
Compiler Optimizations for Parallelizing General-Purpose
Applications under Thread-Level Speculation

Antonia Zhai, Shengyue Wang, Pen-Chung Yew, and Guojin He
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455, USA

{zhai, shengyue, yew, guojinhe}@cs.umn.edu

Categories and Subject Descriptors C.1.2 [PROCESSOR AR-
CHITECTURES]: Multiple Data Stream Architectures (Multipro-
cessors)

General Terms Languages, Performance

Keywords Thread-Level Speculation, Multicore systems, Com-
piler Optimizations, Parallelizing Compiler

As technology advances, microprocessors that integrate mul-
tiple cores on a single chip are becoming increasingly com-
mon. However, extracting independent threads for parallelexe-
cution is an extremely challenging task. Thread-Level Speculation
(TLS) (4; 1; 2; 3; 5) provides hardware mechanisms necessaryfor
optimistically parallelizing potentially dependent threads. How-
ever, the ubiquitous existence of complex, input-dependent control
and data dependence patterns in general-purpose applications re-
quires a collection of compiler optimizations that target avariety
of code patterns to generate efficient parallel threads. In this paper,
we propose, implement and evaluate three optimization techniques
to improve TLS performance.

1. Compiler Optimizations for TLS
General-purpose applications often have complex behaviors, and
thus are unable to take full advantage of the TLS support. A close
examination of the code sequence in Figure 1(a) reviews thatthe
loop can be parallelized by speculating on the dependence between
LoadAddr, LoadAddr1 andStoreAddr1, StoreAddr2, StoreAddr.
However, if the load throughLoadAddroften depends the store
throughStoreAddr, speculation will often fail. In this case, it is
desirable to synchronize these two memory accesses by forward-
ing the stored value between the two threads (with explicitsignal
andwait instructions. However, synchronization can create a crit-
ical forwarding path between these threads and serialize parallel
execution. To overcome such serialization, the signal instructions,
as well as the instructions it depends on (v ← *LoadAddr 1) can
be moved as early as possible within the thread, as shown in Fig-
ure 1(b). It is important to point out that, in TLS, since inter-thread
dependences of memory-resident values are verified by the under-
lying TLS hardware at runtime, moving store instructions with re-
spect to other store instructions can interfere the underlying TLS
mechanism and cause error. Thus, this paper makes:
Contribution 1: Propose hardware/software support necessary to
enable aggressive instruction scheduling involving storeinstruc-
tions.

Copyright is held by the author/owner(s).

PPoPP’08, February 20–23, 2008, Salt Lake City, Utah, USA.
ACM 978-1-59593-960-9/08/0002.

do {
wait;
...← *LoadAddr;

work();
*StoreAddr 1 ← ...;
if (cond1)

v ← *LoadAddr 1;
*StoreAddr ← v;

signal v;
*StoreAddr 2 ← ...;

} while (cond)

(a) Synchronizing an inter-thread
data dependence.

do {
wait;
v temp ← *LoadAddr 1; ⋄
signal (v temp); ⋄
...← *LoadAddr;
work();

*StoreAddr 1 ← ...;
if (cond1)

v ← *LoadAddr 1;

*StoreAddr ← v;
*StoreAddr 2 ← ...;

} while (cond)

(b) Scheduling instructions.

do {
if(count>500)

break;
do {

count++;
} while(cond1)

} while(cond1)

(c) Reduction-like variable.

do {
...;

if (rand()>0.9) {
do {

...;
}

}
} while (cond)

(d) Unbalanced workload.

Figure 1. Potentially parallelizable loops under TLS.

In the above example, schedulingv ← *LoadAddr 1 leads to
two intra-thread speculations:if cond is always true, and the load
instruction is independent ofStoreAddr 2. When these specula-
tions fail, we can either squash the entire thread (6; 7), or have the
compiler create a small piece of recovery codes, and only execute
the recovery codes. The later can be more cost effective thanthe
former. Thus, this paper makes:
Contribution 2: Couple inter-thread and intra-thread dependence
speculation to exploit thread-level parallelism, and develop recov-
ery codes for handling intra-thread speculation failures.

Traditional compilers have a very strict definition on what re-
duction variables are. For the code sequence in Figure 1(c),variable
count is not a reduction variable, since the intermediate value of
count is used to evaluate theif statement. Thus, traditional com-
piler will not optimize this operation. Thus, this paper makes:
Contribution 3: Identify a set of common reduction-like variables,
where the intermediate values of these variables are used either to
computer another value or to determine the outcome of a branch;
and propose code transformations for each usage pattern.

In general-purpose applications, consecutive threads often differ
significantly in the number of dynamic instructions executed, due to
complex control flow, inner loops, as well as procedures calls. For
the loop in Figure 1(d), when theif condition evaluates to true,
the iteration takes much longer to complete. Since the condition is
based on a random value, it is impossible to predict which iterations
are long. In TLS, speculative threads must commit in sequential
order, thus short threads that are executed immediately after a long
thread must stall upon completion and wait for the long thread



0

0.2

0.4

0.6

0.8

1

1.2

OMR I OMR I OMR I OMR I 0OMR I 0OMR I OMR I OMR I OMR I OMR I OMR I OMR I OMR I OMR I OMR I OMR I

mcf crafty twolf gzip bzip2 vpr_p vpr_r vortext parser perl gap gcc ammp art equake mesa

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

overflow

imbalance

fail

cache

syn

idle

busy

Figure 2. The performance impact of the proposed optimizations on parallel regions

to complete. This behavior can serialize parallel execution and
degrade performance. Thus, this paper makes:
Contribution 4: Identify program execution patterns that leads
to unbalanced workload between speculative threads, and propose
code transformations to merge consecutive iterations to create bal-
ance threads.

2. Performance Evaluation
Our compiler infrastructure builds on Intel’s Open Resource Com-
piler(ORC), extended to perform trade-off analysis to determine
which loops to parallelize. In our study, a significant percent of the
sequential execution can be parallelized: mcf (74%), crafty (11%),
twolf (60%), gzip (81%),bzip2 (65%), vpr-place (69%), vpr-route
(55%), vortex (28%), parser (47%), perl (23%), gap (12%), gcc
(59%), ammp (97%), art (95%), equake (93%), mesa (65%). The
parallelized programs are evaluated on a CMP simulator withfour
single-issue in-order processors, each with a 1-cycle, 32KB, 2-way
set-associative L1 cache. All processors share a 2MB, 4-wayset-
associative L2 cache that has a 10 cycle access time.

Figure 2 shows the performance impact of the proposed opti-
mization on the parallelized loops. The bars show the parallelized
execution time with various levels of optimization of the paral-
lelized loops normalized to that of sequential execution. The O
bars show the normalized execution time without the optimiza-
tions proposed in this paper. Register-resident value and frequently
dependent memory-resident values are synchronized. TheM bars
show the normalized execution time of the same loops, exceptfor
instructions are aggressively scheduled across intra-thread control
and data dependences; and intra-thread data dependences violations
are handled with a small piece of recovery code. TheR bars inte-
grates reduction variable optimizations on top ofM bars. TheI bars
integrates iteration merging on top of theR bars.

Each bar is divided into seven segments:busyis the time spent
executing useful instructions;idle is the time wasted due to the lack
of parallel threads;syn is time spent on synchronization;cacheis
time spent on cache misses;fail is the time wasted executing in-
struction that are eventually thrown away due to failed specula-
tion;imbalanceis the time wasted waiting for commit; andover-
flow is the time wasted since the buffering space for speculative
execution has overflowed.
Memory-Resident Values Communication: The difference be-
tween theO and theM bars is the benefit of scheduling instruc-
tions for synchronized memory-resident values. we observethat
over half of the benchmarks benefit from this optimization, and
the time they spend stalling on synchronization has reducedsig-
nificantly. GZIP achieves the most performance improvement, a
32% speedup. Nine benchmarks,MCF, TWOLF, VPR ROUTE, VOR-
TEX, PERL, GCC, AMMP, ART, andMESA also achieve 3% to 16%
performance improvement. Reduction in synchronization does not
always translate into performance improvement, since it can in-
creases the cost of mis-speculation, as in the case ofMCF, GZIP,

BZIP2, GAP, GCC and MESA. Generating recovery codes for han-
dling intra-thread mis-speculation is important, withoutthis opti-
mization the instruction scheduling has no performance benefit for
synchronized memory-resident values.
Reduction Variable Optimization: The performance impact of
reduction transformation is shown as the difference between the
R and theM bars in Figure 2. Without the proposed optimization,
reduction variables are synchronized, and scheduled to reduce the
critical forwarding path. The proposed optimization can signifi-
cantly reduce or even eliminate the critical forwarding path associ-
ated with reduction variables, thus the performance improvement
observed here is mainly due to the reduced in the cost of synchro-
nizing associated with reduction-like variables. Three benchmarks
benefit significantly from this transformation:TWOLF speedup
by 7%; BZIP2 by 12%; MESA by 27%. Two other benchmarks,
PARSERandGCCachieve moderate performance improvement.
Iteration Merging: The performance impact of reduction trans-
formation is shown as the difference between theI and theR bars,
in Figure 2. Theimbalancesegments of theR bars correspond to
the amount of time processor stall and wait for previous threads
to commit. This is the segment the proposed optimization aims to
reduce. Without the proposed transformation, reduction variables
are simply synchronized, and instructions are scheduled toreduce
the critical forwarding path. Iteration merging is most effective for
two benchmarks:BZIP2 speed up by 14% andPARSER by 5%,
since these benchmarks each has a significantimbalancesegment.
Note that, forPARSER, the time save by improving the load balanc-
ing does not translate completely into performance improvement,
rather it is translated to time spent waiting for forwarded variables.
References
[1] HAMMOND , L., WILLEY, M., AND OLUKOTUN , K. Data Speculation

Support for a Chip Multiprocessor. InASPLOS’98(October 1998).
[2] K RISHNAN, V., AND TORRELLAS, J. The Need for Fast

Communication in Hardware-Based Speculative Chip Multiprocessors.
In PACT’99(October 1999).

[3] M ARCUELLO, P.,AND GONZALEZ, A. Clustered Speculative
Multithreaded Processors. In13th Annual ACM International
Conference on Supercomputing(Rhodes, Greece, June 1999).

[4] SOHI, G. S., BREACH, S.,AND V IJAYKUMAR , T. N. Multiscalar
Processors. In22nd Annual International Symposium on Computer
Architecture (ISCA ’95)(June 1995), pp. 414–425.

[5] STEFFAN, J. G., COLOHAN, C. B., ZHAI , A., AND MOWRY, T. C. A
Scalable Approach to Thread-Level Speculation. InISCA’00(June
2000).

[6] ZHAI , A., COLOHAN, C. B., STEFFAN, J. G.,AND MOWRY, T. C.
Compiler Optimization of Scalar Value Communication Between
Speculative Threads. InASPLOS’ 02(Oct 2002).

[7] ZHAI , A., COLOHAN, C. B., STEFFAN, J. G.,AND MOWRY, T. C.
Compiler Optimization of Memory-Resident Value Communication
Between Speculative Threads. InCGO’04(Mar 2004).


