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Abstract—This paper presents a new economic approach for
studying competition and innovation in a complex and highly
interactive system of network providers, users, and suppliers of
digital goods and services (i.e., service providers). It employs
Cournot and Bertrand games to model the competition among
service providers and among network providers, respectively, and
develops a novel unified model to capture the interaction and
competition among these players in a “service-oriented” Internet.
Incentives for service and network innovation are studied in this
model.

I. INTRODUCTION

As the Internet evolves and diffuses through society, eco-
nomic factors are often more important than technological
ones in determining what services are offered, and how they
are priced. But the economics of the Internet is far more
mysterious than the underlying technology. That is true even
at the level of network providers, where the basic connectivity
is reasonably well known, but the business relationships that
give rise to observed connections, and the incentives that led
to them, are mostly hidden from view. When we come to
services offered over the Internet, the complexity increases,
and our knowledge drops even further. And the literature in
this area is still very limited, in spite of the extensive interest
that exists.

In this paper we consider the Internet as a service delivery
platform (i.e., we disregard its other roles, such as in providing
connectivity among users, etc.), and study the relationships
among the entities that provide transport (network providers, in
our language), those that provide services (service providers),
and users. We assume a certain industry structure (with net-
work providers completely separate from service providers),
and several rules imposed by regulators (such as some non-
discrimination conditions, and possibly even some price reg-
ulation), and some other common market features (such as
basic network connectivity being provided to users on a flat
rate basis). This constrains the problem enough to provide
opportunity to build models that are tractable and yet reflect
what is observed in the marketplace, and are rich enough to
show interesting dynamics.

We propose a simple economic model of the interaction
and competition among service providers, network providers
and users. Using this model, we explore how competition
affects the network and service providers, and in particular
how to maximize the incentives for innovation on the part
of network providers and service providers. Our main tools

come from the standard economic literature on Bertrand and
Cournot competition (see Section II for a brief overview of
these concepts). While both types of competition are well
known in economics, one of the key novelties and contributions
of our paper is combining these two different types of games
in a single unified framework to capture the co-dependence
or interaction between service and network providers. With
our assumptions, we model the competition between service
providers using Cournot games, and the competition between
network providers using Bertrand games.

The two types of competition (or games) are tied together
in a two-stage Stackelberg game where service providers
determine the optimal (equilibrium) amount of services each
produces/offers to meet user demands, and network providers
determine what the optimal (equilibrium) prices to charge
service providers for transporting the accompanying services
(or rather, traffic associated with them). We are able to explic-
itly solve this unified Cournot-Bertrand model, and thereby
study the effects of competition between service providers and
competition between network providers on the overall equilib-
rium market demand/supply and various prices. Furthermore,
it enables us to investigate and quantify incentives for service
and network providers to innovate and further spur the market
demand for services.

Because of the simplifying assumptions, our economic
model clearly does not capture the intricate and complex
relationships and industry structures that exist in the real
Internet, and represents only a modest attempt in analyzing
and understanding these relationships in a formal economic
setting. Nonetheless, our work provides a useful and tractable
model to generate some qualitative insights into these relation-
ships. To our best knowledge, our paper is perhaps the first
attempt to explicitly model the interaction, competition and
innovation among service providers, network providers and
users in a “service-oriented” Internet. As more services–not
only content (news, music, videos, etc.), but also software,
computing and storage resources (as in cloud computing)–
are being offered online, we believe that understanding the
economic factors that affect the interacting, co-dependent and
yet competing relationships among various players in this
service-oriented Internet is of critical importance. In light of
the recent initiatives in the research community for “clean-
slate” designs of future Internet architectures, models for
assessing the economic viability of new network architectures
are especially needed. We hope our work can inspire more
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studies to follow.
The remainder of this paper is organized as follows. In

Section II we describe the problem setting, additional model
assumptions, background and related work. The basic eco-
nomic model and its equilibrium solution are presented in
Section III, and are used in Section IV to study incentives
for innovation. Section V provides numerical examples to
illustrate the results. Section VI concludes the paper.

II. PROBLEM SETTING AND RELATED WORK

A. Problem Setting and Basic Assumptions

We consider the Internet as a service delivery platform,
and assume three separate types of entities: service providers,
network providers and users. Fig. 1 schematically depicts the
relations among the three entities. Clearly, users are the key
drivers in the relations among the three. Users pay a fixed
monthly fee to their network providers for basic connectivity,
which enables them to access various application services.
While users pay for basic connectivity through a flat rate1,
we assume that access to services such as music or video,
or cloud computing, is not free (and so, in particular, is not
paid for through advertising). Instead, users pay for those
services to the service providers. The payment might be per
unit of service, e.g., $0.99 per song, or might be on a monthly
subscription basis for a newspaper or music site. But in some
rough sense users’ fees to service providers are proportional
to those users’ volumes of consumption of those services.
Service providers derive their revenues from user fees, and
have to pay for the costs of creating their offerings, as well
as for their transport to the users. Network providers derive
their revenues from the flat monthly fees of their users, and
the usage-sensitive charges for transport, and have to pay for
their infrastructure.

service
providers

users

network
providers

provide
services

provide
transport

pay for
services

provide
transport

pay for
network access

pay for
transport

Fig. 1. Relations between network providers, service providers and users.

Without loss of generality, in our model we assume that
there are only two service providers who offer the same type
of services (in the economic parlance, they are substitutable
goods) and compete between themselves for user accesses.
There are also only two network providers, each connect-
ing their respective users to the two service providers and
competing between themselves for transporting services to
users. For simplicity, we assume that each user stays with the

1Although flat rates have been denigrated in the economic literature, they
have always been popular with the public, and can be justified as advantageous
for network providers using formal models [1].

same network provider throughout (e.g., due to geographical
locations and local incumbent monopoly, or other factors)2.
Fig. 2 depicts the flow of commodities (namely, services and
the associated traffic) and prices. Note that this is just a
schematic, and omits many of the quantitative relations among
network and service providers. Those are given by the key
demand relation eq.(1) in the next section. As in the current
Internet, the action of any one of the actors, say in improving
the transmission infrastructure, or in changing a price, affects
all other actors, and leads to interesting dynamics.

B. A Quick Economic Primer and Model Justification

In economics, demand (function/curve) is defined as a
function between the price of a commodity (services in our
model) and the quantity of the commodity (the amount of
service in our model) that consumers/users are willing and
able to purchase at the given price [3]. Likewise, supply
(function/curve) is defined as a function between the price of
a commodity and the quantity of the commodity that a firm
(a service provider in our case) is able to produce at the given
price. Demand curves are used in economic models to estimate
behaviors in competitive markets. At the equilibrium price,
demand and supply are equal, and the equilibrium quantity
(the amount of service) will be produced and consumed at
the equilibrium price. In this paper, we will use this relation
between the price that service providers charge users for
services and the aggregate volume of services they collectively
produce or rather offer to (implicitly) capture the overall user
demand for services.

We use two different types of standard economic games in
our model: Cournot competition between service providers,
and Bertrand competition between network providers. In eco-
nomics [4], Cournot competition/game is a model of competi-
tion in which firms (service providers in our case) compete on
quantity (i.e., the volume of services) they produce–which they
decide independently and at the same time– based on their cost
of production, represented by the marginal cost, or the cost for
producing one additional unit of service. In a Cournot game,
the market price is set at a level such that demand equals the
total quantity produced by all firms. In other words, the service
price is determined by the supply and demand for services in
the market. In contrast, in a Bertrand competition/game firms
(network providers in our case) compete on price–with each
one choosing its price independently (i.e., without collusion)
and at the same time–and supply the quantities demanded at
those prices.

In our model we use a Cournot game to characterize the
competition between two service providers, as we assume they
produce substitutable services (e.g., music or video down-
loads), and the price of these services is essentially determined

2In other words, users do not change network providers, hence we do not
model the competition between network providers for users. We make this
simplifying assumption, since our main focus is on interaction between service
providers and network providers and competition between service providers
as well as between network providers. We note that this competition and
the accompanying user dynamics, e.g., joining or leaving the network, are
studied [2] in the context of two competing network architectures.
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by competition and market supply and demand. In other words,
due to competition, different service providers have limited
ability to choose their own prices, and in equilibrium, they
converge to the same price and consequently determine the
equilibrium amount of services each to produce or offer. On
the other hand, we use the Bertrand game to characterize
the competition between two network providers, as they do
not directly produce services, but instead transport whatever
amount of services produced by service providers to their
respective users. They can indirectly influence the amount
of services produced by service providers, thus the amount
(of traffic) they have to transport, by varying the prices
they charge them. Hence network providers compete on the
network transport prices/fees they charge the service providers
to influence or attract the amount of services they transport.

As in standard Cournot/Bertrand games, we assume a linear
demand function (i.e., the service price is a linear function of
the amount of services produced by service providers), which
makes both Cournot and Bertrand games easier to solve3.
In addition, since we do not explicitly take into account the
competition between network providers for users, in our model
we assume that the user network access charge (denoted as p in
our model) is an exogenous variable that can be determined by
the market, or a third party, e.g., a policy marker, to maximize
certain global/market objective. We do take into account this
network access charge in the demand function (cf., eq.(1)),
and explore its effect on the equilibrium quantities and prices.

C. Related Work

Network economics has been a very active area of research.
While there are many papers on network pricing (see, e.g.,
[1], [5]–[7] among many others), or more broadly, network
economics (see, e.g., [8], [9] for early papers, or the recent
proceedings of NetEcon workshops, or recent issues of the
Review of Network Economics journal), there are relatively few
papers focusing on economic models for network architectures
and services. Network neutrality is a network architecture-
related issue, where various models have been proposed by
both economists and computer scientists (see e.g., [10]–
[13]). In [14] Gaynor and Braden propose to apply the theory
of real option to study flexibility and openness of network
architectures. Also worth noting is the recent work [2], where
economic models are used to study the competition dynamics
between an incumbent technology/architecture and a new
entrant technology/architecture. In [15] Scotchmer addresses
the broad topic of innovation and incentives, whereas the
authors in [16] study the issue of competition and innovation
in the specific context of network monitoring and contracting
system.

3Although more complex demand functions may be used in our model, we
believe they do not fundamentally alter the qualitative results obtained in the
paper.

III. FORMAL MODEL AND ITS SOLUTION

A. The Model

As depicted in Fig.2, there are two network providers,
denoted by Ni, i = 1, 2, and two service providers, Sj ,
j = 1, 2. Throughout this paper we use the convention
that subscripts denote network providers, whereas superscripts
denote service providers. The user (base), Ui, of network
provider Ni is assumed fixed. For conciseness, we will use
the singular term “user” to collectively refer to all users of
one network provider, and treat the collection of them as if
they were a single user. Each user Ui, i = 1, 2, pays a price
of p (e.g., a monthly network access charge) to access the
network, and buys services from either one of the two service
providers, paying a price of q per unit of service. Network
provider Ni charges service provider Sj a price of ri to
transport one unit of service (or rather the associated traffic)
between Sj and Ui. Note that while the (network) transport
prices r1 and r2 charged by the two network providers may
be different, each network provider does not charge different
prices to different service providers. (Hence a form of network
neutrality is assumed in our model.) We also note that in our
model both q and ri represent “volume-based” pricing, while
p is a flat-rate price.

The overall user demand for services is a function of both
the network access charge p and the service price q. Hence
when p or q increases, user demands for services decrease.
Let xj

i , i, j = 1, 2,denote the amount of service produced by
service provider Sj and consumed by user Ui. The relation
between the service price q, the network access charge p and
the service quantities (“supplies”), xj

i , is assumed to be given
by the following (inverse) demand function4:

q = 1− βp−
2∑

j=1

2∑
i=1

1

γj
i

xj
i . (1)

We first note that eq.(1) implicitly assumes that the service
price is normalized to be within the range [0,1]; hence service
quantities and other parameters are appropriately normalized.
The parameter β(≥ 0) in eq. (1) captures the effect of the
network access charge p on the overall user demand, viz., the
“user demand sensitivity” to p. The parameters γj

i (≥ 0), i, j =
1, 2, capture the combined “abilities” of service provider Sj

and network provider Ni to offer and transport services to
meet the user demand.

The role of γj
i ’s can be intuitively understood as follows:

γj
i = −∂xj

i/∂q, so that γj
i represents the proportional “market

share” of an increase in user demand that service provider Sj

and network provider Ni can jointly capture by increasing the
service supply (by ∂xj

i amount) to user Ui of network provider

4As mentioned earlier, we assume that at market equilibrium, supply equals
demand. Eq. (1) in fact represents the service price q as a function of the
supply, i.e., service quantities, xj

i ’s, offered by the service providers, Sj ,
j = 1, 2. In other words, X :=

∑2

j=1

∑2

i=1
xj

i represents the total market
supply, and thus the total market demand. Eq.(1) and its parameters attempt to
capture the intricate relation that exists between (market-determined) service
price and how service and network providers alike adjust their offering to
meet user demand (see the discussion below eq. (1)).
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Fig. 2. Model illustration: flows of prices and services/traffic.

Ni when the service price q drops by ∂q. Hence the larger
γj

i is, the better Sj (and Ni)’s ability to increase its supply
and gain market share. In Section IV, we use the parameters
γj

i to study incentives for network and service innovation.
For example, by deploying new technology and upgrading
its network infrastructure—as reflected by increasing γj

i by
ηi(> 0), a network provider can increase overall user demand
(for the same pricess p and q). Likewise, through service
innovation, again as reflected by increasing γj

i by ηj(> 0), a
service provider can increase its overall market share of user
demand through its improved service supply.

The two service providers engage in a Cournot competition.
Given a service price q as in eq. (1), S1 and S2 compete to
determine the “optimal” amount of services, xj

i , i = 1, 2, to
offer users of both networks so as to maximize their (service
providers’) respective profits. Let sj denote the marginal cost
of Sj (for producing one unit of service). The profit generated
by Sj for supplying an amount xj

i of services to user Ui is
given by

ΠSj

i := (q − ri − sj)xj
i , (2)

where ri is the transport price that Ni charges for transporting
the traffic associated with one unit of service. Let Xj := xj

1 +
xj

2 denote the total amount of service produced by Sj . The
total profit of Sj for supplying users of both network providers
is then

ΠSj

:= ΠSj

1 + ΠSj

2 = (q − r1)x
j
1 + (q − r2)x

j
2 − sjXj . (3)

In contrast, network providers engage in a Bertrand com-
petition. For i = 1, 2, define Yi := x1

i + x2
i , the total amount

of services produced by S1 and S2 and consumed by user
Ui of Ni. In other words, Yi is the amount of services (or the
accompanying traffic) that network provider Ni must transport
between its user and the service providers. Network provider
Ni does not “produce” Yi; it only indirectly controls it by
adjusting the price ri it charges the two service providers. Let
ni denote the marginal cost of Ni (for transporting the traffic
associated with one unit of service). The total profit of Ni is
given by

TABLE I
SUMMARY OF MODEL PARAMETERS AND VARIABLES

List of Parameters

Parameters

β user demand sensitivity to p

γj
i (joint) “market share” of Sj & Ni

γj = γj
1 + γj

2 total “market share” of Sj

γi = γ1
i + γ2

i total “market share” of Ni

List of Variables

Quantities
xj

i service of Sj consumed by Ui

Xj = xj
1 + xj

2 total service produced by Sj

Yi = x1
i + x2

i total service transported by Ni

Prices
q user service price
ri network transport price (by Ni)
p user network access charge

ΠNi := (ri − ni)Yi + p, i = 1, 2, (4)

where the first term in the right hand side represents the net
profit for transporting service traffic, and the second term is
the price paid by the user for network access. In a Bertrand
game, the two network providers, Ni, i = 1, 2, compete by
determining the “optimal” price ri each charges the service
providers to maximize their respective profit.

Combining the Cournot competition between service
providers, and the Bertrand competition between network
providers, produces a Stackelberg game consisting of a
Cournot (sub-)game and a Bertrand (sub-)game. The parame-
ters and variables used in the model are summarized in Table I.
In the next subsection we show how the model can be solved.

B. Solving the Model

We solve the model using a two-stage procedure. In the
first stage, given the network transport prices ri’s, the service
providers S1 and S2 compete in a Cournot game. The Nash
equilibrium state of the Cournot game yields the “optimal”
equilibrium service quantities, xj

i , i, j = 1, 2, and service
price q, all as functions of p, ri’s. In the second stage,
the network providers N1 and N2 compete in a Bertrand
game to determine the network transport prices, ri’s, so as
to maximize their respective profit. Substituting ri’s into
the (optimal) xj

i ’s obtained in the Cournot game, we obtain
the final optimal equilibrium service quantities, xj

i ’s, in
terms of p (and the model parameters). Using the resulting
expression, we investigate how the network access price p
affects the overall demand, and set the optimal price p∗ so as
to maximize the total social welfare. The solution steps are
presented in greater details below.

Stage 1: Solving the Cournot Game. Plugging eq. (1) into
eq. (2), we have

ΠSj

i :=
∑

[(1− βp−
2∑

j=1

2∑
i=1

1

γj
i

xj
i )− ri − sj ]xj

i (5)

which is a quadratic function in xj
i . From standard game

theory, (Nash) equilibrium is achieved when ∂ΠSj

i /∂xj
i = 0,
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∀i, j = 1, 2. This leads to a set of four linear equations, and
their solution is expressed in the following lemma.

Lemma 1 (Solution of Cournot Game): The competition of
the two service providers modeled as a Cournot game leads
to the following equilibrium state: for j = 1, 2 and i = 1, 2,

x̂j
i =

γj
i

5
[(1− βp)− 2(r1 + r2 + s1 + s2)− ri − sj ]. (6)

Furthermore, the equilibrium service price is

q̂ =
1

5
(1− βp) +

2

5
(s1 + s2 + r1 + r2). (7)

From eq. (6), we can obtain the total (equilibrium) amount
of services, X̂j = x̂j

1 + x̂j
2, produced by service provider

Sj , and its corresponding total profit. The total (equilibrium)
market demand/supply, X̂ =

∑2
j=1 X̂j =

∑2
j=1

∑2
i=1 x̂j

i ,
can also be derived. Due to space limitation, we omit these
equations here. From Lemma 1, we see that as a result of
the Cournot game, the competition between service providers
S1 and S2 leads each service provider to determine the
“optimal” amount of service to offer–subject to the resulting
market-determined service price–so as to maximize their
respective profit. These “optimal” amounts of services, X̂j

i ,
are expressed as functions of ri’s, the prices that the network
providers, N1 and N2, charge to transport the services (or
rather the associated traffic). In other words, given r1 and r2,
the service providers S1 and S2 can determine the optimal
Xj

i ’s (and thus X1 and X2).

Stage 2: Solving the Bertrand Game. From Lemma 1, given
r1 and r2, the total amount of services that each network
provider must transport (as the result of the Cournot game
played by the service providers) is as follows:
For i = 1, 2,

Ŷi =
γi

5
[1− βp− 2(r1 + r2 + s1 + s2)− ri]− γ1

i s1

5
− γ2

i s2

5
, (8)

where γi := γ1
i + γ2

i . Plugging eq. (8) into the network
provider profit function eq. (4), again yields a quadratic
function in ri for ΠNi . The Nash equilibrium of the Bertrand
game is achieved when ∂ΠNi/∂ri = 0, i = 1, 2. The solutions
are given in the following lemma.

Lemma 2 (Solution of Bertrand Game): The competition
of the two network providers modeled as a Bertrand game
leads to the following equilibrium state:

r̃1 = 1
8 (1− βp)− 1

4 (s1 + s2) + 1
16 (3n1 − n2)

− s1

16 ( 3γ1
1

γ1
− γ1

2
γ2

)− s2

16 ( 3γ2
1

γ1
− γ2

2
γ2

) (9)

and

r̃2 = 1
8 (1− βp)− 1

4 (s1 + s2) + 1
16 (3n2 − n1)

− s1

16 ( 3γ1
2

γ2
− γ1

1
γ1

)− s2

16 ( 3γ2
2

γ2
− γ2

1
γ1

) (10)

Combining the two lemmas by substituting eqs. (9) and (10)
into the equations of Lemma 1 yields the following theorem.

Theorem 1 (Solution of the Model): For a fixed network
access charge p, the competitions between service providers
and network providers, modeled as a Stackelberg game with
two-stage Cournot-Bertrand sub-games, yield the equilibrium
state 〈{x̃j

i , i = 1, 2, j = 1, 2}, q̃, r̃1, r̃2〉, where r̃1 and r̃2 are
given in eqs. (9) and (10) of Lemma 2, and

x̃j
i = γj

i

5 [ 38 (1− βp)− 3
4 (s1 + s2)− 7

16 (n1 + n2)

+ 7s1

16 (γ1
1

γ1
+ γ1

2
γ2

) + 7s2

16 (γ2
1

γ1
+ γ2

2
γ2

)] + γj
i

5 (w−i − sj), (11)

where w−i := 1
4 [n−i − 1

γ−i
(s1γ1

−i + s2γ2
−i)], and for a given

player i, the notation −i indicates the other player (network
provider). Furthermore,

q̃ = 3
10 (1− βp) + 1

5 (s1 + s2) + 1
20 (n1 + n2)

− s1

20 (γ1
1

γ1
+ γ1

2
γ2

)− s2

20 (γ2
1

γ1
+ γ2

2
γ2

). (12)

From eq. (11), we can obtain the total user demand (or
equivalently, the total service supply) in equilibrium, X̃ =∑2

i=1

∑2
j=1 x̃j

i , which is given below as a function of p.

X̃ = γ
5 [ 38 (1− βp)− 3

4 (s1 + s2)− 7
16 (n1 + n2)

+
∑2

j=1
7sj

16 (γj
1

γ1
+ γj

2
γ2

)] +
∑2

i=1

∑2
j=1[

γj
i

5 (w−i − sj)], (13)

where γ = γ1 + γ2 =
∑2

i=1

∑2
j=1 γj

i .
Ignoring the last term in eqs. (11) and (13), we see that

as a result of the Cournot/Bertrand competitions between
service/network providers, the amount of service, x̃j

i ’s,
offered at equilibrium by Sj to user Ui of network provider
Ni is (roughly) in the proportion γj

i

γ of the total market. Thus
the “market share” of service provider Sj in network Ni is
(roughly) γj

i , and its total “market share” in both networks
is (roughly) γj := γj

1 + γj
2 . Similarly, network provider Ni

carries (roughly) a fraction γi/γ of the total traffic generated
by the service market, with a market share of (roughly) γi.

Effect of Network Access Price p and Its Optimal Choice.
Theorem 1 shows that at equilibrium the levels of services,
x̃j

i ’s, produced by Sj , j = 1, 2 (and consumed by user
Ui of network provider Ni, i = 1, 2), and therefore the
total market supply, X̃ , as well as the equilibrium service
price, q̃, and network transport prices, r̃i’s, are all linear
functions of the network access charge, p. We assume that
the price p is determined by a policy maker with the objective
of maximizing social welfare. Following standard economic
principles, we define the social welfare function, denoted by
ΠSW , as follows:

ΠSW (p) := ΠU (p) +

2∑
i=1

ΠNi(p) +

2∑
j=1

ΠSj

(p), (14)

where ΠU (p) is the consumer (i.e., user) surplus when the
network access price is p. As the total market demand as a
function of p is given by eq. (13), the consumer surplus is
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therefore given by

ΠU :=

∫ pmax

p

X̃(p) =
1

2
(pmax − p) · X̃(p). (15)

where the parameter pmax(≤ 1/β) is the maximal possible
network access price such that the total market demand
X̃(p) = 0. From eq. (13), it is clear that ΠU is a quadratic
function in p of the form a1p

2 + b1p + c1, where a1 =
3

2×40βγ > 0. Further, it is not hard to see that ΠU is a strictly
decreasing function in p for 0 ≤ p ≤ pmax. In other words,
the maximum of ΠU is attained when p = 0.

We can re-combine the terms in
∑2

i=1 ΠNi(p) +∑2
j=1 ΠSj

(p) and re-write the sum of total profits of both
service and network providers as follows:

2∑

i=1

ΠNi(p)+
2∑

j=1

ΠSj

(p) =
2∑

j=1

2∑

i=1

(q̃−sj−ni)x̃
j
i +2p. (16)

From eqs. (12) and (11), we see that
∑2

i=1 ΠNi(p) +∑2
j=1 ΠSj

(p) is also a quadratic function of the form a2p
2 +

b2p + c2, where a2 = 32

10×40β2γ > 0. Hence
∑2

i=1 ΠNi(p) +∑2
j=1 ΠSj

(p) is a convex function. In particular, its maximum
is attained when either p = 0 or p = pmax.

Putting everything together, we see that the social welfare
function, ΠSW (p) is a convex quadratic function of the form
ap2 + bp + c, where a = a1 + a2 > 0. Hence the social
welfare is maximized when either p = 0 or p = pmax. At
p = pmax, ΠU = 0 and

∑2
j=1 ΠSj

= 0, as q = 0 and
xj

i = 0, i, j = 1, 2, whereas
∑2

i=1 ΠNi = 2pmax ≤ 2/β.
In other words, when p = pmax, there is no user demand
for services. The network providers only profit from network
access charges paid by the users. This scenario obviously only
makes sense if there is intrinsic value in the network besides
the services offered by the service providers. Otherwise, users
would have no incentive to use the network and pay a network
access charge; the network provider would then lose users
and thus receive zero profit in the end. On the other hand,
when p = 0, the market demand X̃(p) given in eq.(13)
is maximized, and therefore the consumer surplus is also
maximized. Further, both the profits of the service providers
and the network providers are non-zero. It can be shown
that when βγ = β(

∑2
j=1

∑2
i=1 γj

i ) is sufficiently large, then
p = 0 maximizes the total social welfare ΠSW (instead of p =
pmax). This result can be explained as follows: from eq. (13),
−dX/dp = 3

40βγ; hence when βγ is large, a slight drop in p
induces a significant increase in user demands. The resulting
increase in user demand would then generate enough profit
for the network providers (through transporting more services
between the service providers and users) to compensate for the
slight decrease in network access charge. The overall profit of
the network providers would, therefore, increase. Likewise, the
large increase in user demand would also generate a net profit
for the service providers (as −dq/dp > −dr/dp). Hence the
overall social welfare increases. In such a scenario, the market
regulator (or policy maker) would therefore reduce network
access charges as much as possible to spur user demand.

IV. INCENTIVES FOR INNOVATIONS

In this section we consider the following questions: i) under
what conditions would either a service provider or network
provider have incentives for service innovation or network
upgrade; and ii) how does the interaction and competition
among them affect such incentives? For clarity of exposition,
we refer to innovation by a service provider as service innova-
tion, while that by a network provider as network upgrade, so
as to separate the effects of innovation by service and network
providers.

We define service innovation as an investment by a service
provider which will result in an increase in the quality of the
supply or a decrease in the market (service) price, thereby
expanding its share of the overall user demand for services.
Likewise, we define network upgrade as an investment by a
network provider which will result in an increase in the quality
and/or capability of the network infrastructure or a decrease
in the market (transport) price, thereby expanding its share of
the market demand for service/traffic transport. In both cases,
any innovation or upgrade will increase the overall market
demand.

A. Incentives for Service Innovation

Instead of directly considering the investment made by a
service provider for service innovation, we indirectly model
it by accounting for the effect of such service innovation
in our model. Consider service provider Sj . Innovation by
Sj would lead to an increase in the overall market demand
for services, and therefore result in a decrease in the ser-
vice price q. From the inverse demand function of eq. (1),
∂xj

i/(−∂q) = γj
i . Recall that Xj = xj

1 + xj
2 is the to-

tal service offering (supply) by service provider Sj . Hence
∂Xj/(−∂q) = ∂xj

1/(−∂q) + ∂xj
2/(−∂q) = γj

1 + γj
2 = γj .

Namely, before service innovation by Sj , a ∂q drop in q would
cause a γj proportional increase in the supply by service
provider Sj . We assume that innovation by Sj would increase
its competitiveness, and thus its corresponding “market share”
of the overall user demand. Hence we model the effect of
innovation by Sj by a positive increase in γj , and assume
that service innovation by Sj has the same effect on its service
offerings in both network providers. Namely, after the service
innovation by Sj , we have for some ηj > 0 γj

i := γj
i + ηj ,

i = 1, 2, and γj := γj + 2ηj .
On the other hand, service innovation by Sj may also

affect its marginal cost sj , namely from sj to sj + σj . The
effect of service innovation on the marginal cost can be either
positive (i.e., σj > 0), or negative (i.e., σj ≤ 0), or neutral.
In other words, investing in service innovation can increase
marginal costs when supplying one unit of service, or the
accompanying increase in the market demand can in itself
result in a decrease in marginal costs, for instance, due to
economies of scale. Alternatively, it could also have no effect
on marginal costs. All three options are accounted for in the
model, which captures the effect of service innovation by Sj

using two parameters (ηj , σj), where ηj > 0.
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Let Πj,before denote the overall profit of service provider Sj

before service innovation, and Πj,after its profit after service
innovation. In order for Sj to have an incentive to innovate,
its profit after service innovation should be larger than before
service innovation. In other words, we must have

Ij(ηj , σj) := Πj,after −Πj,before > 0. (17)

Plugging γj := γj + ηj and sj := sj + σj into the model
of Section III-A, we can compute Πj,after and express the
incentive function Ij (of Sj) in terms of (ηj , σj). Unfortu-
nately, the resulting formula for I(ηj , σj) is complex; hence
we do not include it here. Instead we make the following
general observations. First, we note from eqs. (1) and (13)
that for a given network access charge, 1− βp can be viewed
as an “intrinsic” factor that determines the potential market
demand for services independently of the parameters γi

j’s and
the marginal costs sj’s and ni’s of service/network providers.
Provided that s1 + s2 +n1 +n2 << 1−βp, it can be shown5

that I(ηj , σj) is an increasing function in ηj and a decreasing
function in σj . Hence if σj < 0, i.e., service innovation by Sj

decreases its marginal cost, then for any ηj > 0, I(ηj , σj) > 0.
Therefore when service innovation leads to a decrease in its
marginal cost, it always pays for Sj to innovate. On the other
hand, when σj > 0, service innovation by Sj would lead to
an increase in its marginal cost. In this case, we can show
that provided that s1 + s2 + n1 + n2 << 1− βp, there exists
a constant cj > 0 such that if σj < cj ηj

γj+ηj (1 − βp), then
I(ηj , σj) > 0. Hence in this case, it is only when the increase
in its marginal cost is upper bounded by an appropriate gain
in its market share that service innovation by Sj would then
pay off. Otherwise, there is no incentive for Sj to innovate.

B. Incentives for Network Upgrade

As in the case of innovation by service providers, we model
the effect of network upgrade by network provider Ni using
two parameters, (ηi, µi), where ηi > 0 reflects an increase in
Ni’s market share as a result of its upgrade, i.e, γ1

i := γ1
i +ηi,

γ2
i := γ2

i + ηi and thus γi := γi + 2ηi; whereas µi reflects
the resulting change in its marginal cost, ni := ni +µi, which
can again be either positive, negative or neutral. The incentive
function Ii for Ni is therefore given by

Ii(ηi, µi) := Πi,after −Πi,before, (18)

where Πi,before and Πi,after denote the profit of Ni before and
after network upgrade, respectively. Hence Ni has incentive
to upgrade its network if and only if Ii(ηi, µi) > 0. Again
provided that s1 + s2 +n1 +n2 << 1−βp, we can show that
Ii(ηi, µi) is an increasing function in ηi and a decreasing func-
tion in µi. Hence when network upgrade leads to a decrease

5This can be informally argued as follows: through algebraic manipulations,
we can derive ∂ΠSj

i /∂γj
i ≈ [C1(1 − βp) − C2(s1 + s2) − C3(n1 +

n2)](1 − βp) + o(γ1
1 , γ1

2 , γ2
1 , γ2

2 , s1, s2, n1, n2), where C1 > 0, C2 > 0,
C2 > 0. Hence when s1 + s2 + n1 + n2 << 1 − βp, ∂ΠSj

i /∂γj
i > 0.

Similarly, ∂ΠSj

i /∂sj ≈ −C′1(1 − βp) − C′2(s1 + s2) − C′3(n1 + n2) +
o(γ1

1 , γ1
2 , γ2

1 , γ2
2 , s1, s2, n1, n2), where C′1 > 0, C′2 and C′3 > 0. Hence

∂ΠSj

i /∂sj < 0.

in its marginal cost, namely, µi < 0, it always pays for Ni to
upgrade its network. On the other hand, when µi > 0, we can
show that provided that s1 + s2 + n1 + n2 << 1− βp, there
exists a constant ci > 0 such that if µi < ci

ηi

γi+ηi
(1 − βp),

then I(ηi, µi) > 0. Hence in the case of µi > 0, it is only
when the increase in its marginal cost is upper bounded by an
appropriate gain in its market share that network upgrade by
Ni would pay off. Otherwise, as with service providers, there
is no incentive for Ni to upgrade.

V. NUMERICAL ANALYSIS

In this section, we provide numerical examples to illustrate
the insight obtained from the model’s solution. In particular,
we examine the effect of the model parameters γj

i ’s (“market
shares”), sj’s and ni’s (marginal costs), and p (user network
access charge) on x̃j

i ’s (the equilibrium quantities or amounts
of services produced), profits of service/network providers,
user surplus and social welfare. We also illustrate how in-
creases in γj

i ’s and the accompanying change in the marginal
costs sj’s and ni’s affect the incentives for service innovation
and network upgrade. Throughout the section, unless other-
wise stated, default values for the parameters are γj

i = 25,
i, j = 1, 2, sj = 1/100, j = 1, 2 ni = 1/50, i = 1, 2 and
p = 1

2 . When varying one or more of these parameters, all
others are set to these default values.
Effect of γj

i ’s on Service Production and Profits. We use
service provider S1 as an example to examine the effect of γj

i ’s
on the equilibrium values of individual service productions
x̃j

i ’s, and overall service production X̃ . We set γ1
1 = γ1

2 = 1
2γ1

and vary γ1 from 25 to 30. Fig. 3(a) shows X̃1(= x̃1
1 + x̃1

2)
of S1 vs. X̃2 of S2 as well as X̃ = X̃1 + X̃2, as γ1 varies.
Fig. 3(b) shows the resulting profits of service providers S1

and S2. We see that as γ1 increases from 25 to 30, both the
service production X1 of service provider S1 and the overall
service production X̃ increase (linearly) with γ1. In contrast,
γ1 has no visible effect on the service production of S2. Hence
γj indeed determines a service provider’s proportional share
of the overall service production, and reflects its ability to
capture “market share” at equilibrium.

In economic terms, increasing γi
j’s corresponds to a demand

curve shift (cf. eq. (1)), and therefore increasing user demands
leads to an increased service supply in market equilibrium.
Increasing γ1 (thus γ1

1 and γ1
2 ) while keeping γ2 the same

reflects the ability of S1 to expand its service production
to meet the increased demand. This expansion of service
production by S1 does not affect that of S2, while increasing
the overall service production in the market. Consequently, the
profit of S1 increases while the profit of S2 stays the same, as
shown in 3(b). Similar results are obtained when we vary γ1

of network provider N1. Due to space limitation, we do not
present them here.
Effect of sj’s on Service Production and Profits. We again
use service provider S1 as an example, and examine the effect
of its marginal cost s1 on the equilibrium service production
X̃j’s of both service providers and the overall equilibrium
total service production X̃ , as well as their respective profit.
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Fig. 3. Effects of γ1 and s1 respectively on service production and profits of service providers.

We vary s1 from 0 to 0.02, while setting all other parameters
to the default values. Fig. 3(c) shows X̃1, of S1, X̃2 of S2,
and X̃ = X̃1 +X̃2, as γ1 varies. Fig. 3(d) shows the resulting
profits of service providers S1 and S2. We see that as s1

is increased from 0 to 0.02, the service production X1 of
service provider S1 decreases, while the service production
(X2) of S2 is largely unaffected. The resulting overall service
production in the market also decreases. On the other hand,
while the profit of S1 decreases due to its increased marginal
cost (which is expected), the profit of S2 in fact increases
as the result of increased marginal cost of its competitor S1.
In economics, this phenomenon is in fact not surprising: in
a competitive market (e.g., a Cournot or Bertrand game),
when all other factors (especially γ1 = γ2) are the same,
the marginal cost is what determines the competitiveness of
each firm, affecting both its service production and profit.
Effect of User Network Access Charge p. As seen from
eq. (1), the user network access charge p affects the overall
user demand for services, and consequently service produc-
tion. The effect of varying p on service production is shown
in Fig. 4(a), where all other parameters are set to the default
values, and p varies from 0 to pmax (as determined by the
other parameters). As X1 = X2 = Y1 = Y2, only the
curves for X1 and Y1 are plotted, and both curvese coincide.
As expected, increasing p suppresses service production by
service providers, and thus the volume of services transported
by network providers. As p varies, the corresponding profits
for service and network providers are shown in Fig. 4(b). The
profit of service providers obviously decreases with p. On
the other hand, while increasing p reduces the revenue that
network providers obtain from service providers this loss in
revenue is offset by the increased revenue extracted from users.
Hence, the overall profit of network providers increases6. Not
surprisingly, increasing p also reduces consumer surplus, as
shown in Fig. 4(c). In the same figure, we also plot the overall
social welfare function, ΠSW . As argued in Section III-B,
ΠSW , is a convex function of p. With the parameter setting
of this example, its maximum is achieved when p = 0, which

6As an aside, we remark that this result reflects the reality of today’s ISP
market, where on a per-byte basis, users of an ISP pay a significantly higher
fee than a service/content provider pays the ISP for transporting traffic. The
same also applies to wireless cellular service providers.

leads to the maximum market demand for services. But with
p = 0, the profit of network providers is at its minimum.
Incentives for Service Innovation and Network Upgrade.
Lastly, we investigate the incentives for service innovation
and network upgrade. We use the default parameter values
to compute the profits of service/network providers before
service innovation/network upgrade. We consider the incentive
for service innovation by service provider S. After service
innovation, the market share of S1 is increased to γ1 :=
γ1 + 2η1 (and γ1

i = γ1
i + η1, i = 1, 2), where η1 > 0,

and its marginal cost becomes s1 := s1 + σ1. We compute
the incentive function I(η1, σ1) as we simultaneously vary
η1 in the range [0,5] and σ1 in the range[-0.01,0.01]. The
resulting incentive function I(η1, σ1) is shown as a surface
plot in Fig. 5. As argued in Section IV, we see that I(η1, σ1) is
indeed an increasing function in η1, and a decreasing function
in σ. In particular, when γ1 > 0 and σ1 < 0 (namely, as
a result of service innovation, not only S1’s market share
expands, but its marginal cost decreases), then I(η1, σ1 > 0.
Hence, in such cases there are always incentives for a service
provider to innovate. On the other hand, when σ1 > 0 (i.e.,
S1’s marginal cost increases as a result of innovation), we find
that I(η1, σ1) > 0 only when η1 is sufficiently large. In other
words, only when the increased revenue due to its expanded
market share offsets the increased marginal cost is there an
incentive for a service provider to innovate. Similar results
are obtained for network upgrade, as shown in Fig. 6, and the
same conclusion applies to network upgrade.

VI. CONCLUSIONS

In this paper we have developed a simple economic model to
study the interaction and competition among service providers,
network providers and users. The novelty of the model lies
in combining Cournot and Bertrand competition to capture
the co-dependent, interacting and competitive relationships
among service providers and network providers. Using this
model, we explored how these relationships can affect in-
centives for innovation on the part of network providers and
service providers. Our work represents a modest first attempt
in characterizing and modeling the intricate and complex
interactions that exist between various actors in a “service-
oriented” Internet. We plan to further expand this model
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to include more realistic inter-connection structures among
network providers and service providers, and thereby more
faithfully capture the complex interactive and competitive
relationships among them. We would also like to incorporate
competition among network providers for users, and study
the dynamics of evolving relationships among these actors.
Conducting empirical studies of these relations based on real
data is also a research area of great interest to us.
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