
The International Journal of Virtual Reality

Abstract—The user's sense of presence within a virtual
environment is very important as it affects their propensity to
experience the virtual world as if it were real. A common method
of immersion is to use a head-mounted display (HMD) which
gives the user a stereoscopic view of the virtual world
encompassing their entire field of vision. However, the
disadvantage to using an HMD is that the user's view of the real
world is completely blocked including the view of his or her own
body, thereby removing any sense of embodiment in the virtual
world. Without a body, the user is left feeling that they are
merely observing a virtual world, rather than experiencing it. We
propose using a video-based see-thru HMD (VSTHMD) to
capture video of the view of the real-world and then segment the
user's body from that video and composite it into the virtual
environment. We have developed a VSTHMD using
commercial-off-the-shelf components, and have developed a
preliminary algorithm to segment and composite the user's arms
and hands. This algorithm works by building probabilistic
models of the appearance of the room within which the
VSTHMD is used, and the user's body. These are then used to
classify input video pixels in real-time into foreground and
background layers. The approach has promise, but additional
measures need to be taken to more robustly handle situations in
which the background contains skin-colored objects such as
wooden doors. We propose several methods to eliminate such
false positives, and discuss the initial results of using the 3D data
from a Kinect to identify false positives.

Index Terms—off-the-shelf virtual reality, self-avatar,
video-see-thru head mounted display

I. INTRODUCTION

Virtual environments have become very realistic in recent
years, especially those experienced through head mounted
displays (HMDs). However, a major disadvantage of HMDs is
that any view of the real world is completely occluded,
including the user's view of his or her own body. This can be
quite disorienting when navigating a virtual environment. One
solution is to track the user's body and create a virtual avatar
within the virtual environment. This allows the user to see a
generic body in place of his or her own and generally reduces
disorientation, and increases presence as shown by Slater and
Usoh in [1]. This works well for some situations, but it is still

Manuscript received on DD MM YY.
fiore@cs.umn.edu

not the user's own body, and thus is not as realistic as it could
be. Furthermore, in some situations this can hurt the sense of
presence more than if no body was rendered, for instance if
the body is retargeted incorrectly resulting in appendages that
are out of place or proportioned incorrectly. When interacting
in immersive virtual environments several groups have shown
that even a partial avatar embodiment can enable enhanced
task performance within the environment [2], [3], [4]. It has
also been shown, by Ries et al. in [5], that the avatar fidelity
and quality can have an effect on task performance. We would
like to determine if a self-avatar, one that is a near-perfect
replica of the user, increases task performance even further.

The purpose of this research is to use a video see-thru HMD
(VSTHMD), which has cameras mounted to the outer-front of
the visor, to capture video of the real-world as it would be
seen by the user wearing the display. Then, using computer
vision techniques, we will segment the user's body (hands,
feet, arms, and legs) from the captured video and composite
them into the rendering of the virtual environment. This will
allow the user to see his or her own body within the virtual
environment and will, in theory, increase the sense of presence
the user feels within such an environment [1]. Also, since we
will have separate video for each eye, if we can locate the
user's hands within the video from each camera we can use
stereo vision to determine their approximate location in three
dimensions. By using the segmentation of the user's hands to
determine stereo we essentially side-step the general form of
the stereo correspondence problem. This localization would
afford interaction within the virtual environment without the
need for expensive hand tracking systems.

There are a few problems, however, keeping us from
jumping right in and studying interaction with such a
VSTHMD. Currently, commercially available video-based
see-thru HMDs are prohibitively expensive, costing tens of
thousands of dollars. Simple HMDs however are relatively
cheap because of their applicability as a portable television,
see for example the Sony HMZ-T1 which costs \$800.
Because of this cost differential, we first investigated building
our own VSTHMD using the HMD our lab already owned.
Once we have a VSTHMD, we must develop an algorithm that
is capable of robustly identifying pixels belonging to the user's
body in the video streams coming from the cameras in the
head-mounted display. This is a generalized form of the
background/foreground segmentation problem from computer
vision. Our case is interesting because both the camera,
attached to the user's head, and the foreground consisting of

Towards Achieving Robust Video Self-avatars
under Flexible Environment Conditions

Loren Puchalla Fiore 1, Victoria Interrante 1

1 Department of Computer Science, University of Minnesota

1

The International Journal of Virtual Reality

the user's body are moving arbitrarily in 3D, which makes the
problem inherently intractable unless additional information
can be gathered. Thankfully, there are several assumptions we
can make which simplify the problem. These design
considerations, the assumptions we can make, and the
hardware development of our VSTHMD will be discussed in
the Assumptions & Hardware section.

Next, we would like to take some time to discuss the related
prior work, before moving on to an overview of our
assumptions, hardware, and design considerations. After that,
we will look at preliminary results we have obtained using
multiple histogram modeling of foreground and background
color distributions. Finally, we will discuss problem areas of
our current design, what we are working on to correct these
problems, and our future goals once these have been
eliminated.

II. RELATED WORK

Several researchers have previously addressed the problem
of how to provide people with a robust, video-based
self-avatar in an HMD-based immersive virtual environment.
Petit et al. in [6] propose a solution that uses multiple cameras
to capture video images of the user from an external point of
view along with a green-screen to simplify the process of
background subtraction. Bruder et al. in [7] use a
head-mounted camera and background subtraction via
color-segmentation in order to give the user a self-avatar of
their arms and legs. Our solution is inspired by the latter
approach, and seeks to extend it by considering more robust
methods for modeling the differences in background and
foreground color. Our end goal is a system that can work in
any room, regardless of the color, shape, or layout of that
room, by using an offline room calibration step.

In general, foreground segmentation can be thought of as
finding foreground and background images such that when
combined using a binary mask they form the image captured
from the camera. There has been an enormous amount of work
in the area within the image processing and computer vision
communities. The work can be roughly divided into those that
use a single camera, or multiple cameras, and then further
divided based on the assumptions on foreground movement
relative to the background. The largest area of research is from
a single camera, and when the background is stationary and
the foreground is moving. These assumptions are particularly
well-suited for the task of surveillance and traffic monitoring,
which were studied by Stauffer and Grimson in [8] when they
developed their Gaussian mixture model approach to
foreground segmentation. Many authors have research
enhancements to this model, such as Zivkovic [9] or Lee [10]
who both propose improved Gaussian mixture models which
can compute many of the parameters automatically from the
video instead of from offline user input. While these methods
are very popular, and work quite well when their assumptions
are met, they have shown in testing to not work well for our
needs because it is the case that quite often the background in
our video is moving and the foreground is stationary.

Depth is also another widely used cue in foreground
segmentation. In [11], Harville et al. extend the standard RGB

colorspace of the Gaussian mixture model with a fourth
channel of depth information which they use to enhance the
results of the segmentation. Another interesting approach,
using graph-cuts, is found in [12] where Kolmogorov et al. are
able to segment video into foreground and background layers
for use in video conferencing. Both of these systems are seen
as potential future work to adapt to our system.

When both the background and the foreground are moving,
as is often the case when the camera is not stationary, there is
little we can do to recover the foreground and background
layers. Both Hayman et al. in [13] and Sheikh et al. in [14]
attempt to tackle this problem by using optical flow to identify
the type and amount of camera movement, and then
compensate in order to identify motion that is not caused by
the camera motion. These results are interesting, but still
assume that the foreground is moving which is not something
that we can always be assured of in our setting.

III. ASSUMPTIONS & HARDWARE

As discussed, when the camera and the user (i.e. the
foreground) are both moving arbitrarily there is very little in
general that we can be sure about. Thankfully, however, there
are some assumptions that we can make. The first assumption
is that this VR system will always be used in a room that we
know about ahead of time. This allows us to use an offline
training phase where we can learn various image and
geometric statistics about the room. The second assumption
that we make is the user's head, and by extension the HMD
and cameras attached to it, are tracked with 6 degrees of
freedom within this room. Since this technology is to be used
along with an immersive virtual environment which requires
this tracking, it is a reasonable assumption. The third
assumption that we can acquire some information about the
user in advance of them using the system. Currently we do this
by taking a few seconds of video of the user looking at their
hands and feet while wearing the VSTHMD. This video is
then used in a short calibration step prior to the system use. In
the examples shown below the virtual environment we use is a
replica of our real-world lab rendered in a non-photorealistic
black-and-white style.

In our lab we already have an SX60 HMD manufactured by
NVIS. This HMD can display 1280x1024 resolution
stereoscopic images to the user using two OLED displays, and
has a FOV of 60 degrees diagonally. We therefore wanted to
find cameras which could match these display properties.
What we settled on was the Logitech C615 USB webcam,
which can capture video at 1920x1080, at 24fps, and has a
FOV of 74 degrees diagonally. Two of these webcams are
mounted onto the SX60 HMD using velcro, which has been
attached to the webcams with hot melt glue. The glue is
applied to the back of the webcams, and then sanded down in
order to give a smooth surface with which to apply the velcro
and also act as an alignment guide to aim the webcams. The
final result is shown in Fig. 1(a) with detail of the attachment
shown in Fig. 1(b). The images are captured from the cameras
using the OpenCV library over USB 2.0. Once in our program,
they are cropped and resized and rendered onto an OpenGL
quad to display on the HMD screens. The exact amount of

The International Journal of Virtual Reality

cropping is determined via overlaying the video with a
rendering of our lab room model and then adjusting by hand
until the images match.

The webcams themselves have a fairly short depth-of-field,
and as a result if the user looks rapidly around the room the
image will become blurred while the camera autofocus
attempts to adjust to the scene. Using a camera with a different
lens, and a camera with a faster shutter and auto-focus
response would alleviate these problems, but the additional
weight and size would make mounting the cameras aligned
with the eyes and wearing them more difficult. A system of
mirrors, as demonstrated by State et al. in [15], would be one
way to incorporate larger cameras without negatively affecting
the weight distribution and alignment of the cameras.

Fig. 1. The prototype Commercial-off-the-shelf Video See-Thru HMD built
using two USB webcams attached to our existing NVIS SX60 HMD.

The velcro was used to attach the webcams in the hope that

they could be moved to adjust for different interpupillary
distances between users. However, using velcro has made it
difficult to align the cameras with the lab room model for
longer than a few hours of use, since they have a tendency to
move slightly during motion of the user's head. The
development of a different attachment mechanism is therefore
a highly desired future project.

IV. ALGORITHM

4.1 Image Differencing

The first method we tried was one of simple frame
differencing between a rendered scene of the 3D model of our
room and the live video. The motivation for this is that any
difference between the rendered room model and the video
will show up as foreground. As a result, anything not included
precisely in the room model, such as chairs and desks, will
show as foreground. To work around this we could in the
future use a Microsoft Kinect, or similar device, to obtain a
room model that includes the furniture instead of the
hand-built model we are currently using. The difference was
taken as the absolute value of the rendered image subtracted
from the video image in the grayscale color space. A threshold
was then applied and any pixels with an error larger than this
threshold were marked as foreground pixels. Histogram
equalization was used to normalize the range of values
between the two images. The histogram equalization was
tested both in the grayscale space, and in the Value channel
(of HSV) before conversion to grayscale. By performing the

equalization on Value alone, the hope was that the Hue would
remain the same which cannot be guaranteed if the
equalization is done in grayscale. We show in Fig. 2 the result
of both types of equalization to a sample image. Median
filtering was done after the difference was computed in an
attempt to reduce the number of spuriously labeled foreground
pixels. A result of this method is shown in Fig. 3. This figure
shows the image from the rendered 3D model of the room
along with the input video frame, and the virtual environment
that we wish to composite the user into. The results show the
gray mask before thresholding, and the result after
thresholding the gray mask and composition. Notice that the
wrist is missing from the final composition because a
threshold low enough to include the wrist would also include
large sections of the door since the door appears brighter in the
gray mask than the wrist area.

Fig. 2. The results of histogram equalization for the purposes of contrast and
brightness correction. The histogram equalization is shown here performed in
grayscale (e) and on the Value channel of an HSV image (f). In both cases, the
equalized video more closely matches the rendered image of the room model,
which allows us to easily compare the two images.

The results of this were promising, as the hand and several

objects in the room, such as chairs, which were not present in
the 3D model, were roughly segmented correctly. However,
areas where the lighting in the 3D model differed significantly
from the real room proved troublesome as well as colors that
would map to similar grayscale values. Another problem with
this method, and with any method relying on our 3D model of

The International Journal of Virtual Reality

the room, is the alignment between our rendering of the model
and the live video. Currently we are just relying on the
hardware design of the VSTHMD to align the video, and are
not performing any rectification or additional alignment in

Fig. 3. The results of simple frame differencing when histogram equalization
is performed on the Value channel of the input video. The hand and wrist are
lost because the intensity difference between the hand and the wall is too low
relative to the other differences in the image due to lighting inconsistencies, as
well as the fact that the comparison is done in grayscale instead of full RGB
colorspace.

Fig. 4. Foreground and background color calibration for a single background
histogram and single foreground histogram model. The background is labeled
as blue pixels, the foreground as green pixels.

software. There is also the issue of temporal alignment to deal
with as well. Since the tracker updates at close to 1000fps, and
the camera only updates at 20-30fps, the position where we
render the room is not synchronized with when we capture the
frame from the camera. Because of the difference in update
rates the quality of the segmentation will suffer when the
viewing direction is changing rapidly. Managing this temporal
alignment by delaying or queuing the tracker data would help
alleviate this problem to some extent, but we currently make
no such adjustments. We found that frame differencing is only
a partially successful solution to the problem which is why we
needed to turn to the more involved approach inspired by the
work of Bruder et al. [7] discussed in the next section.

4.2 Color Classification
4.2.1 Single Background Histogram

Using our COTS VSTHMD we next investigated
segmentation based on skin color. We first implemented the
algorithm of [16] which creates RGB histograms of the
foreground (skin) and background (everything else) in an
offline training phase. The foreground and back histograms
are normalized to give estimates of the probability
distributions P(x|skin) and P(x|¬skin). These distributions,
along the with probability of skin or not skin in the training
data, are then used at run-time to compute the probability that
a given pixel x corresponds to skin using,

! !"#$ =
! ! !"#$!(!"#$)

! ! !"#! ! !"#$ + ! ! ¬!"#$!(¬!"#$)
 .

Pixels with a probability above a threshold θ are marked as
being skin. We also looked at Hue/Saturation (HS)
histograms, as well as Hue-only (H) histograms for
classification. The algorithm remained the same in these cases,
only the color and histogram space were changed.
 The first step is to obtain training pixels that can be used to
create the histograms needed for classification. To this end we
developed a graphical user interface, shown in Fig. 4, which
allows a user to scan through a video file and highlight skin
and background pixels by drawing on them with the mouse.
These pixel labelings are then used to create the foreground
and background histograms.
 Results from this color based segmentation for two different
frames of video are shown in Fig. 5. These figures show the
raw masks for a threshold of θ = 0.4. Also shown is the result
of applying a morphological hole closing operation to the
mask, in order to fill in any gaps that may be present in the
mask in an attempt to create a nicer looking mask. In our
trials, RGB histograms performed the best with HS histograms
a close second. The reduction to only Hue appeared to be too
much, as background pixels were very often misclassified as
skin. The HS histograms use less memory than the RGB
histograms, yet appear to be very similar in classification
accuracy. This might be an important fact to consider if we
attempt GPU optimization in the future, and want to store and
access these histograms on the GPU itself.

4.2.2 Multiple Background Histograms

The case shown on the right of Fig. 5 shows when the user
looks at the doors to our lab. Since the doors are wooden, they
match closely the color of the user's hand and as a result the
segmentation contains many false negatives. What we are
currently investigating is the use of multiple background
histograms each stored according to the direction the user is
facing. The run-time histogram is then interpolated from the
stored background histograms using the user's current facing
direction to determine the interpolation weights. In order to
learn these background histograms, we use a captured video of
the entire room. We also capture and store the tracker data
simultaneously during this process. In order to make sure each
area of the room is equally weighted, we first build a spherical

The International Journal of Virtual Reality

environment map from the captured video and tracker data as
shown in Fig. 6. The environment map is then sectioned into
multiple regions, one for each of the background histograms.
The current sectioning we are using is based on the vertices of
a regular dodecahedron and is shown in Fig. 7, however we
are also investigating other sectioning that places more regions

Fig. 5. Results of segmentation using the single background histogram and
single foreground histogram model. Morphological closure was performed on
the binary masks in order to reduce holes in the segmented regions. The result
(b, d, f) shows numerous false positives due to the wooden door in the
background.

Fig. 6. Spherical environment map of our lab created from a tracked video
capture. No video frames were captures for the regions at ±90 degrees
elevation in this particular video which leaves black regions at the top and
bottom of the map.

Fig. 7. The prototype Commercial-off-the-shelf Video See-Thru HMD built
using two USB webcams attached to our existing NVIS SX60 HMD.

Fig. 8. Results of using a multiple background histogram model on the same
input video as Fig. 5. No IVE was rendered in this test, to better show the
segmented regions.

along the 0 degree elevation since that is where the majority of
use will occur. As can be seen in Fig. 8, this method produces
superior results to the single histogram case when run on the
same input.

V. KINECT SENSOR INTEGRATION

Up until this point our investigations have all been using the
images from the HMD cameras and segmenting them using
image features alone. This works well in some cases, but it is
likely that some false positives will always remain when using
video features alone. Also, some clothing will have too many
colors to produce a usable foreground model. In these
situations we propose to use one or more Microsoft Kinects,
mounted around the room or potentially on the HMD similar
to Suma et al. in [17], to get a rough estimate of the user's
body location in 3D. This 3D location can then be used to
facilitate the segmentation process. This next section discusses
our work on performing implementing such a system using a
single Kinect external to the user. This skeleton and depth
information from the Kinect is processed in order to determine
which sections of the image possibly contain the user's body
as a way to filter spuriously segmented pixels.

The International Journal of Virtual Reality

5.1 Setup & Calibration

For this series of experiments we have used the Vicon tracking
system in our lab. It consists of 12 Vicon MX cameras that
provide six degree-of-freedom tracking of the objects needed
for the experiment. We track the HMD, the Kinect, and a large
chessboard pattern which can be seen in Fig. 9. We are using
Microsoft Kinect SDK v1.5 for these experiments which gives
us skeletal and depth data in meters with respect to the
Kinect's coordinate frame. The tracking via the Vicon allows
us to transform this Kinect data into our virtual environment's

Fig. 9. These images show the calibration process of the HMD cameras
extrinsic parameters. (a) shows what the user sees before the calibration, not
that the grid of spheres does not align with the chessboard. (b) shows the
overlay generated by OpenCV when it detects the chessboard pattern, the
circles show the reprojected corner points as a sanity check. (c) shows the
alignment after calibration which is triggered by pressing a key on the
computer’s keyboard once OpenCV detects the chessboard. The spheres are
in the world coordinate space and move with the chessboard based on the
Vicon tracking data. When they are aligned the user knows that the
calibration was successful.

Fig. 10. Here is shown (a) the image captured by one of the HMD cameras,
(b) the rendering of the virtual environment which in this case is a non-photo

realistic model of our room, and (c) an alpha-blended overlay of the two
images to show how well they align after the camera intrinsic and extrinsic
parameters have been calibrated.

world space.

The critical step to making the Kinect, Vicon, HMD, and
cameras perform well together is to calibrate everything into a
global world frame. The Vicon tracker space and the room
were calibrated together upon installation, so we need not
worry about this. The transformation from the Kinect to the
world was manually chosen by selecting a point near the
Kinect's depth camera origin. For the cameras mounted on the
HMD we need to calibrate the camera intrinsic parameters
(focal length, principal point, aspect ratio) and extrinsic
parameters (rotation and translation in world frame). The
intrinsic parameters were calibrated using multiple images of a
chessboard pattern that was processed using the OpenCV
library. The chessboard corners were reprojected into the
image and as a sanity check to ensure the intrinsic parameters
found were valid. This was done for each camera separately.
As a result of the calibration, OpenCV also gives a
transformation !!

!! from the chessboard C to the camera, or
eye, coordinate frame !! . Using the Vicon we also have
transformations from the chessboard to the world, !!! , and
from the HMD to the world, !!! . Together we can then find
the location of the camera origin with respect to the HMD,

!!!

! = !"# !!! ⋅ !!! ⋅ !"#(!!
!!)

where !"#(⋅) is the operation which reverses the direction of
the transformation (i.e. !"# !!! = !!!). This allows us to
compute the camera positions very precisely at every frame.
Using these intrinsic and extrinsic parameters we can then
compute OpenGL projection and worldview matrices which
will render the virtual environment to match what is seen from
the camera, similar to how it is done in augmented reality. The
calibration process of the extrinsic parameters can be seen in
Fig. 9, and results of the alignment between the camera and
the virtual environment can be seen in Fig. 10.

Fig. 11. The user must stand within the Kinect’s field of view in order for the
segmentation to be effective. Currently we have a single Kinect, as shown in
this figure, but eventually we hope to use this system with multiple Kinects
which collectively cover the volume of the room.

The International Journal of Virtual Reality

Fig. 12. To generate the segmentation mask from the Kinect data we take the
pixels rendered by the data and expand the region by performing a dilation
operation. The result of such an operation is shown here on a frame looking at
the user’s feet.

Fig. 13. Here we show the results when the depth image is used to segment
the user. Notice that the color segmentation does not show the feet, because
they are not skin colored, but the kinect can find the feet.

Fig. 14. Here we show results when the depth image is used to segment the
user. Because of the additional kinect data, none of the door pixels are
selected as foreground. The arm is oversatured because the user is standing
beneath the ceiling lights, so parts of the arm are misclassified.

5.2 Usage & Results

Our eventual goal is to have multiple Kinect sensors which
can cover the entirety of our room, but for now we have a
single Kinect which covers approximately a 6m2 area. As such
the user needs to stand in front of and facing the Kinect as
shown in Fig. 11. Once we have the system properly
calibrated we can then transform the Kinect data into the
world space and render it in our virtual environment. We can
render the skeleton as a series of cylinders, as shown in Figs.
15 and 16, or render the raw color pixels at their appropriate
depth as shown in Figs. 14 and 13. Once we have these
rendered we can also segment the portion of the rendered
image corresponding to the Kinect data and replace it with the
images captured from the cameras. We expand the area
rendered from the Kinect data in order to create the
segmentation mask to try and capture the entirety of the user’s
body. The result of this is shown in Fig. 12. We have also
shown in the figures the results when the camera image data is
segmented further using the color histogram methods
discussed earlier in this paper. This focuses the color
segmentation only onto the areas that the Kinect has identified
as containing the user's body, thereby eliminating many of the
spurious pixels caused by the doors. This color histogram
segmentation shown in the figures was computed in a
post-process offline step currently because we have multiple
codebases which have not yet been merged.

Fig. 15. Here we show the results when the skeleton data is used to segment
the user. Notice that the color segmentation does not show the feet, because
they are not skin colored, but the kinect can find the feet.

The International Journal of Virtual Reality

Fig. 16. Here we show results when the skeleton data is used to segment the
user. Because of the additional kinect data, none of the door pixels are
selected as foreground.

5.3 Discussion

The rendering of the hands and feet, since they are very
close the cameras, is extremely sensitive to any errors in the
calibration of the system. As a result of this, as it can be seen
in the result figures, the entire hand or foot in the camera
image is never perfectly aligned with the Kinect rendering.
This is most likely because of our current manual calibration
of the Kinect's coordinate frame origin with respect to the
Vicon. An area of future research is to develop a method
similar to the one used for the HMD cameras to calibrate the
Kinect precisely with respect to the Vicon coordinate frame.
Another interesting area of future research is the selective
enabling of the color segmentation. For instance when the user
is looking at his or her feet, the Kinect data alone is almost
enough to correctly segment the legs and feet without the need
of color segmentation. Also, because of the numerous colors
in the clothing, the color segmentation of the feet and legs
would become very complex. This could be skipped by
relying on the Kinect for the legs and feet.

VI. FUTURE DIRECTIONS

Even with the work done so far, there is much left to do.
Here we discuss what we are currently working on, and where
we would like this research to progress after that.

6.1 False Positives

With the use of multiple background histograms, the false
positive detection rate dropped considerably, however there
were still some misclassified regions. One possible way to fix
this that we are currently looking at is to use a Gaussian
mixture model to model the background probabilities instead
of a histogram. This would remove any aliasing artifacts
caused by the fixed number and fixed width of the histogram
bins currently used. The next thing we are looking at is using

Gabor filters (similar to [18]) in order to model some texture
information along with RGB intensities in our foreground and
background models.

6.2 Clothing Detection

Our current approach works well when the user is wearing
t-shirts and shorts, but does not work when clothing is visible
in the image. We would like to compensate for this by
including clothing in the foreground model. This would be
done by having the user stand against a white wall, and take
video from the VSTHMD of the entire user's body instead of
just their arms and legs. This is something we want to
investigate after the addition of texture features, since the
addition of clothing colors could create more overlap between
foreground and background models without texture.

6.3 User Studies & Applications

Once we have a system that can robustly give the user a
self-avatar we would like to investigate the effects of this
self-avatar on the realism and sense of presence the user
experiences within the virtual environment as compared to
tracker-based 3d model self-avatars. The first study would be
to test users' distance perception without a self-avatar, with a
3d self-avatar, and with a video self-avatar. It has been shown
in [2] that the quality of the 3D self-avatar may affect the
user's distance perception accuracy. The next logical step after
this would be to study user's ability to interact with the virtual
world using their video self-avatar.

VII. CONCLUSION

In conclusion, we have shown several attempts at detecting
the user's body from the video obtained while wearing a video
see-thru head mounted display. We have seen that simple
frame differencing and Gaussian mixture model approaches
using a 3D room model can somewhat work, under restricted
conditions, but have noisy output. Depth information should
be theoretically possible to obtain since we have two cameras,
however our room with its uniform colors and textures has
proven difficult for block matching stereo correspondence
algorithms. This results in nearly unusable depth information
for most frames. We have also discussed the creation of a
commercial-off-the-shelf (COTS) VSTHMD, using HD
resolution webcams. Using the VSTHMD we developed, we
looked at using skin color to segment the user's hands and
arms. We have seen that using histograms of known skin and
background pixels (trained in an offline setup phase) can
produce very good results when no wooden objects are also in
the frame. Using multiple location-aware background
histograms reduces the number of false positives, but they still
remain in some areas. The elimination of these false positives
due to wooden objects is an area of future research that we
hope to solve using additional texture features, and more
accurate Gaussian mixture models of the probability
distributions. We have also investigated the use of the
Microsoft Kinect as a way to obtain an estimate of the portions

The International Journal of Virtual Reality

of the camera images containing the user, thereby eliminating
the spurious pixels of similarly skin-colored objects in the
room. When the spurious pixels are near the user's body in the
image the Kinect data does not help us, but when they occur of
opposite sides it can ignore non-user regions.

REFERENCES

[1] M. Slater and M. Usoh, “Body Centered Interaction in Immersive
Virtual Environments,” Artificial Life and Virtual Reality, N. Magnenat
Thalmann and D. Thalmann, Eds. John Wiley and Sons, 1994, pp.
125-148

[2] L. Phillips, B. Ries, M. Kaeding, and V. Interrante, “Avatar
self-embodiment enhances distance perception accuracy in
non-photorealistic immersive virtual environments,” Proceedings of the
2010 IEEE Virtual Reality Conference (VR), pp. 115-118, Mar. 2010.

[3] B. Lok, S. Naik, M. Whitton, and F. Brooks, “Effects of handling real
objects and self-avatar fidelity on cognitive task performance and sense
of presence in virtual environments,” Presence: Teleoperators & Virtual
Environments, vol. 12, no. 6, pp. 615-628, 2003.

[4] B. J. Mohler, S. H. Creem-Regehr, W. B. Thompson, and H. H.
Bülthoff, “The Effect of Viewing a Self-Avatar on Distance Judgements
in an HMD-Based Virtual Environment,” Presence: Teleoperators and
Virtual Environments, vol. 19, no. 3, pp. 230-242, Jun. 2010

[5] B. Ries, V. Interrante, M. Kaeding, and L. Phillips, “Analyzing the
effect of a virtual avatar’s geometric and motion fidelity on ego-centric
spatial perception in immersive virtual environments,” Proceedings of
the 16th ACM Symposium on Virtual Reality Software and Technology
(VRST ’09), vol. 1, no. 212, pp.59-66, 2009.

[6] B. Petit, J. D. Lesage, C. Menier, J. Allard, J. S. Franco, B. Raffin, E.
Boyer, and F. Faure, “Multicamera Real-Time 3D Modeling for
Telepresence and Remote Collaboration,” International Journal of
Digital Multimedia Broadcasting, vol. 2012, pp. 1-12, 2010.

[7] G. Bruder, F. Steinicke, K. Rothaus, and K. Hinrichs, “Enhancing
presence in head-mounted display environments by visual body
feed-back using head-mounted cameras,” 2009 International Conference
on CyberWorlds, pp. 43-50, 2009.

[8] C. Stauffer and W. Grimson, “Adaptive background mixture models for
real-time tracking,” Proceedings of the 1999 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 1999).
Fort Collins, Colorado, USA: IEEE Computer Society, 1999, pp.
246-252.

[9] Z. Zivkovic, “Improved adaptive Gaussian mixture model for
back-ground subtraction,” Proceedings of the 17th International
Conference on Pattern Recognition (ICPR 2004), no. 2, 2004, pp. 28-31.

[10] D. S. Lee, “Effective Gaussian mixture learning for video background
subtraction.” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 27, no. 5, pp. 827-832, May 2005.

[11] M. Harville, G. Gordon, and J. Woodfill, “Foreground segmentation
using adaptive mixture models in color and depth,” Proceedings of the
IEEE Workshop on Detection and Recognition of Events in Video.
Vancouver, BC, Canada: IEEE Computer Society, 2001, pp. 3-11.

[12] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother,
“Bi-layer segmentation of binocular stereo video,” Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2005), vol. 2, 2005, pp. 407-414.

[13] E. Hayman and J. O. Eklundh, “Statistical background subtraction for a
mobile observer,” Proceedings of the 9th IEEE International Conference
on Computer Vision (ICCV 2003). IEEE Computer Society, 2003.

[14] Y. Sheikh, O. Javed, and T. Kanade, “Background subtraction for freely
moving cameras,” in Proceedings of the 12th IEEE International
Conference on Computer Vision (ICCV 2009). Kyoto, Japan: IEEE
Computer Society, Spe. 2009, pp. 1219-1225.

[15] A. State, K. P. Keller, and H. Fuchs, “Simulation-based design and rapid
prototyping of a parallax-free, orthoscopic video see-through
head-mounted display,” Proceedings of the 2005 International
Symposium on Mixed and Augmented Reality (ISMAR), 2005, pp. 28-31.

[16] M. J. Jones and J. M. Rehg, “Statistical color models with application to
skin detection,” International Journal of Computer Vision, vol. 46, no. 1,
pp. 81-96, 2002.

[17] E. Suma, D. M. Krum, and M. Bolas, “Sharing space in mixed and
virtual reality environments using a low-cost depth sensor,” IEEE

International Symposium on Virtual Reality Innovations, Singapore,
Mar. 2011.

[18] Z. Jiang, M. Yai, and W. Jiang, “Skin detection using color, texture and
space information,” Proceedings of the Fourth International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD 2007), 2007, pp.
366-370.

