientation was closer than the average relative head 
orientation to the left door (0.3502 vs. 0.3811), and the same was 
true for the trials that ended in a choice of the right door (0.6808 
for gaze vs 0.6448 for head).  This suggests that both head 
orientation and gaze orientation have the potential to be useful in 
predicting a person’s future direction of locomotion.  Devising a 
more robust predictor that incorporates both of these sources of 
information could be an important direction for future work. 
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