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ABSTRACT
Traffic matrices play a pivotal role in the management of
an ISP’s network such as various levels of traffic enginee-
ring and capacity planning. However, it is unclear how the
interaction between the internal traffic routing policies cho-
sen by the ISPs and large-scale content providers, and the
ongoing trend of “cloud-computing” affect the traffic matri-
ces. In this paper, we use network data collected by a Tier-1
ISP to understand the characteristics of a PoP-level traffic
matrix. We also shed light on the role of “routing matrix” in
shaping the characteristics of the traffic matrix. Two of the
most important observations in this study are: a) multi-exit
prefixes and use of early-exit routing are the major reasons
why PoP level traffic for the large ISPs do not follow the
gravity model(i.e. proportional distribution based on size)
as assumed by previous works, and b) routing plays a fun-
damental role in shaping the traffic matrix.

1. INTRODUCTION
With rapid growth of the Internet and the accompanying
traffic, network traffic measurement plays an ever critical
role in how network service providers and operators manage
and plan network operations. For instance, the rise of da-
ta centers and emergence of cloud computing are making
this measurement more complex, where content or service
providers employ load-balancing (among multiple data cen-
ters) to dynamically adapt to user demands. Understanding
the flow of traffic in such networks will help in improving the
operations, management and security of today’s IP networks
as well as emerging services.

Traffic matrix – which represents the flow of data from each
ingress point to each egress point through a network – is
an important piece of information needed to plan, mana-
ge and understand any network. Using (sampled) flow-level
network data collected by a tier-1 ISP at its various PoP
locations in the US and Europe, in this paper we study the
key characteristics of the PoP-level1 traffic matrix, with the
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1PoP stands for “Point-of-Presence.” We note that traffic
matrices can be defined in terms of various granularities: for
example, besides PoPs, the ingress and egress points of the
traffic can also be router interfaces, individual routers, IP
prefixes or autonomous systems (ASes). Which granularity is
appropriate often hinges on the network management tasks

goal to understand how various factors (e.g., where and how
ASes are inter-connected, routing policies they adopt) affect
the traffic matrix dynamics, and the estimation and mana-
gement thereof. Based on the actual traffic matrix derived
from the ISP network data, we first demonstrate that the
traffic matrix does not follow the so-called gravity model at
the “global” scale (i.e., when viewed from the perspective
of the entire ISP network): the gravity model and its vari-
ants have been a key premise used in several early studies
on traffic matrix estimation from (SNMP-based) link-level
byte counts [2, 9], see Section 2 for more discussion.

To explore the factors behind this phenomenon, we exami-
ne the traffic at finer AS and prefix levels (at which inter-
domain routing is performed) and introduce the notion of
routing matrix. The routing matrix is derived from BGP
routing tables at routers of each ingress PoP, and records
the egress PoP used for each prefix. We refer to prefixes ha-
ving multiple egress PoPs as multi-exit prefixes, while prefi-
xes having a single egress PoP are referred to as single-exit
prefixes. Using the routing matrix, we find that multi-exit
prefixes are prevalent (more than 60%) in the ISP due to a
number of reasons (e.g., multiple peering or interconnection
points between the ISP and some of its AS neighbors, ty-
pically other large ISPs or content providers, multi-homed
customers, etc.). The prevalence of multi-exit prefixes and
routing policies (e.g., early-exit routing) are main factors
why the traffic matrix does not follow the gravity model. In
fact, when considering only single-exit prefixes, the traffic
matrix can still be well approximated by the gravity model.
Additionally, for multi-exit prefixes we show that there is
a strong regional affinity among PoPs: where given a pre-
fix, PoPs within certain geographical regions are likely to
pick the same egress PoP – typically a dominant PoP (in
terms of both ingress and egress traffic) within the region.
Our findings suggest several new directions for estimating
and managing PoP-level traffic matrices of large ISPs. For
instance, we can utilize the routing matrix (which can be ob-
tained from BGP routing tables independent of traffic mea-
surement) to partition the (global) traffic matrix into several
regional ones, and then apply gravity model and other tech-
niques (e.g., selective prefix-level flow sampling) to estimate
the regional traffic matrices. By explicitly incorporating the
routing matrix into the traffic matrix estimation, we can

at hand. Although this study is primarily concerned with
PoP-to-PoP traffic, in understanding the characteristics of
the PoP-level traffic matrix we do take into account effects of
traffic (and routing) at finer granularities such as IP prefixes
and ASes.



also account for the effects of network failures and routing
changes, and explore “what-if” scenarios to investigate the
impact of such failures and routing changes on the overall
network performance. These new directions will be part of
on-going work. The remainder of the paper is organized as
follows. We provide background and related work in Secti-
on 2. Section 3 analyzes the PoP-to-PoP traffic matrix and
Section 4 examines the routing matrix. We discuss future
directions and conclude the paper in Section 5.

Dataset. The dataset consists of (sampled) netflow records
and BGP routing tables collected at 24 PoPs for 6 days in
Spring 2008. For anonymity and related reasons, we will use
the term ISP-X to denote the ISP where data was collected
and no actual PoP names are used (except for rough geogra-
phic locations). Most figures and plots only show normali-
zed statistics instead of absolute statistics (e.g., byte counts,
etc.)

2. RELATEDWORK
Most existing studies on network traffic matrices focus pri-
marily on how to estimate the (PoP- or router-level) traffic
matrix based on link load measurements (e.g., SNMP link
counts). The problem is reduced to solving an acutely under-
constrained mathematical equation of the form Y = AX for
X where Y is the vector of measured link loads, A is a “rou-
ting matrix” (different than what is defined in this paper)
indicating which ingress-egress pairs use which links in the
network and X is the vector representing the traffic matrix.
Medina et al. [3] provides a good survey of the earlier studies
which attempt to solve this problem by imposing additional
constraints by assuming certain (often unrealistic) models
that the traffic matrix is supposed to follow. In the same
paper, the authors propose the “choice model” (a variant of
the gravity model) for modeling the probability an ingress
PoP to send packets to other PoPs. Following up on [3],
Roughan et al. [5] formalize the notion of gravity model (in
its simplest form, it assumes that each ingress point sends
traffic to other egress points in proportion to their sizes),
and also incorporate other information (e.g., structure, con-
figuration and AS relations) to further improve the perfor-
mance of the model. A generalized gravity model is further
proposed in [9] where more detailed “tomographic” informa-
tion is used, and traffic from peers is excluded in the traffic
matrix estimation. In [2], a comprehensive comparison of va-
rious techniques for estimating the traffic matrix based on
link loads is conducted using real data, and the paper also
points out the limitations of the (simple) gravity model in
estimating traffic matrices. This paper observes that PoP-
level traffic matrix does not follow gravity model but does
not clearly explain why. The “Independent connection mo-
del” is proposed in [1] which provides yet another and more
intuitive form of the gravity model based on “independent”
connections (instead of independence of individual packets).
In [6] the impact of routing changes on the network traffic
matrix is studied, whereas in [4] Nucci et al. show how rou-
ting changes can be utilized for traffic matrix estimation.

3. POP-LEVEL TRAFFIC MATRIX AND
GRAVITY MODEL

In this section we examine the characteristics of the PoP-
to-PoP traffic. We first look at the distribution of PoP level

ingress and egress traffic totals. Next, we investigate the
existence of gravity-model based proportional distribution
in the PoP-level traffic matrix.

In order to understand the basic traffic characteristics at the
PoP level, we first look at the amount of egress and ingress
traffic at each PoP. From the collected raw flow data we
extract the total amount of traffic that enters and exits the
ISP network at each PoP. We plot the sizes of PoPs in terms
of their ingress and egress traffic volumes in Fig. 1. In this
figure X-axis shows the various PoPs of ISP-X, and Y-axis
shows the normalized ingress/egress traffic.

We see that PoP sizes vary widely. We also see that egress
traffic at any PoP is very similar to the amount of ingress
traffic at the PoP. This shows that larger PoPs, in general,
attract larger amount of traffic.
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Figure 1: Ingress and egress traffic at different ISP-

X PoPs.

Having observed that larger PoPs, in general, attract larger
amount of traffic, we next want to see if the way the traffic is
distributed is consistent across all the PoPs. That is, we want
to see if the largest PoP, for instance, is the most popular
destination for all the ingress PoPs. For this, we extract the
PoP-to-PoP traffic matrix Tpop where each row represents
the PoP at which the traffic enters the ISP and each column
represents the PoP at which the traffic exits the ISP network
and each entry in the matrix represents the total number
of bytes sent from the ingress PoP to the egress PoP. We
also extract the proportions in which ingress traffic at each
PoP is distributed to all the egress PoPs by normalizing the
traffic matrix Tpop by dividing the total traffic going from ith
ingress PoP to an egress PoP j by the total ingress traffic at
i. We refer to this row-wise normalized form of traffic matrix
Tpop as T̄pop.

Fig. 2 graphically shows traffic matrix Tpop and Fig. 3 shows
normalized traffic matrix T̄pop. For anonymity reasons, num-
bers in Fig. 2 are normalized by dividing each entry by the
maximum number in the whole matrix. We can see in these
figures that each ingress PoP seems to have different pro-
portions in which the traffic is distributed to various egress
PoPs. They do not seem to distribute the total ingress traf-
fic in some fixed proportions to all the egress PoPs. Even
the most popular egress PoP is different for different ingress
PoPs. Furthermore, we see that normalized traffic matrix is
dominated by the diagonal entries, which shows the presence
of significant amount of traffic that exits the network from
the same PoP where it enters the ISP network. We refer to
such traffic as local traffic.

The visual inspection of the traffic matrix shown in Fig. 2
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Figure 2: PoP-to-PoP
traffic matrix.
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Figure 3: PoP-to-PoP
traffic proportions

and 3 suggests that there are no consistent proportions in
which traffic at each ingress PoP is distributed to all egress
PoPs. Next, we mathematically verify our observations. We
use singular values [8] based analysis of the traffic matrices.
The basic idea here is that if all the rows of the matrix fol-
low the same proportions, then it is an approximately rank-1
matrix and should have only one significant singular value.
Fig. 4 shows the normalized magnitudes of the singular va-
lues of Tpop. We can clearly see that the matrix has several
significant singular values, which implies that Tpop is not
even close to being a rank-1 matrix. This clearly suggests
that there is no fixed global proportion at which the traffic
is being distributed.
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Figure 4: Distribution of singular values for PoP-to-
PoP traffic matrix Tpop.

Ignoring local traffic: Several works related to PoP-to-
PoP traffic estimation, such as [2,3], either implicitly or ex-
plicitly ignore the local traffic. Since the local traffic is ente-
ring from a PoP and exiting from the same PoP, it might be
useful to ignore them in some analysis such as when measu-
ring the load in the ISP backbone because such traffic never
enters the backbone. However, the gravity model is not well-
defined at PoP-to-PoP level if we ignore the local traffic or
set it to 0. Since the diagonal entries correspond to this lo-
cal traffic, ignoring local traffic is equivalent to setting the
diagonal entries to 0. Obviously, such matrix can not follow
gravity model because there is no rank-1 matrix with 0s in
the diagonal. This means that we do not have a meaningful
way to check whether the rows of a PoP-to-PoP traffic ma-
trix follow the same proportions or not if we ignore the local
traffic.

Although ignoring local traffic at PoP-level traffic matri-
ces make gravity-model ill-defined, we compared the ratios
involving non-diagonal entries to see if there is a fixed pro-
portion. We found that even when we compare pairs that
did not involve diagonal entries the proportions at which
one ingress PoP divides the traffic to other egress PoPs is,
in general, very different than how another PoP divides. In
summary, the rows of the matrices did not follow similar

proportionality even when we ignore the local traffic. The-
refore, when viewed from the perspective of the entire ISP
network, the gravity model does not hold true.

4. ROUTING MATRIX
In Section 3, we have made a number of observations regar-
ding the PoP-level traffic matrix. To understand the latent
causes behind these observations, we need to understand the
most important factor that drives the traffic from the ingress
PoPs to the egress PoPs: routing.

In general, routing is done on the basis of IP prefixes that
are announced by “neighbor ISPs” to each other through
BGP sessions between their border routers. ISP-X peers
with other large ISPs at multiple locations and those ISPs
may announce similar set of prefixes at multiple locations.
Additionally, many of its large customers including large
content-providers and other multi-homed customers might
announce their prefixes from more that one location. Due
to this, traffic destined to a given IP address can potenti-
ally exit from the ISP-X network at many different PoPs.
In this section, we investigate how ISP-X routes the traffic
in the presence of several potential exit points. We use this
information to explain the characteristics for the PoP-level
traffic as observed in Section 3.

As mentioned above, some of the prefixes may be announced
at multiple different locations by the neighboring ISPs. We
use the term multi-exit prefix to refer to a prefix which
is announced at more than one PoP locations, and therefore
traffic destined to these prefixes may exit ISP-X network
from multiple locations. On the other hand, some prefixes
may be announced at only one PoP location, and therefore,
traffic destined to these prefixes has only one exit PoP. In the
following, we refer to such prefix as single-exit prefix.

To examine the traffic at the prefix level (at which inter-
domain routing is performed), we introduce the notion of
routing matrix. The routing matrix is derived from BGP
routing tables at routers of each ingress PoP, and records
the egress PoP used for each prefix. In this routing matrix
Rpop→p, an entry Rpop→p(i, p) represents the egress PoP for
destination BGP prefix p at PoP i.We examine different cha-
racteristics observed in this routing matrix in the following
subsections.

4.1 Prevalence ofMulti-exit Prefixes and Early-
exit Routing

We first look at the characteristics of different prefixes with
respect to how many exit PoPs they have. In our dataset
we see around 180k unique BGP prefixes learned by ISP-X
and around 100k prefixes that are seen at more than one
PoP location. Fig. 5 shows the distribution of these prefixes
with respect to number of PoPs they are announced at. As
seen in this figure, about 40% prefixes are only seen at one
location. About 60% of the prefixes, on the other hand, are
seen at more than one location.

Next we look at how many prefixes are reachable at any
given PoP. Fig. 6 shows the fraction of prefixes seen at dif-
ferent PoPs. We see that the number of prefixes present at
different locations varies significantly. However, the top 6 lar-



gest PoPs have approximately 40% of the prefixes reachable
locally.
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Figure 6: Prefix availabi-
lity

We have seen that a large number of prefixes are reachable
through more than one exit-PoP. Therefore, ingress PoPs
can route traffic destined to those prefixes through any of
the egress PoPs where they are advertised. Next we want to
see how the egress PoPs are chosen by the ingress PoPs for
those multi-exit prefixes. Intuitively, ISP-X should try to re-
duce the load on its backbone network by routing the traffic
through the “closest” egress PoP. This is usually referred to
as early-exit(or hot potato) routing [7]. To see the extent of
this early-exit routing in the data, we first obtained the geo-
graphical distances between all the PoP pairs and computed
the percentage of time a PoP sends traffic to the nearest exit
PoP from the list of possible exit PoPs. Fig. 7 shows that
for almost all PoPs, nearest-exit PoP is chosen for almost
all the traffic. This result leads to two related observations.
First, we see that early-exit routing is being used heavily and
second, geographic distance closely captures the underlying
“cost” of transporting data between PoPs. The cases where
an exit-PoP other than the nearest one was chosen most-
ly involved cases such as DÃ 1

4
sseldorf preferring Frankfurt

over Amsterdam where the relative distances did not differ
much.

4.2 Proportionality for “Single-Exit” Prefixes
Since a large portion of prefixes can be reached through
multiple exit PoPs, the preferences chosen by each individual
PoP to route its ingress traffic play an important role in
shaping the overall PoP-to-PoP traffic matrix. Therefore, in
order to separate the effects of the choices made by the ISP
in selecting the egress PoPs, we look at the distribution of
traffic involving only single-exit prefixes.

For each of the single exit prefixes, all the ingress traffic
destined to it exits from one fixed PoP. Therefore, there is
no effect of routing decisions made by different PoPs. We try
to see if the PoP-level proportionality holds for the traffic
destined to these single-exit prefixes. For this, we construct a
PoP-to-PoP traffic matrix (T 1

pop) by only considering traffic
destined to these single exit prefixes.

To see how closely the rows of this matrix (T 1
pop) follows the

fixed proportional distribution, we again analyze the distri-
bution of its singular values. Fig. 8 shows the distribution of
singular values for the matrix T 1

pop. Clearly the first singular
value is significantly larger than other singular values, and
captures more than 45% of the total variance in the data.
This shows that T 1

pop is much closer to being a rank-1 matrix
than the original traffic matrix (Tpop). Therefore, we can in-
fer that the presence of multiple exit points for prefixes adds
to significant distortion from gravity model.
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4.3 Classification of PoPs based on Regional
Affinity

We have seen that in the presence of multiple egress PoPs
for a given destination prefix, ingress PoPs generally prefer
geographically closest egress PoPs. Therefore, geographical-
ly closer PoPs are more likely to have similar routing entries
for different prefixes in their routing tables.

To evaluate how similar PoPs are in terms of the exit-PoP
choices they make for all the prefixes, we cluster them using
hierarchical clustering. For this we construct feature vector
for each ingress PoP by using the egress PoPs for different
destination prefixes, which is same as the rows of routing
matrix Rpop→p. For comparing feature vectors for any two
PoPs we are interested in seeing whether they choose the
same egress PoP to route the traffic destined to a given de-
stination prefix or not. Therefore, we use Hamming Distance
as a distance measure for the hierarchical clustering.

Fig. 9(a) shows the dendrogram for the hierarchical cluste-
ring of the PoPs. In this figure, X-axis shows various PoPs,
and Y-axis shows the inter-cluster distance2 between the
clusters of the PoPs. The figure shows that, in general, each
PoP is different from others, except for few pairs of PoPs
which are very close to each other geographically. Similarly,
clusters of PoPs which have similar routing choices are also
close to each other geographically.

Interplay between Routing & Traffic Matrices. In
Section 3 we observed that the gravity model or any other
proportionality-based model does not hold true for the PoP-
level traffic matrix. On the other hand we see strong geogra-
phical affinity among PoPs in terms of their routing choices.
It leads us to an interesting research question: Does this
geographical affinity due to similar routing preferences also
translate into similarities in the traffic distributions for the
PoPs? For instance, Fig. 9(a) shows that (NY, NJ) have
very similar routing preferences, and so do (FL2, FL3). Si-
milarly, (NY, NJ) also have very similar traffic distribution,
and so do (FL2, FL3) (See Fig. 10). However, (NY, NJ)
and (FL2, FL3) differ significantly with each other both in
terms of routing preferences and traffic distribution. In order
to understand the similarities among PoPs based on traffic
distribution and routing preferences, we cluster the PoPs
using the traffic matrix. For this clustering we use traffic
distributions for all the PoPs as the feature vector, and cor-
relation between them as the similarity measure. The traffic

2We use the average pair-wise distance between two clusters
as the inter-cluster distance between them. It is defined as
the average of all the pair-wise distances, for the pairs of
elements by choosing one element from each cluster.
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Figure 9: Dendrograms representing the clusters of PoPs.
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distribution for each PoP is given by the rows of the matrix
T̄pop, and the similarity of the distribution implies that these
PoPs divide the traffic to the egress PoPs at the same ratio.
We observed that there are groups of PoPs that have similar
distribution in general, however PoPs from different groups
have very different traffic distribution proportions from each
other. We also observe that, in most cases, the cluster of
PoPs that have similar distributions are geographically clo-
se to each other. Fig. 9(b) presents the dendrogram showing
clusters of PoPs that have similar traffic distribution pro-
portions. The X-axis in this figure are the PoPs grouped
together based upon their traffic distribution similarity and
the Y-axis shows the intra-cluster distance.

The clusters seen in Fig. 9(b) are also consistent with the
clusters seen on the basis of routing matrix as shown in
Fig. 9(a). It shows a strong correlation between traffic and
routing matrices, and therefore, shows that routing matrix
plays an important role in shaping the traffic matrix.

In summary, we see that most of the observations that we
made about the PoP-level traffic matrix can be elucidated
by the routing matrix. We also observed that because of
the prevalence of multi-exit prefixes large ISPs can and do
employ early-exit routing extensively.

5. ONGOINGWORK & CONCLUSION
In this paper we use flow-level network data collected by
a tier-1 ISP at its various PoP locations to study the key
characteristics of the PoP-level traffic matrix with the aim
of understanding how various factors such as PoP location,
prefix-level routing polices etc. affect the PoP-level traffic
matrix observed by the ISP. Our paper makes two key con-
tributions. First, we show that PoP-level traffic matrix does
not follow the gravity model, as used by several earlier stu-
dies. Second, we explore the factors behind this phenomenon
by examining the traffic at prefix level and introduce the no-
tion of routing matrix. Moreover, our result shows that the
prevalence of multi-exit prefixes and early-exit routing used
by ISPs is one of the key factors why gravity-model does not

hold for the PoP level traffic matrices. It is further corrobo-
rated by the fact that gravity model holds for the PoP level
traffic matrix when only single-exit prefixes are considered.
We also show that there is a strong regional affinity among
PoPs in terms of how traffic destined to multi-exit prefixes is
routed(i.e. egress PoPs chosen by these PoPs) as well as for
the proportions in which traffic is distributed at PoP level.

Finally, our findings suggest several new directions for esti-
mating and managing PoP-level traffic matrices of large ISPs.
For instance, it might be possible to partition the global PoP
level routing matrix into several regional ones using the pre-
fix level“routing matrix”, and apply gravity model and other
techniques (e.g., selective prefix-level flow sampling) to esti-
mate the regional traffic matrices. In addition, by taking into
account the routing matrix for traffic estimation, we can also
model the effects of routing changes due to network failures
or policy changes. It would not only provide a better mo-
del for network management, but also help us in exploring
“what-if” scenarios to understand the impact of failures and
policy changes on the overall network performance. These
new directions are part of our current on-going work.
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