Compiler Optimizationsfor Parallelizing Gener al-Pur pose
Applicationsunder Thread-L evel Speculation

Antonia Zhai, Shengyue Wang, Pen-Chung Yew, and Guojin He
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455, USA

{zhai, shengyue, yew, guojinh@cs.umn.edu

Categories and Subject Descriptors C.1.2 PROCESSOR AR- do { do {
CHITECTURES$ Multiple Data Stream Architectures (Multipro- wait; :“;:m sloadAddri: o
cessors) - *LoadAddr; s;.gnaI;. (v_temp); © o
work(); ’
General Terms Languages, Performance sStoreMdr.t ... iy T hondhdds;
1 con
Keywords Thread-Level Speculation, Multicore systems, Com- v — *LoadAddr_1; e T
piler Optimizations, Parallelizing Compiler *StoreAddr — v; v « xLoadAddr.1;
As technology advances, microprocessors that integrate mu S . *StoreAddr — v;
tiple cores on a single chip are becoming increasingly com- } wnile (cond) ' *¥StoreAddr.2 — ...;
mon. However, extracting independent threads for parate- N _ } wbile (cond)
cution is an extremely challenging task. Thread-Level 8fzgion (@) Synchronizing an inter-thread) gcneqyling instructions.
(TLS) (4; 1; 2; 3; 5) provides hardware mechanisms necedsary ~ data dependence.
optimistically parallelizing potentially dependent tads. How- do {
ever, the ubiquitous existence of complex, input-dependentrol do 1 > el
if (count>500)
and data dependence patterns in general-purpose applisat- break; it érand(»o'g) {
quires a collection of compiler optimizations that targataaiety do { ° { .
of code patterns to generate efficient parallel thread$ispaper, count++; 1

. Lo hile(condl)
we propose, implement and evaluate three optimizatiomigaks) wi;{el(cin?f;

to improve TLS performance.
1. Compiler Optimizationsfor TLS

General-purpose applications often have complex behgvard
thus are unable to take full advantage of the TLS support.osecl
examination of the code sequence in Figure 1(a) reviewstlieat
loop can be parallelized by speculating on the dependertoebr In the above example, scheduling— #*LoadAddr_1 leads to
LoadAddr, LoadAddr and StoreAddrl, StoreAddr2, StoreAddr two intra-thread speculationsf _cond is always true, and the load
However, if the load througthoadAddroften depends the store instruction is independent &ftoreAddr_2. When these specula-
through StoreAddr speculation will often fail. In this case, it is tions fail, we can either squash the entire thread (6; 7) agelthe
desirable to synchronize these two memory accesses byrfibrwa compiler create a small piece of recovery codes, and onlgutge
ing the stored value between the two threads (with exdigihal the recovery codes. The later can be more cost effectivettien
andwait instructions. However, synchronization can create a crit- former. Thus, this paper makes:

ical forwarding path between these threads and serializadipa Contribution 2: Couple inter-thread and intra-thread dependence

} while (cond)

(c) Reduction-like variable. (d) Unbalanced workload.

Figurel. Potentially parallelizable loops under TLS.

execution. To overcome such serialization, the signattetions, speculation to exploit thread-level parallelism, and tgveecov-

as well as the instructions it depends en«{- *LoadAddr_1) can ery codes for handling intra-thread speculation failures.

be moved as early as possible within the thread, as showrgin Fi Traditional compilers have a very strict definition on whet r
ure 1(b). It is important to point out that, in TLS, since interead duction variables are. For the code sequence in FigurevH(gable
dependences of memory-resident values are verified by therun count is not a reduction variable, since the intermediate value of
lying TLS hardware at runtime, moving store instructionghwe- count is used to evaluate thef statement. Thus, traditional com-
spect to other store instructions can interfere the unohgrlyLS piler will not optimize this operation. Thus, this paper raak
mechanism and cause error. Thus, this paper makes: Contribution 3: Identify a set of common reduction-like variables,
Contribution 1: Propose hardware/software support necessary to where the intermediate values of these variables are utiest &
enable aggressive instruction scheduling involving stostruc- computer another value or to determine the outcome of a branc
tions. and propose code transformations for each usage pattern.

In general-purpose applications, consecutive threads dfffer
significantly in the number of dynamic instructions exedytiie to
complex control flow, inner loops, as well as proceduressc&ibr
the loop in Figure 1(d), when thef condition evaluates to true,
the iteration takes much longer to complete. Since the tiondis
based on a random value, itis impossible to predict whichtiens

Copyright is held by the author/owner(s). are long. In TLS, speculative threads must commit in sedgient
PPOPP'08, February 20-23, 2008, Salt Lake City, Utah, USA. order, thus short threads that are executed immediately afong
ACM 978-1-59593-960-9/08/0002. thread must stall upon completion and wait for the long ttirea

Normalized Execution Time
0
()

m overflow
| imbalance
- fail

O cache

S syn

m idle

= busy

i

mcf crafty twolf gzip

OMRI OMRI OMRI OMRIOOMRIOOMRI OMRI OMRI OVRI OMRI OMRI OVMRI OMRI OMRI OMRI OMVRI
bzip2 Vvpr_p vpr_r vortext parser

perl gap gcc ammp art equake mesa

Figure2. The performance impact of the proposed optimizations oallghregions

to complete. This behavior can serialize parallel exeocutod
degrade performance. Thus, this paper makes:

Contribution 4: Identify program execution patterns that leads
to unbalanced workload between speculative threads, apbge
code transformations to merge consecutive iterationsdaterbal-
ance threads.

2. PerformanceEvaluation

Our compiler infrastructure builds on Intel's Open Reseutmm-
piler(ORC), extended to perform trade-off analysis to deire
which loops to parallelize. In our study, a significant peteaf the
sequential execution can be parallelized: mcf (74%), ¢r@f1%),
twolf (60%), gzip (81%),bzip2 (65%), vpr-place (69%), vjoute
(55%), vortex (28%), parser (47%), perl (23%), gap (12%}) gc

(59%), ammp (97%), art (95%), equake (93%), mesa (65%). The

parallelized programs are evaluated on a CMP simulator fwith
single-issue in-order processors, each with a 1-cycle B32<kway
set-associative L1 cache. All processors share a 2MB, 4sg&y
associative L2 cache that has a 10 cycle access time.

Figure 2 shows the performance impact of the proposed opti-

mization on the parallelized loops. The bars show the paizdid
execution time with various levels of optimization of thergla
lelized loops normalized to that of sequential executiohe D
bars show the normalized execution time without the optmiz
tions proposed in this paper. Register-resident value ragiéntly
dependent memory-resident values are synchronizedMrbars
show the normalized execution time of the same loops, exoept
instructions are aggressively scheduled across intesthcontrol
and data dependences; and intra-thread data dependevleti®ns
are handled with a small piece of recovery code. Rhears inte-
grates reduction variable optimizations on top/bars. Thd bars
integrates iteration merging on top of tRebars.

Each bar is divided into seven segmeltiissyis the time spent
executing useful instructiongjle is the time wasted due to the lack
of parallel threadssynis time spent on synchronizationacheis
time spent on cache missdajl is the time wasted executing in-
struction that are eventually thrown away due to failed sfzec
tion;imbalanceis the time wasted waiting for commit; araver-

flow is the time wasted since the buffering space for speculative

execution has overflowed.

Memory-Resident Values Communication: The difference be-
tween theO and theM bars is the benefit of scheduling instruc-
tions for synchronized memory-resident values. we obstrae
over half of the benchmarks benefit from this optimizationd a
the time they spend stalling on synchronization has redsogd
nificantly. Gzip achieves the most performance improvement, a
32% speedup. Nine benchmarks;F, TWOLF, VPR_.ROUTE, VOR-
TEX, PERL, GCC, AMMP, ART, andMESA also achieve 3% to 16%
performance improvement. Reduction in synchronizatiogsduot
always translate into performance improvement, since ritioa
creases the cost of mis-speculation, as in the casecef Gzip,

BZIP2, GAP, GCC andMESA. Generating recovery codes for han-
dling intra-thread mis-speculation is important, withehis opti-
mization the instruction scheduling has no performancefigior
synchronized memory-resident values.
Reduction Variable Optimization: The performance impact of
reduction transformation is shown as the difference batwtbe
R and theM bars in Figure 2. Without the proposed optimization,
reduction variables are synchronized, and scheduled teeethe
critical forwarding path. The proposed optimization cagni-
cantly reduce or even eliminate the critical forwardinghpassoci-
ated with reduction variables, thus the performance imgmmant
observed here is mainly due to the reduced in the cost of sgnch
nizing associated with reduction-like variables. Threrdmenarks
benefit significantly from this transformatiommwoLF speedup
by 7%; BzIP2 by 12%;MESA by 27%. Two other benchmarks,
PARSERandGcc achieve moderate performance improvement.
Iteration Merging: The performance impact of reduction trans-
formation is shown as the difference betweenltia@d theR bars,
in Figure 2. Thembalancesegments of th&® bars correspond to
the amount of time processor stall and wait for previousattise
to commit. This is the segment the proposed optimizatiorsdom
reduce. Without the proposed transformation, reductiotabies
are simply synchronized, and instructions are scheduleddoce
the critical forwarding path. Iteration merging is mosteefive for
two benchmarksszip2 speed up by 14% andARSERby 5%,
since these benchmarks each has a significalpdlancesegment.
Note that, forPARSER the time save by improving the load balanc-
ing does not translate completely into performance imprem,
rather it is translated to time spent waiting for forwardedgiables.
References
[1] HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. Data Speculation
Support for a Chip Multiprocessor. lSPLOS'9§October 1998).

[2] KRISHNAN, V., AND TORRELLAS, J. The Need for Fast
Communication in Hardware-Based Speculative Chip Mutessors.
In PACT’99(October 1999).

[3] MARCUELLO, P.,AND GONZALEZ, A. Clustered Speculative
Multithreaded Processors. Ir8th Annual ACM International
Conference on Supercomputifl@hodes, Greece, June 1999).

[4] SoHI, G. S., BREACH, S.,AND VIJAYKUMAR, T. N. Multiscalar
Processors. 182nd Annual International Symposium on Computer
Architecture (ISCA '95jJune 1995), pp. 414-425.

[5] STEFFAN, J. G., @LOHAN, C. B., ZHAI, A., AND MOWRY, T. C. A
Scalable Approach to Thread-Level SpeculationlSE8A’00(June
2000).

[6] ZHAI, A., COLOHAN, C. B., STEFFAN, J. G.,AND MOWRY, T. C.
Compiler Optimization of Scalar Value Communication Betwe
Speculative Threads. KSPLOS’ 0Z0ct 2002).

[7] ZHAI, A., COLOHAN, C. B., STEFFAN, J. G.,AND MOWRY, T. C.
Compiler Optimization of Memory-Resident Value Commutima
Between Speculative Threads. @G 0’04 (Mar 2004).

