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Abstract—The user's sense of presence within a virtual 
environment is very important as it affects their propensity to 
experience the virtual world as if it were real. A common method 
of immersion is to use a head-mounted display (HMD) which 
gives the user a stereoscopic view of the virtual world 
encompassing their entire field of vision. However, the 
disadvantage to using an HMD is that the user's view of the real 
world is completely blocked including the view of his or her own 
body, thereby removing any sense of embodiment in the virtual 
world. Without a body, the user is left feeling that they are 
merely observing a virtual world, rather than experiencing it. We 
propose using a video-based see-thru HMD (VSTHMD) to 
capture video of the view of the real-world and then segment the 
user's body from that video and composite it into the virtual 
environment. We have developed a VSTHMD using 
commercial-off-the-shelf components, and have developed a 
preliminary algorithm to segment and composite the user's arms 
and hands. This algorithm works by building probabilistic 
models of the appearance of the room within which the 
VSTHMD is used, and the user's body. These are then used to 
classify input video pixels in real-time into foreground and 
background layers. The approach has promise, but additional 
measures need to be taken to more robustly handle situations in 
which the background contains skin-colored objects such as 
wooden doors. We propose several methods to eliminate such 
false positives, and discuss the initial results of using the 3D data 
from a Kinect to identify false positives. 
 

Index Terms—off-the-shelf virtual reality, self-avatar, 
video-see-thru head mounted display 
 

I. INTRODUCTION 

Virtual environments have become very realistic in recent 
years, especially those experienced through head mounted 
displays (HMDs). However, a major disadvantage of HMDs is 
that any view of the real world is completely occluded, 
including the user's view of his or her own body. This can be 
quite disorienting when navigating a virtual environment. One 
solution is to track the user's body and create a virtual avatar 
within the virtual environment. This allows the user to see a 
generic body in place of his or her own and generally reduces 
disorientation, and increases presence as shown by Slater and 
Usoh in [1]. This works well for some situations, but it is still 
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not the user's own body, and thus is not as realistic as it could 
be. Furthermore, in some situations this can hurt the sense of 
presence more than if no body was rendered, for instance if 
the body is retargeted incorrectly resulting in appendages that 
are out of place or proportioned incorrectly. When interacting 
in immersive virtual environments several groups have shown 
that even a partial avatar embodiment can enable enhanced 
task performance within the environment [2], [3], [4]. It has 
also been shown, by Ries et al. in [5], that the avatar fidelity 
and quality can have an effect on task performance. We would 
like to determine if a self-avatar, one that is a near-perfect 
replica of the user, increases task performance even further. 

The purpose of this research is to use a video see-thru HMD 
(VSTHMD), which has cameras mounted to the outer-front of 
the visor, to capture video of the real-world as it would be 
seen by the user wearing the display. Then, using computer 
vision techniques, we will segment the user's body (hands, 
feet, arms, and legs) from the captured video and composite 
them into the rendering of the virtual environment. This will 
allow the user to see his or her own body within the virtual 
environment and will, in theory, increase the sense of presence 
the user feels within such an environment [1]. Also, since we 
will have separate video for each eye, if we can locate the 
user's hands within the video from each camera we can use 
stereo vision to determine their approximate location in three 
dimensions. By using the segmentation of the user's hands to 
determine stereo we essentially side-step the general form of 
the stereo correspondence problem. This localization would 
afford interaction within the virtual environment without the 
need for expensive hand tracking systems. 

There are a few problems, however, keeping us from 
jumping right in and studying interaction with such a 
VSTHMD. Currently, commercially available video-based 
see-thru HMDs are prohibitively expensive, costing tens of 
thousands of dollars. Simple HMDs however are relatively 
cheap because of their applicability as a portable television, 
see for example the Sony HMZ-T1 which costs \$800. 
Because of this cost differential, we first investigated building 
our own VSTHMD using the HMD our lab already owned. 
Once we have a VSTHMD, we must develop an algorithm that 
is capable of robustly identifying pixels belonging to the user's 
body in the video streams coming from the cameras in the 
head-mounted display. This is a generalized form of the 
background/foreground segmentation problem from computer 
vision. Our case is interesting because both the camera, 
attached to the user's head, and the foreground consisting of 
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the user's body are moving arbitrarily in 3D, which makes the 
problem inherently intractable unless additional information 
can be gathered. Thankfully, there are several assumptions we 
can make which simplify the problem. These design 
considerations, the assumptions we can make, and the 
hardware development of our VSTHMD will be discussed in 
the Assumptions & Hardware section. 

Next, we would like to take some time to discuss the related 
prior work, before moving on to an overview of our 
assumptions, hardware, and design considerations. After that, 
we will look at preliminary results we have obtained using 
multiple histogram modeling of foreground and background 
color distributions. Finally, we will discuss problem areas of 
our current design, what we are working on to correct these 
problems, and our future goals once these have been 
eliminated.  

II. RELATED WORK 

Several researchers have previously addressed the problem 
of how to provide people with a robust, video-based 
self-avatar in an HMD-based immersive virtual environment. 
Petit et al. in [6] propose a solution that uses multiple cameras 
to capture video images of the user from an external point of 
view along with a green-screen to simplify the process of 
background subtraction. Bruder et al. in [7] use a 
head-mounted camera and background subtraction via 
color-segmentation in order to give the user a self-avatar of 
their arms and legs. Our solution is inspired by the latter 
approach, and seeks to extend it by considering more robust 
methods for modeling the differences in background and 
foreground color. Our end goal is a system that can work in 
any room, regardless of the color, shape, or layout of that 
room, by using an offline room calibration step. 

In general, foreground segmentation can be thought of as 
finding foreground and background images such that when 
combined using a binary mask they form the image captured 
from the camera. There has been an enormous amount of work 
in the area within the image processing and computer vision 
communities. The work can be roughly divided into those that 
use a single camera, or multiple cameras, and then further 
divided based on the assumptions on foreground movement 
relative to the background. The largest area of research is from 
a single camera, and when the background is stationary and 
the foreground is moving. These assumptions are particularly 
well-suited for the task of surveillance and traffic monitoring, 
which were studied by Stauffer and Grimson in [8] when they 
developed their Gaussian mixture model approach to 
foreground segmentation. Many authors have research 
enhancements to this model, such as Zivkovic [9] or Lee [10] 
who both propose improved Gaussian mixture models which 
can compute many of the parameters automatically from the 
video instead of from offline user input. While these methods 
are very popular, and work quite well when their assumptions 
are met, they have shown in testing to not work well for our 
needs because it is the case that quite often the background in 
our video is moving and the foreground is stationary. 

Depth is also another widely used cue in foreground 
segmentation. In [11], Harville et al. extend the standard RGB 

colorspace of the Gaussian mixture model with a fourth 
channel of depth information which they use to enhance the 
results of the segmentation. Another interesting approach, 
using graph-cuts, is found in [12] where Kolmogorov et al. are 
able to segment video into foreground and background layers 
for use in video conferencing. Both of these systems are seen 
as potential future work to adapt to our system. 

When both the background and the foreground are moving, 
as is often the case when the camera is not stationary, there is 
little we can do to recover the foreground and background 
layers. Both Hayman et al. in [13] and Sheikh et al. in [14] 
attempt to tackle this problem by using optical flow to identify 
the type and amount of camera movement, and then 
compensate in order to identify motion that is not caused by 
the camera motion. These results are interesting, but still 
assume that the foreground is moving which is not something 
that we can always be assured of in our setting. 

III. ASSUMPTIONS & HARDWARE 

As discussed, when the camera and the user (i.e. the 
foreground) are both moving arbitrarily there is very little in 
general that we can be sure about. Thankfully, however, there 
are some assumptions that we can make. The first assumption 
is that this VR system will always be used in a room that we 
know about ahead of time. This allows us to use an offline 
training phase where we can learn various image and 
geometric statistics about the room. The second assumption 
that we make is the user's head, and by extension the HMD 
and cameras attached to it, are tracked with 6 degrees of 
freedom within this room. Since this technology is to be used 
along with an immersive virtual environment which requires 
this tracking, it is a reasonable assumption. The third 
assumption that we can acquire some information about the 
user in advance of them using the system. Currently we do this 
by taking a few seconds of video of the user looking at their 
hands and feet while wearing the VSTHMD. This video is 
then used in a short calibration step prior to the system use. In 
the examples shown below the virtual environment we use is a 
replica of our real-world lab rendered in a non-photorealistic 
black-and-white style. 

In our lab we already have an SX60 HMD manufactured by 
NVIS. This HMD can display 1280x1024 resolution 
stereoscopic images to the user using two OLED displays, and 
has a FOV of 60 degrees diagonally. We therefore wanted to 
find cameras which could match these display properties. 
What we settled on was the Logitech C615 USB webcam, 
which can capture video at 1920x1080, at 24fps, and has a 
FOV of 74 degrees diagonally. Two of these webcams are 
mounted onto the SX60 HMD using velcro, which has been 
attached to the webcams with hot melt glue. The glue is 
applied to the back of the webcams, and then sanded down in 
order to give a smooth surface with which to apply the velcro 
and also act as an alignment guide to aim the webcams. The 
final result is shown in Fig. 1(a) with detail of the attachment 
shown in Fig. 1(b). The images are captured from the cameras 
using the OpenCV library over USB 2.0. Once in our program, 
they are cropped and resized and rendered onto an OpenGL 
quad to display on the HMD screens. The exact amount of 
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cropping is determined via overlaying the video with a 
rendering of our lab room model and then adjusting by hand 
until the images match. 

The webcams themselves have a fairly short depth-of-field, 
and as a result if the user looks rapidly around the room the 
image will become blurred while the camera autofocus 
attempts to adjust to the scene. Using a camera with a different 
lens, and a camera with a faster shutter and auto-focus 
response would alleviate these problems, but the additional 
weight and size would make mounting the cameras aligned 
with the eyes and wearing them more difficult. A system of 
mirrors, as demonstrated by State et al. in [15], would be one 
way to incorporate larger cameras without negatively affecting 
the weight distribution and alignment of the cameras. 

 

 
 

Fig. 1.  The prototype Commercial-off-the-shelf Video See-Thru HMD built 
using two USB webcams attached to our existing NVIS SX60 HMD. 

 
The velcro was used to attach the webcams in the hope that 

they could be moved to adjust for different interpupillary 
distances between users. However, using velcro has made it 
difficult to align the cameras with the lab room model for 
longer than a few hours of use, since they have a tendency to 
move slightly during motion of the user's head. The 
development of a different attachment mechanism is therefore 
a highly desired future project. 

IV. ALGORITHM 

4.1 Image Differencing 

The first method we tried was one of simple frame 
differencing between a rendered scene of the 3D model of our 
room and the live video. The motivation for this is that any 
difference between the rendered room model and the video 
will show up as foreground. As a result, anything not included 
precisely in the room model, such as chairs and desks, will 
show as foreground. To work around this we could in the 
future use a Microsoft Kinect, or similar device, to obtain a 
room model that includes the furniture instead of the 
hand-built model we are currently using. The difference was 
taken as the absolute value of the rendered image subtracted 
from the video image in the grayscale color space. A threshold 
was then applied and any pixels with an error larger than this 
threshold were marked as foreground pixels. Histogram 
equalization was used to normalize the range of values 
between the two images. The histogram equalization was 
tested both in the grayscale space, and in the Value channel 
(of HSV) before conversion to grayscale. By performing the 

equalization on Value alone, the hope was that the Hue would 
remain the same which cannot be guaranteed if the 
equalization is done in grayscale. We show in Fig. 2 the result 
of both types of equalization to a sample image. Median 
filtering was done after the difference was computed in an 
attempt to reduce the number of spuriously labeled foreground 
pixels. A result of this method is shown in Fig. 3. This figure 
shows the image from the rendered 3D model of the room 
along with the input video frame, and the virtual environment 
that we wish to composite the user into. The results show the 
gray mask before thresholding, and the result after 
thresholding the gray mask and composition. Notice that the 
wrist is missing from the final composition because a 
threshold low enough to include the wrist would also include 
large sections of the door since the door appears brighter in the 
gray mask than the wrist area. 

 

 
 

Fig. 2.  The results of histogram equalization for the purposes of contrast and 
brightness correction. The histogram equalization is shown here performed in 
grayscale (e) and on the Value channel of an HSV image (f). In both cases, the 
equalized video more closely matches the rendered image of the room model, 
which allows us to easily compare the two images. 

 
The results of this were promising, as the hand and several 

objects in the room, such as chairs, which were not present in 
the 3D model, were roughly segmented correctly. However, 
areas where the lighting in the 3D model differed significantly 
from the real room proved troublesome as well as colors that 
would map to similar grayscale values. Another problem with 
this method, and with any method relying on our 3D model of 
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the room, is the alignment between our rendering of the model 
and the live video. Currently we are just relying on the 
hardware design of the VSTHMD to align the video, and are 
not performing any rectification or additional alignment in  

 
 

Fig. 3.  The results of simple frame differencing when histogram equalization 
is performed on the Value channel of the input video. The hand and wrist are 
lost because the intensity difference between the hand and the wall is too low 
relative to the other differences in the image due to lighting inconsistencies, as 
well as the fact that the comparison is done in grayscale instead of full RGB 
colorspace. 
 

 
 

Fig. 4.  Foreground and background color calibration for a single background 
histogram and single foreground histogram model. The background is labeled 
as blue pixels, the foreground as green pixels. 
 
software. There is also the issue of temporal alignment to deal 
with as well. Since the tracker updates at close to 1000fps, and 
the camera only updates at 20-30fps, the position where we 
render the room is not synchronized with when we capture the 
frame from the camera. Because of the difference in update 
rates the quality of the segmentation will suffer when the 
viewing direction is changing rapidly. Managing this temporal 
alignment by delaying or queuing the tracker data would help 
alleviate this problem to some extent, but we currently make 
no such adjustments. We found that frame differencing is only 
a partially successful solution to the problem which is why we 
needed to turn to the more involved approach inspired by the 
work of Bruder et al. [7] discussed in the next section. 

4.2 Color Classification 
4.2.1 Single Background Histogram 

Using our COTS VSTHMD we next investigated 
segmentation based on skin color. We first implemented the 
algorithm of [16] which creates RGB histograms of the 
foreground (skin) and background (everything else) in an 
offline training phase. The foreground and back histograms 
are normalized to give estimates of the probability 
distributions P(x|skin) and P(x|¬skin). These distributions, 
along the with probability of skin or not skin in the training 
data, are then used at run-time to compute the probability that 
a given pixel x corresponds to skin using, 

 

! !"#$ =   
! ! !"#$ !(!"#$)

! ! !"#! ! !"#$ +   ! ! ¬!"#$ !(¬!"#$)
  .   

 
Pixels with a probability above a threshold θ are marked as 
being skin. We also looked at Hue/Saturation (HS) 
histograms, as well as Hue-only (H) histograms for 
classification. The algorithm remained the same in these cases, 
only the color and histogram space were changed. 
 The first step is to obtain training pixels that can be used to 
create the histograms needed for classification. To this end we 
developed a graphical user interface, shown in Fig. 4, which 
allows a user to scan through a video file and highlight skin 
and background pixels by drawing on them with the mouse. 
These pixel labelings are then used to create the foreground 
and background histograms. 
 Results from this color based segmentation for two different 
frames of video are shown in Fig. 5. These figures show the 
raw masks for a threshold of θ = 0.4. Also shown is the result 
of applying a morphological hole closing operation to the 
mask, in order to fill in any gaps that may be present in the 
mask in an attempt to create a nicer looking mask. In our 
trials, RGB histograms performed the best with HS histograms 
a close second. The reduction to only Hue appeared to be too 
much, as background pixels were very often misclassified as 
skin. The HS histograms use less memory than the RGB 
histograms, yet appear to be very similar in classification 
accuracy. This might be an important fact to consider if we 
attempt GPU optimization in the future, and want to store and 
access these histograms on the GPU itself. 

4.2.2 Multiple Background Histograms 

The case shown on the right of Fig. 5 shows when the user 
looks at the doors to our lab. Since the doors are wooden, they 
match closely the color of the user's hand and as a result the 
segmentation contains many false negatives. What we are 
currently investigating is the use of multiple background 
histograms each stored according to the direction the user is 
facing. The run-time histogram is then interpolated from the 
stored background histograms using the user's current facing 
direction to determine the interpolation weights. In order to 
learn these background histograms, we use a captured video of 
the entire room. We also capture and store the tracker data 
simultaneously during this process. In order to make sure each 
area of the room is equally weighted, we first build a spherical 
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environment map from the captured video and tracker data as 
shown in Fig. 6. The environment map is then sectioned into 
multiple regions, one for each of the background histograms. 
The current sectioning we are using is based on the vertices of 
a regular dodecahedron and is shown in Fig. 7, however we 
are also investigating other sectioning that places more regions  

 
 

Fig. 5.  Results of segmentation using the single background histogram and 
single foreground histogram model. Morphological closure was performed on 
the binary masks in order to reduce holes in the segmented regions. The result 
(b, d, f) shows numerous false positives due to the wooden door in the 
background. 
 

 
 

Fig. 6.  Spherical environment map of our lab created from a tracked video 
capture. No video frames were captures for the regions at ±90 degrees 
elevation in this particular video which leaves black regions at the top and 
bottom of the map. 
 

 
 

Fig. 7.  The prototype Commercial-off-the-shelf Video See-Thru HMD built 
using two USB webcams attached to our existing NVIS SX60 HMD. 

 
 

Fig. 8.  Results of using a multiple background histogram model on the same 
input video as Fig. 5. No IVE was rendered in this test, to better show the 
segmented regions. 
 
along the 0 degree elevation since that is where the majority of 
use will occur. As can be seen in Fig. 8, this method produces 
superior results to the single histogram case when run on the 
same input. 

 

V. KINECT SENSOR INTEGRATION 

Up until this point our investigations have all been using the 
images from the HMD cameras and segmenting them using 
image features alone. This works well in some cases, but it is 
likely that some false positives will always remain when using 
video features alone. Also, some clothing will have too many 
colors to produce a usable foreground model. In these 
situations we propose to use one or more Microsoft Kinects, 
mounted around the room or potentially on the HMD similar 
to Suma et al. in [17], to get a rough estimate of the user's 
body location in 3D. This 3D location can then be used to 
facilitate the segmentation process. This next section discusses 
our work on performing implementing such a system using a 
single Kinect external to the user. This skeleton and depth 
information from the Kinect is processed in order to determine 
which sections of the image possibly contain the user's body 
as a way to filter spuriously segmented pixels. 
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5.1 Setup & Calibration 

For this series of experiments we have used the Vicon tracking 
system in our lab. It consists of 12 Vicon MX cameras that 
provide six degree-of-freedom tracking of the objects needed 
for the experiment. We track the HMD, the Kinect, and a large 
chessboard pattern which can be seen in Fig. 9. We are using 
Microsoft Kinect SDK v1.5 for these experiments which gives 
us skeletal and depth data in meters with respect to the 
Kinect's coordinate frame. The tracking via the Vicon allows 
us to transform this Kinect data into our virtual environment's 

 
 

Fig. 9.  These images show the calibration process of the HMD cameras 
extrinsic parameters. (a) shows what the user sees before the calibration, not 
that the grid of spheres does not align with the chessboard. (b) shows the 
overlay generated by OpenCV when it detects the chessboard pattern, the 
circles show the reprojected corner points as a sanity check. (c) shows the 
alignment after calibration which is triggered by pressing a key on the 
computer’s keyboard once OpenCV detects the chessboard.  The spheres are 
in the world coordinate space and move with the chessboard based on the 
Vicon tracking data.  When they are aligned the user knows that the 
calibration was successful. 
 

 
 

Fig. 10.  Here is shown (a) the image captured by one of the HMD cameras, 
(b) the rendering of the virtual environment which in this case is a non-photo 

realistic model of our room, and (c) an alpha-blended overlay of the two 
images to show how well they align after the camera intrinsic and extrinsic 
parameters have been calibrated. 
 
world space. 

The critical step to making the Kinect, Vicon, HMD, and 
cameras perform well together is to calibrate everything into a 
global world frame. The Vicon tracker space and the room 
were calibrated together upon installation, so we need not 
worry about this. The transformation from the Kinect to the 
world was manually chosen by selecting a point near the 
Kinect's depth camera origin. For the cameras mounted on the 
HMD we need to calibrate the camera intrinsic parameters 
(focal length, principal point, aspect ratio) and extrinsic 
parameters (rotation and translation in world frame). The 
intrinsic parameters were calibrated using multiple images of a 
chessboard pattern that was processed using the OpenCV 
library. The chessboard corners were reprojected into the 
image and as a sanity check to ensure the intrinsic parameters 
found were valid. This was done for each camera separately. 
As a result of the calibration, OpenCV also gives a 
transformation !!

!!  from the chessboard C to the camera, or 
eye, coordinate frame !! . Using the Vicon we also have 
transformations from the chessboard to the world, !!! , and 
from the HMD to the world, !!! . Together we can then find 
the location of the camera origin with respect to the HMD, 

 
!!!

! = !"# !!! ⋅    !!!    ⋅ !"#( !!
!! ) 

 
where !"#(⋅) is the operation which reverses the direction of 
the transformation (i.e. !"# !!! =    !!!   ). This allows us to 
compute the camera positions very precisely at every frame. 
Using these intrinsic and extrinsic parameters we can then 
compute OpenGL projection and worldview matrices which 
will render the virtual environment to match what is seen from 
the camera, similar to how it is done in augmented reality. The 
calibration process of the extrinsic parameters can be seen in 
Fig. 9, and results of the alignment between the camera and 
the virtual environment can be seen in Fig. 10. 
 

 
 

Fig. 11.  The user must stand within the Kinect’s field of view in order for the 
segmentation to be effective. Currently we have a single Kinect, as shown in 
this figure, but eventually we hope to use this system with multiple Kinects 
which collectively cover the volume of the room. 
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Fig. 12.  To generate the segmentation mask from the Kinect data we take the 
pixels rendered by the data and expand the region by performing a dilation 
operation. The result of such an operation is shown here on a frame looking at 
the user’s feet. 
 
 

 
 

Fig. 13.  Here we show the results when the depth image is used to segment 
the user.  Notice that the color segmentation does not show the feet, because 
they are not skin colored, but the kinect can find the feet. 
 

 
 

Fig. 14.  Here we show results when the depth image is used to segment the 
user.  Because of the additional kinect data, none of the door pixels are 
selected as foreground.  The arm is oversatured because the user is standing 
beneath the ceiling lights, so parts of the arm are misclassified. 

5.2 Usage & Results 

Our eventual goal is to have multiple Kinect sensors which 
can cover the entirety of our room, but for now we have a 
single Kinect which covers approximately a 6m2 area. As such 
the user needs to stand in front of and facing the Kinect as 
shown in Fig. 11. Once we have the system properly 
calibrated we can then transform the Kinect data into the 
world space and render it in our virtual environment. We can 
render the skeleton as a series of cylinders, as shown in Figs. 
15 and 16, or render the raw color pixels at their appropriate 
depth as shown in Figs. 14 and 13. Once we have these 
rendered we can also segment the portion of the rendered 
image corresponding to the Kinect data and replace it with the 
images captured from the cameras. We expand the area 
rendered from the Kinect data in order to create the 
segmentation mask to try and capture the entirety of the user’s 
body. The result of this is shown in Fig. 12. We have also 
shown in the figures the results when the camera image data is 
segmented further using the color histogram methods 
discussed earlier in this paper. This focuses the color 
segmentation only onto the areas that the Kinect has identified 
as containing the user's body, thereby eliminating many of the 
spurious pixels caused by the doors. This color histogram 
segmentation shown in the figures was computed in a 
post-process offline step currently because we have multiple 
codebases which have not yet been merged.  

 

 
 

Fig. 15.  Here we show the results when the skeleton data is used to segment 
the user.  Notice that the color segmentation does not show the feet, because 
they are not skin colored, but the kinect can find the feet. 
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Fig. 16.  Here we show results when the skeleton data is used to segment the 
user.  Because of the additional kinect data, none of the door pixels are 
selected as foreground.  

5.3 Discussion 

The rendering of the hands and feet, since they are very 
close the cameras, is extremely sensitive to any errors in the 
calibration of the system. As a result of this, as it can be seen 
in the result figures, the entire hand or foot in the camera 
image is never perfectly aligned with the Kinect rendering. 
This is most likely because of our current manual calibration 
of the Kinect's coordinate frame origin with respect to the 
Vicon. An area of future research is to develop a method 
similar to the one used for the HMD cameras to calibrate the 
Kinect precisely with respect to the Vicon coordinate frame. 
Another interesting area of future research is the selective 
enabling of the color segmentation. For instance when the user 
is looking at his or her feet, the Kinect data alone is almost 
enough to correctly segment the legs and feet without the need 
of color segmentation. Also, because of the numerous colors 
in the clothing, the color segmentation of the feet and legs 
would become very complex. This could be skipped by 
relying on the Kinect for the legs and feet. 

VI. FUTURE DIRECTIONS 

Even with the work done so far, there is much left to do. 
Here we discuss what we are currently working on, and where 
we would like this research to progress after that. 

6.1 False Positives 

With the use of multiple background histograms, the false 
positive detection rate dropped considerably, however there 
were still some misclassified regions. One possible way to fix 
this that we are currently looking at is to use a Gaussian 
mixture model to model the background probabilities instead 
of a histogram. This would remove any aliasing artifacts 
caused by the fixed number and fixed width of the histogram 
bins currently used. The next thing we are looking at is using 

Gabor filters (similar to [18]) in order to model some texture 
information along with RGB intensities in our foreground and 
background models. 

6.2 Clothing Detection 

Our current approach works well when the user is wearing 
t-shirts and shorts, but does not work when clothing is visible 
in the image. We would like to compensate for this by 
including clothing in the foreground model. This would be 
done by having the user stand against a white wall, and take 
video from the VSTHMD of the entire user's body instead of 
just their arms and legs. This is something we want to 
investigate after the addition of texture features, since the 
addition of clothing colors could create more overlap between 
foreground and background models without texture. 

6.3 User Studies & Applications 

Once we have a system that can robustly give the user a 
self-avatar we would like to investigate the effects of this 
self-avatar on the realism and sense of presence the user 
experiences within the virtual environment as compared to 
tracker-based 3d model self-avatars. The first study would be 
to test users' distance perception without a self-avatar, with a 
3d self-avatar, and with a video self-avatar. It has been shown 
in [2] that the quality of the 3D self-avatar may affect the 
user's distance perception accuracy. The next logical step after 
this would be to study user's ability to interact with the virtual 
world using their video self-avatar. 

VII. CONCLUSION 

In conclusion, we have shown several attempts at detecting 
the user's body from the video obtained while wearing a video 
see-thru head mounted display. We have seen that simple 
frame differencing and Gaussian mixture model approaches 
using a 3D room model can somewhat work, under restricted 
conditions, but have noisy output. Depth information should 
be theoretically possible to obtain since we have two cameras, 
however our room with its uniform colors and textures has 
proven difficult for block matching stereo correspondence 
algorithms. This results in nearly unusable depth information 
for most frames. We have also discussed the creation of a 
commercial-off-the-shelf (COTS) VSTHMD, using HD 
resolution webcams. Using the VSTHMD we developed, we 
looked at using skin color to segment the user's hands and 
arms. We have seen that using histograms of known skin and 
background pixels (trained in an offline setup phase) can 
produce very good results when no wooden objects are also in 
the frame. Using multiple location-aware background 
histograms reduces the number of false positives, but they still 
remain in some areas. The elimination of these false positives 
due to wooden objects is an area of future research that we 
hope to solve using additional texture features, and more 
accurate Gaussian mixture models of the probability 
distributions. We have also investigated the use of the 
Microsoft Kinect as a way to obtain an estimate of the portions 
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of the camera images containing the user, thereby eliminating 
the spurious pixels of similarly skin-colored objects in the 
room. When the spurious pixels are near the user's body in the 
image the Kinect data does not help us, but when they occur of 
opposite sides it can ignore non-user regions. 
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