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Abstract

The current push for bandwidth caps, tiered usage pricing, and other measures in both wireless and wireline
communications is usually justified by invoking the specter of “bandwidth hogs” consuming an unfair share of the
transmission capacity and being subsidized by the bulk of the users. This paper presents a conventional economic
model of flat rates as a form of bundling, in which consumption can be extremely unequal, and can follow the
ubiquitous Pareto distribution. For a monopoly service provider with negligible marginal costs, flat rates turn out to
maximize profits in most cases. The advantage of evening out the varying preferences for different services among
users overcomes the disadvantage of the heaviest users consuming more than the average users. The model is tractable
enough that it allows for exploration of the effects of non-zero marginal costs (which in general strengthen the case
for metered pricing), and of welfare effects.

1. INTRODUCTION

The telecommunications industry has often been the
scene of pricing controversies, starting with regular
postal services [7]. The general pattern has not changed
much over the centuries. Usually, industry leaders, in
modern times supported by economists, argue for fine-
scale metering, while consumers fight for simplicity.
The confusing scene in pricing of telecommunication
services as well as many types of information goods
results from a variety of conflicting factors. It is likely
that in the future, just as in the past, there will be a mix of
pricing models that varies depending on technologies and
local conditions. Many of the factors affecting pricing
were observed centuries ago, and now they are being
investigated more intensively. Some references are [1],
[4], [6], [7], [8], and [11], as well as the papers listed
there.

This paper does not consider the various behavioral
economics aspects of pricing, such as consumer willing-
ness to pay more for flat rates. We take just the con-
ventional economic point of view, in which consumers
and producers have value functions that are well-defined
and known precisely only to themselves, which they try
to maximize. Even in this setting, flat rates can often be
shown to be advantageous to sellers (and often to buyers
as well), as they are a form of bundling, selling several
goods or services in a single package. Bundling has
been a standard business practice for thousands of years.
The justification for it in the standard economic model,
as a way to take advantage of uneven valuations for
different goods among consumers, has been developed
over the last half of century, starting with the work of
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Stigler in 1963 [10]. The literature on bundling is vast,
and we mention just a few of the seminal works, as
well as some of the most recent publications, e.g. [3],
[9], and [12]. Most of this literature is concerned with
just a small number of goods (often with a particular
good bought in varying quantities), and aims to explicate
the degree to which non-zero marginal costs as well as
complementarity or substitutability of the goods affect
the gains to be obtained from bundling.

In telecommunications, flat rates can be viewed as a
form of bundling a very large number of goods, such
as access to hundreds of millions of websites or phone
calls to potentially billions of people. Such settings
were considered in [2], [4], and [5]. This paper can be
considered an extension of those works. The papers of
Bakos and Brynjolfsson [2] and of Geng, Stinchcombe,
and Whinston [5] demonstrate that for wide classes of
valuations on information goods (i.e., goods with zero
marginal cost), bundling is more profitable than separate
sales for a monopoly seller when there are many goods.
(Their results are outlined in Section 2.)

There is a limitation to the models of [2] and [5]. In
these models, when bundling is shown to be optimal,
the seller extracts essentially the full amount that buyers
are willing to pay, and almost all buyers have roughly
the same budgets. Thus there is no room for “bandwidth
hogs,” and bundling is optimal not just for the seller,
but for almost all buyers. Further, those buyers spend
almost all they are able to do, so there is practically no
“consumer surplus.” Thus this is a rare situation where
(almost) everybody wins.

This paper proposes a model that avoids the above
limitation. It is similar in principle to those of [2] and [5],
but allows for more elaborate forms for the valuations
of goods by consumers. We consider J buyers, and I



goods, such as songs to download, web sites to view, or
phone calls to make. J can be small or large, while I
is best thought of as very large, and many results will
hold only for large I . We assume that buyer j values
good i, at U j(xi) = ωj × νji , 1 ≤ i ≤ I , 1 ≤ j ≤ J ,
where ωj and νji are independent random variables, with
different distributions for ω and ν. (See Section 3 for
restrictions on the distributions.) We assume that buyers
have unit demands, so purchase either one or no units of
a particular good. The parameters νji (and thus U j(xi))
can be zero most of the time, corresponding to most
goods on offer being of no interest to any single user.
We also assume the value of a collection of goods to a
consumer is the sum of the values of individual goods.

The parameters ωj’s are an indirect way to introduce
a budget constraint on consumers. For large I , buyer j
will usually have willingness to pay for all the goods on
offer close to ωjIE[ν]. Hence if the distribution of ωj is,
say, the common Pareto one that is frequently observed
in practice, we have a very unbalanced willingness to
spend among buyers, with rules like the frequent “top
10% of users account for 90% of consumption.”

The main results of this paper show that for zero
marginal costs in the model sketched above, bundling
is, for large number of goods I , almost always more
profitable for the seller than separate sales. (There are
some rare technical conditions, described in Section 4,
under which separate sales can produce larger profits,
but that happens seldom and the gain is marginal and
declines with growing I .) However, willingness to spend
by consumers varies widely, and so transactions often
leave substantial consumer surplus. On the other hand,
bundling, while it maximizes seller profit, often results
in prices for the bundle that are not affordable for a
substantial fraction of users (“digital exclusion”). Thus
the model allows for explorations of more interesting
phenomena than previous ones, in particular of welfare
effects.

Our model does allow for non-zero marginal costs, and
some examples are presented. When those costs are high
enough, separate sales lead to maximal profits, consistent
with general observationsin the literature.

For the sake of simplicity, we assume in the cur-
rent draft that valuations of goods are uncorrelated.
Extensions of our methods to cases where there are
dependencies, along the lines of [2] and [5], will require
further work.

The “bandwidth hogs” that are being stigmatized by
the telecom industry can be modeled in our setting by
a combination of a substantial probability that ω is very
small but non-zero and that ν is very small but non-zero.
Bundling would then lead to high usage that would be
suppressed by even a low price per good under separate
sales. Our result that profits are maximized through

bundling applies to such cases, but in full generality
only for zero marginal costs. When those costs are non-
zero, it is necessary to work with particular distributions
of ω and ν to find out the threshold on marginal costs
beyond which separate sales are more profitable. In such
situations it is also possible to explore the effects of
imposing usage caps.

In a model such as ours, with a heterogenous dis-
tribution of budgets, there are several factors that op-
erate. Bundling smooths out distribution of valuations
of goods. On the other hand, it allows some to obtain
collections of goods for far less than their willingness
to spend, while preventing others, with low budgets,
from purchasing anything. The main contribution of the
paper is to show in a precise quantitative way that
the advantages of bundling for the seller overcome the
disadvantages.

This paper is organised as follows: In Section 2, we
review the models proposed by Bakos and Brynjolfson
[2] and Geng at al. [5]. In Section 3, we describe
our model. In Section 4, we prove that in this model,
bundling is the optimum strategy, or close to it, for the
seller. In Section 5, we consider our model for several
specific types of distributions of willingness to pay, and
consider the effects of non-zero marginal costs, ”digital
exclusion,” and social welfare. Finally, in Section 6, we
present the conclusions and outline potential extensions
of our model. The Appendix presents some details of the
examples discussed in Section 5.

2. RELATED WORKS

Our model is closest to that of Bakos and Brynjolfson
[2] and Geng at al. [5]. Since there are some technical
problems with the proofs in [2], as was pointed out
in [5], which has corrected statements and proofs, we
concentrate on the latter paper. Simplifying somewhat,
[5] considers value functions of the form U j(xi) = νji
(i.e., with ω identically 1), where νji ’s are independent,
and have the same distributions for each j, but those
distributions may depend on i.

Geng at al. [5] show that when the expected value of
U j(x1) +U j(x2) + ...+U j(xI) is large compared to its
variance, bundling is close to optimal (in that it extracts
revenues close to the maximal willingness to pay). That
paper also obtains conditions for this mean to be large
compared to the variance, basically requiring that the
mean value of νji as a function of i vary smoothly. The
required relation between mean and variance in [5] is
very similar to ours, the result of both papers relying on
the Chebyshev inequality.

For our proofs to be valid, we require the distributions
of all νji ’s to be identical. We also require, at least in
the present version, that νji ’s be independent. Both Bakos
and Brynjolfson [2] and Geng at al. [5] do consider some
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dependencies among the information goods. Some of the
dependencies assumed there can be accommodated in
our model without any additional technical work, since
we can vary the distributions of νji as we let I → ∞,
say.

Geng at al. [5] produce a counterexample to some
of the claims in [2]. Their construction involves ex-
pected values of νji declining rapidly as i → ∞. In
that particular counterexample, separate sales can be
about twice as profitable as bundling. However, there is
considerable variation in both total budgets of individual
buyers, and in valuations of individual goods. In our
model, bundling is optimal even when individual budgets
vary dramatically. Hence, combined with the results of
[5], we are led to the suggestion that optimality of
bundling depends far more on similarity in distribution
of valuations of goods than in the budgets of individuals.

It is well known that mixed bundling (selling both
bundles and separate goods at the same time, but with
prices higher than they would be for either pure bundling
or pure separate sales) is generally more profitable than
either extreme strategy. We show an example of this
effect, but we concentrate on comparing the extreme
cases of either pure bundling or pure separate sales.

3. MODEL DESCRIPTION

In this paper, we assume that there is a single seller
producing I information goods for a population of J
buyers with unit demand (i.e., each buyer purchases one
or zero units of each good). We denote the collection of
all I goods by X .

We assume that there exist a real-valued, non-negative
function that represents each buyer’s willingness to pay
(w.t.p.) for a single product, with the w.t.p. function of
buyer j for product i given by

U j(xi) = ωj × νji , 1 ≤ i ≤ I, 1 ≤ j ≤ J. (1)

We further assume these funcitons are additive, so that

U j(X ) =

I∑
i=1

U j(xi) = ωj× (νj1 + ...+νjI ), 1 ≤ j ≤ J

(2)
represents the w.t.p. function for the bundle of all I goods
of buyer j.

We assume the ωj , 1 ≤ j ≤ J , are non-negative i.i.d.
random variables with finite mean E[ω]. The νji , 1 ≤ i ≤
I, 1 ≤ j ≤ J, are non-negative i.i.d. random variables
with finite mean E[ν] and finite variance σ2.

We assume ωj’s are also independent of νji ’s, so that
the U j(xi), 1 ≤ i ≤ I, 1 ≤ j ≤ J are non-negative i.i.d.
random variables with finite mean. Note that we allow ω
to have infinite variance, and so U j(xi) can have infinite
variance.

We denote the C.D.F. of ω by Fω(x) = Prob{ω ≤
x},∀x ∈ R, and similarly for Fν(x) and Fων(x).

An important observation is that the distribution of
U j(xi) is the same for every i. Thus the goods in our
model are homogenous in this sense, although their valu-
ations do vary widely (with potentially infinite variance).

While many of our results hold only for large numbers
I of goods, generally the number J of buyers can be
arbitrary, even 1 or 2. The ωj can even be completely
deterministic (with the restriction that the seller might
know the exact distribution of the actual ωj , but would
not know individual values of ωj). However, for simplic-
ity we will assume ωj’s are random variables. Our results
are valid for finite values of I , not just asymptotically,
and the distributions of ω and ν can vary, and do not have
to be held fixed as we increase I , say. For the validity of
our main results on optimality of bundling we basically
need only that σ2 be very small compared to IE[ν]2.

A. Seller’s maximization problem

In our basic setting we assume zero marginal cost
for the seller, so that the revenue is the profit, and
we compare only the two extreme alternatives of either
selling all goods as a bundle, or selling each separately.

1) Separate sales: When selling each good separately,
symmetry of the distributions implies that the profit-
maximizing strategy is to sell all goods at the same price.

Let p be the common price for each good. Then

DS(p) = J ×
(
1− Fων(p)

)
(3)

is the expected number of buyers who are willing to
purchase any particular item at price p, and the expected
revenue (and thus profit) of the seller is given by

πS(p) = pI DS(p). (4)

We use p∗ to denote a price (possibly more than one)
which maximizes πS(p).

The maximum possible profit for the seller (with
separate sales) is equal to the sum of the average of
each user’s w.t.p. for each good. To measure how close
the seller’s profit is to the optimum profit we define

ρS =
πS(p∗)

IJE[U(x)]
=

πS(p∗)

IJE[ω]E[ν]
, (5)

which has the property that 0 ≤ ρS ≤ 1.
2) Bundling: In this paper, we mainly consider the

case of pure bundling, so that each buyer either purchases
all goods for the single price or buys nothing. By our
assumptions, the expected number of buyers who are

If the seller has complete information about each buyer’s valuation,
is not facing legal restraints, and can prevent resale, she can practice
first degree price discrimination and capture the entire consumer
surplus. We exclude such practices in our model.
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willing to buy the entire bundle is given by

DB(q) = J ×
(
1− FU(X )(q)

)
, (6)

where

FU(X )(q) = Prob{ω · (
I∑
i=1

νi) ≤ q}.

Let q be the price of the bundle. Then the expected
profit from bundling is

πB(q) = q · DB(q). (7)

We let q∗ denote a price q that maximizes πB(q).
To measure how close the seller’s profit with bundling

comes to the optimum profit we use

ρB =
πB(q∗)

JE(U [X ])
=

πB(q∗)

IJE[ω]E[ν]
, (8)

which again has the property that 0 ≤ ρB ≤ 1.

B. Buyers’ surplus and market exclusion

We consider two standard measures to determine
social welfare, market exclusion and buyers’ surplus.
Market exclusion measures how many people are not
able to purchase anything at the (profit-maximizing)
price offered by the seller. Buyers’ surplus measures
the difference of average willingness to pay from the
price offered by the seller for the items that are actually
purchased.

With bundling, market exclusion occurs when there
is a j with U j(X ) < q∗. With separate sales, market
exclusion occurs when there exists at least one buyer, j,
with the property that U j(xi) < p∗, 1 ≤ i ≤ I.

The expected consumer surplus for each buyer, aver-
aged over each good, when the bundle price is set by
seller at q∗, is

ςB = E[
(
ω(

I∑
i=1

νi)− q∗
)+

]/I. (9)

With separate sales, each buyer’s expected surplus
from purchasing any single good is

ςS = E[
(
U(x)− p∗

)+
] = E[

(
ων)− p∗

)+
]. (10)

4. OPTIMALITY OF BUNDLING

Define

Ψ = max
p>0

p

∫ ∞
0

(
1− Fω(

p

x
)
)
dFν(x). (11)

Then by Eq. (4), the maximum expected profit from
selling separately is equal to

πS(p∗) = IJΨ. (12)

Recall that σ is the standard deviation of ν, and define

Φ = max
t>0

t
(
1− Fω(t)

)
. (13)

Theorem 1: For any α > 0, the maximum expected
profit from bundling satisfies

πB(q∗) ≥ IJΦE[ν]
(
1− α

IE[ν]

)(
1− Iσ2

α2

)
.

Proof: The intuition behind the proof is that buyer j
will usually value the bundle close to ωj · IE[ν]. Using
the assumption that ν has finite second moment, we find
from the Chebyshev inequality that for any α > 0,

Prob{|
I∑
i=1

νji − IE[ν]| ≥ α} ≤ Iσ2
ν

α2
. (14)

We consider only those buyers j who have
I∑
i=1

νji ≥ IE[ν]− α.

The expected number of them is, by the Chebyshev
inequality, at least

J · (1− Iσ2
ν

α2
).

Buyer j in this category will certainly purchase the
bundle at price q if

ωj ×
(
IE[ν]− α

)
≥ q,

and so for any q ≥ 0,

πB(q) ≥ qJProb{ω
(
IE[ν]− α

)
≥ q} ·

(
1− Iσ2

ν

α2

)
.

Suppose the maximum that defines Φ is attained at t =
t∗. Then we set the bundle price

q′ = t∗ ·
(
IE[ν]− α

)
,

and obtain the lower bound of the theorem.
Theorem 2: For random variables ω and ν that are

independent and non-negative, with ν having finite mean,

Ψ ≤ ΦE[ν]. (15)

Proof: By definition of Eq. (11),

Ψ = max
p>0

∫ ∞
0

p

x
·
(
1− Fω(

p

x
)
)
xdFν(x) ≤

Φ

∫ ∞
0

x · dF (x) = ΦE[ν].

Theorem 3: If Ψ < ΦE[ν], then for a sufficiently
large number of goods, the expected revenue from
bundling will be strictly larger than the expected revenue
from separate sales. If Ψ = ΦE[ν], the ratio of expected
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revenue from bundling to the expected revenue from
separate sales will be ≥ 1 − δ where δ → 0 as the
number of goods grows (i.e., I →∞).

Proof: We choose an approximately optimal α as

α = I2/3E[ν]1/3σ2/3
ν .

Then(
1− α

IE[ν]

)(
1− Iσ2

ν

α2
) =

(
1− σ2/3

I1/3E[ν]2/3
)2
.

As I → ∞, this goes to 1 at the rate of I−1/3, and
the theorem follows.

Note that the proof actually gives us precise estimates
for how large I has to be for bundling to be strictly more
profitable than separate sales when Theorem 2 holds
with strict inequality, and for it to be within some fixed
fraction, say 1%, of the profit of separate sales when
equality holds in that result.

For most distributions of ω and ν strict inequality
holds in Theorem 2.

5. EXAMPLES OF SPECIFIC W.T.P.
FUNCTIONS

This section applies the basic model for some special
distributions of ω and ν. Greater specificity enables us
to present results that are easier to understand, and also
to explore effects of non-zero marginal costs, digital
exclusion, and consumer surplus. Details on the exact
computations and some additional graphs are presented
in the Appendix.

For simplicity, from now on we will assume that I ,
the number of information goods, is very large, so that
for most buyers j,

I∑
i=1

νji ≈ IEν.

In this asymptotic limit of I → ∞, we can then
approximate πB(q∗) by IJΦE[ν] (for marginal costs
zero), and of course we still have the exact relation
πS(p∗) = IJΨ. We can rewrite the demand for bundles
as

DB(q) = J ×
(
1− Fω(

q

IE[ν]
)
)
.

The equations and choices of parameters we write down
are just the leading term in the asymptotic expansion,
and to obtain fully rigorous results we would need to
toss in factors that behave like I−1/3 as I →∞.

A. Constant ω
Example 5.1: We assume that ωj = 1 for all j. This

reduces to the problem studied by Bakos and Brynjolfson

[2], and so we are basically rederiving their results. For
simplicity, let us further specify that ν ∼ U(0, 1) where
U(0, 1) is the continuous uniform distribution on the
interval from 0 to 1, so that E[ν] = 1/2. Then the w.t.p.
function for a bundle of all goods will be equal to

U j(X ) =

I∑
i=1

νji ≈ IE[ν] = I/2, 1 ≤ j ≤ J. (16)

Hence bundling will produce revenues of about IJ/2,
whereas (see the Appendix, in particular Fig. 3) sepa-
rate sales produce only half as much, IJ/4. Bundling
captures the maximum possible profit, and leaves no
consumer surplus. Separate sales do have consumer
surplus of about one half of the revenues in that case.
There is practically no “digital exclusion,” as almost all
buyers do purchase something, but consumption is larger
under bundling.

Example 5.2: Let’s assume in Example (5.1) that it
costs ci = c > 0, 1 ≤ i ≤ I to produce or distribute each
good. This implies that it costs

∑I
i=1 c = Ic to produce

a bundle of I goods.
Bundling continues to yield a greater profit as long as

c <
√

2−1, otherwise separate sales are more profitable.
As in the previous example (which has c = 0), almost
every one buys in either case.

Consumer surplus with bundling will remain zero
(ςB = 0). Under separate sales, consumer surplus will
be positive but will decline with cost, ςS = (1− c)2/8.

B. Product of Pareto and uniform distributions

Example 5.3: We now assume ω has a Pareto dis-
tribution with parameters τ > 0 and α > 1, so that
Fω(x) = (τ/x)α for x ≥ τ and E[ω] = ατ/(α − 1).
The assumption that α > 1 guarantees that E[ω] < +∞.
Larger values of α mean smaller fraction of buyers
with very high incomes, and for very large α we are
close to the first example of this section, in which ω
is constant. We also assume that, as in the previous
example, ν ∼ U [0, 1].

The direct computation (see the Appendix) shows, as
guaranteed by our theorems, that bundling maximizes
profits. Selling separately can capture no more than half
the maximal profit, and the half can be approached only
for large α. See Fig. 1.

There is no significant market exclusion in either
case. Buyers’ surplus depends on α and is sometimes
maximized with bundling and sometimes with separate
sales. The profit-maximizing bundle is less expensive
than buying them separately, Ip∗ > q∗.

Example 5.4: We next consider the effect of intro-
ducing non-zero marginal costs in the previous example.
When c, the cost of each good, is low enough, bundling
continues to be more profitable than separate sales, with
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Profit vs willingness to pay
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Fig. 1. Example (5.3): By selling bundles, the seller can come close
to capturing the maximal possible profit for large α, but separate sales
never capture more than half the maximal possible profit.

the cross-over depending on α and τ . See Fig. 6 in the
Appendix for an illustration.

C. Discrete distribution for ω
Example 5.5: In this example we assume that con-

sumers fall into two income classes, with those in one
class having about twice the income of the others, and
the relative populations of the two classes varying. More
precisely, take a > 0 and define

ω ∈ {a, 2a}, with Prob{ω = a} = x ∈ [0, 1].

As before, we assume ν ∼ U(0, 1). Results are illus-
trated in Fig. 2.

By Theorem 3 or direct computation, bundling yields
greater profit than separate sales. There will be no
significant market exclusion for x ≥ 1/2, but a positive
fraction of buyers will be excluded when x < 1/2. There
is no significant market exclusion with separate sales.

When x < 1/2 the price of the optimally-priced bun-
dle is higher than the cost of buying I goods separately
at the optimal price for separate sales, q∗ ≥ Ip∗. When
x ≥ 1/2, it costs less to buy the bundle.

With either separate sale or bundling, the seller can
capture the maximum possible profit only when there is
only one class of income, i.e., x = 0 or x = 1. Separate
sales can at most capture half of the possible maximum
profit, although they provide a greater surplus to buyers.

Example 5.6: The distributions of ω and ν are the
same as in Example 5.5. However, this time the seller
engages in mixed bundling, selling both a bundle and
separate goods. We assume each buyer with w.t.p. for the
bundle that exceeds the price of the bundle will purchase
it.

Profit vs willngness to pay

x = Prob(ω = a)

ρ

0 x = 0.5 1

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

ρB

ρS

Fig. 2. Example (5.5): The seller’s expected profit with bundling can
reach the maximal possible profit when either x = 0 or x = 1, but as
x ↑ 1/2, this declines, and at x = 1/2 only 2/3 of the maximal profit
can be attained. With separate sales, just as with bundling, the seller’s
profit is closest to optimum profit when either x = 0 or x = 1, but it
cannot exceed half of the optimum profit.

Mixed bundling in this example generates higher profit
than pure bundling when x < 2

3 . See the Appendix for
details.

6. CONCLUSIONS

This paper presents a new model of demand for
information goods. Unlike the most prominent models in
the literature, it allows for wide variation in consumers’
budgets. It is tractable enough to yield a general result
that with zero or very low marginal costs, bundling is
almost always more profitable to the monopoly seller
than separate sales, even when there are some buyers
with disproportionately large usage. On the other hand,
bundling often excludes a substantial fraction of potential
consumers from the market. Consumer surplus varies,
and sometimes is maximized with bundling, sometimes
with separate sales.

The model of this paper is flexible enough to allow
for non-zero marginal costs. It also offers possibility
of extension to goods that are partial complements or
substitutes for each other.
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APPENDIX

A. Example 5.1

With separate sales, the seller chooses p∗ = 1
2

and obtains the maximum expected revenue equal to
πS(p∗) = 1

4IJ .
When bundling, the seller chooses q∗ = IE[ν] = 1

2I
(more precisely, a price within I−1/3 of 1/2, something
that we will not mention from now on) and receives the
maximum expected revenue almost equal to πB(q∗) =
1
2IJ , which is twice the maximal profit realizable with
separate sales. Thus in the limit as I →∞,

ρB = 1 > ρS =
1

2
.

In this example, there is practically no market ex-
clusion with separate sales, since for large I , almost
every buyer will value some good at more than the price
p∗ = 1/2. Similarly, almost everybody buys the bundle.

Almost all buyers will have valuations for the ap-
proximately I/2 goods that they buy at the price of 1

2
uniformly distributed between 1

2 and 1, so the consumer
surplus per user and per good will be close to ςS = 1/8.
With bundling consumer surplus is essentially zero.

B. Example 5.2

If the cost is too high, c > 1/2, selling a bundle at a
profit would force the price to be higher than willingness
to pay of all but a negligible fraction of users. If c <
1/2, a seller engaging in bundling chooses q∗ = I/2 to
maximize

πB(q) = (q − Ic) · DB(q∗),

and obtains the maximum expected revenue equal to

πB(q∗) =

{
IJ( 1

2 − c), if c < 1
2

0, if c ≥ 1
2

With separate sales, as long as c < 1 the seller can
choose p > c and obtains expected profit equal to

πS(p) = IJ(p− c)(1− p),

which is maximized by choosing p∗ = (1 + c)/2, and
produces maximum expected profit equal to

πS(p∗) =

{
IJ(1− c)2/4, if c < 1

0, if c ≥ 1

Maximal profits

c (Cost)

π 
(P
ro
fit
)

c = 2 − 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

bundling
separate sales

Fig. 3. Example (5.2): Profit from bundling (πB/IJ) is higher than
profit from separate sales (πS/IJ) when marginal cost is low. The
cross-over happens at c =

√
2− 1.

C. Example 5.3

With separate sales, demand from each buyer is equal
to

DS(p)/J =


( τp )α 1

(α+1) , if p ≥ τ

1− p
τ ·

α
α+1 , if 0 ≤ p ≤ τ (17)
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The profit-maximizing price p∗ for the seller is

0 ≤ p∗ =
τ(α+ 1)

2α
≤ τ (18)

and yields the maximum expected profit

πS(p∗) = IJ
(α+ 1)τ

4α
. (19)

In this setting, selling separately can never capture
more than half of the optimum profit, as

ρS =
α2 − 1

2α2
<

1

2
, (20)

and it is only for large α that ρS can come close to that
1/2.

If there were any market exclusion with separate sales,
there would be a j such that

U j(xi) = ωj × νji < p∗ < τ, 1 ≤ i ≤ I. (21)

However, since νji ∼ U(0, 1), for large I the maximal
νji will be close to 1 for most values of j, and so most
buyers j will have U j(xi) > p∗ for at least one good i.
Hence there will be no significant market exclusion in
this example.

With bundling the probability that a buyer will pur-
chase at price q is (asymptotically as I → ∞) equal
to

DB/J =

( τI2q )α, if q ≥ τI/2

1, otherwise.
(22)

To maximize profits, the seller chooses

q∗ =
1

2
· τ · I (23)

and obtains the expected profit

πB(q∗) = IJτ/2. (24)

The expected profit from bundling, given in Eq. (24),
is always larger than the expected profit from separate
sales, given in Eq. (4).

By selling bundles, the seller can come close to
capturing the maximal possible profit only for large α,
as ρB = 1− 1/α.

At the asymptotic price q∗ = Iτ/2, almost everybody
buys the bundle and therefore, market exclusion is es-
sentially zero. With bundling, buyers will have a positive
surplus,

ςB =
τ

2(α− 1)
. (25)

Buyers’ surplus with separate sales is equal to

ςS =

∫ ∞
τ

ατα

xα+1

∫ 1

min{p∗/x,1}
(yx− p∗)dydx =

Expected profit per buyer per good

Price

0 1.25 τ 3

0

πS

I J
= 0.625

πB

I J
= 0.75

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

separate sales
bundling

Fig. 4. Example (5.3): Expected profit from bundling (πB(q∗)/IJ),
dominates the expected profit from separate sell (πS(p)/IJ). In this
graph we assume τ = α = 3/2.

τ(α2 + 3)

8α(α− 1)
. (26)

In spite of the complicated expressions, comparison
of buyers’ surplus with bundling and with separate sales
is simple, and which one is larger turns out to depend
only on α: ς

S < ςB α < 3
ςS = ςB α = 3
ςS > ςB α > 3

(27)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Buyers' surplus

α

ςB

ςS

Fig. 5. Example 5.3: Buyer’s surplus is greater with bundling (ςB)
when α < 3. This show that consumer surplus is not necessary greater
with bundle sale, although bundling yields greater profit.
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D. Example 5.4

The expected profit for the seller with separate sales
and bundling respectively are given by

πS(p) = I · (p− c) · DS(p)

and
πB(q) = (q − Ic) · DB(q)

It turns out that maximum profit from bundling is equal
to

πB(q∗)

IJ
=


1
2 (τ − 2c), c ≤ c1

1
2 ( τα )α(α−12c )α−1, c ≥ c1

(28)

where c1 = τ(α−1)
2α .

Maximum profit from separate sales is equal to

πS(p∗)

IJ
=


max

{
τ−c
α+1 ,

(τα+τ−αc)2
4ατ(α+1)

}
c ≤ 2c1

max
{
τ−c
α+1 ,

τα(α−1)α−1

(α+1)ααcα−1

}
, c ≥ 2c1

(29)

Profit from bundling is greater than from separate sales
as long as c is sufficiently small. The cross over happen
precisely when

c =
−ατ − α2τ +

√
2(α3τ2 + α4τ2)

α2

See the figure below.

Expected profit from bundling verus separate sale

c (cost)

π

0 0.25 0.5

0
π
=
0.
51
1

1

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c =
−α τ −α2 τ + 2 α3 τ2 +α4 τ2

α2

bundling
separate sales

Fig. 6. Example 5.4: If we choose α = τ = 3
2

, we can see that
bundling continues to be more profitable than separate sales when c <
0.23.

E. Example 5.5

With bundling the demand is equal to

DB(q) =


J q ≤ 1

2aI

J(1− x) 1
2aI < q ≤ aI

0 q > aI

(30)

There are two cases to consider, depending on which
class of buyers is more numerous.

Case 1: x < 1/2. The seller of a bundle in this
situation chooses q∗ = aI (or, more precisely, a price
within I2/3 of that, and receives the expected maximum
profit

πB(q∗;x < 1/2) = aIJ(1− x). (31)

Then buyers with ω = {a} will be excluded from the
market, so asymptotically

MB = x.

In this case (x < 1/2)

ρB =
2(1− x)

2− x
,

so for x = 0 bundling yields the maximal possible profit,
but as x ↑ 1/2, this declines, and at x = 1/2 only 2/3
of the maximal profit can be attained.

Case 2: x ≥ 1/2. Here the seller of a bundle chooses
q∗ = Ia/2. The expected profit is equal to

πB(q∗;x ≥ 1/2) =
a

2
IJ. (32)

Under these condition everybody buys and there is no
market exclusion, MB = 0. We also have in this case

ρB =
1

2− x
.

The seller’s expected profit with bundling can reach
the maximal possible profit (of bundling) when either
x = 0 or x = 1. With separate sales, demand is equal to

DS(p) =


J [1− p

2a (1 + x)], p < a

J [(1− p
2a )(1− x)], a ≤ p < 2a

0, p ≥ 2a

(33)

A short calculation shows the profit maximizing price
is p∗ = a/(1 + x), and yields profit

πS(p∗) =
IJa

2(1 + x)
. (34)

With separate sales, just as with bundling, the seller’s
profit is closest to optimum profit when either x = 0 or
x = 1, but it cannot exceed half of the optimum profit,
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as we have
ρS =

1

(1 + x)(2− x)

With separate sales there is practically no market
exclusion, since p∗ < a.

With bundling, for values of x < 1/2, there is
essentially no consumer surplus, as the seller extracts
the maximal willingness to pay from the buyers with
ω = {2a} and those with ω = {a} are excluded, so
ςB = 0.

For x ≥ 1/2, the optimum price of the bundle will
be q∗ = Ia/2, and buyers with ω = {2a} will be the
only ones with positive surplus. So the average surplus
per buyer per good will be

ςB = a(1− x)/2.

With separate sales, given p∗ = a/(1+x), buyers with
ω = {a} on average have surplus equal to

ax2

2(1 + x)2

and buyers with ω = {2a} on average have surplus equal
to

(a+ 4ax+ 4ax2)

4(1 + x)2
.

Therefore, the average surplus per buyer will be

ςS = a
1 + 3x− 2x3

4(1 + x)2
.

F. Example 5.6
In the previous example, if the seller of the bundle

chooses q ≤ 1
2Ia then almost everybody buys the bundle

so the entire revenue comes from the bundling. If q ≥ Ia
then nobody buys the bundle and the seller can only sell
separately. If the seller selects Ia

2 < q < Ia, revenue
from bundling will be q(1−x), but Jx buyers with ω =
{a} will be excluded from the market. Mixed bundling
allows the seller to offer individual goods at a price p.

Profit from mixed bundling is equal to

πm(p, q) = q
( ∑
1≤j≤J

Prob{ωjIE[ν] ≥ q}
)

+

Ip
( ∑
j:ωjIE[ν]<q

Prob{ωjν ≥ p}
)
. (35)

The seller chooses

(p∗, q∗) ∈ arg max πm(p, q)

to maximize his or her expected profit from mixed
bundling. In our case, it is easy to see that p∗ = a

2 and
q∗ = Ia and the maximum expected profit from mixed
bundling is equal to

πm(p∗, q∗) = IJa(1− 3

4
x). (36)
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