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Abstract— Computer industry has adopted multi-threaded
and multi-core architectures as the clock rate increase stalled
in early 2000’s. However, because of the lack of compilers
and other related software technologies, most of the general-
purpose applications today still cannot take advantage of
such architectures to improve their performance. Thread-level
speculation (TLS) has been proposed as a way of using these
multi-threaded architectures to parallelize general-purpose ap-
plications. Both simultaneous multithreading (SMT) and chip
multiprocessors (CMP) have been extended to implement TLS.
While the characteristics of SMT and CMP have been widely
studied under multi-programmed and parallel workloads, their
behavior under TLS workload is not well understood. The TLS
workload due to speculative nature of the threads which could
potentially be rollbacked and due to variable degree of paral-
lelism available in applications, exhibits unique characteristics
which makes it different from other workloads. In this paper, we
present a detailed study of the performance, power consumption
and thermal effect of these multithreaded architectures against
that of a Superscalar with equal chip area. A wide spectrum of
design choices and tradeoffs are also studied using commonly
used simulation techniques. We show that the SMT based TLS
architecture performs about 21% better than the best CMP
based configuration while it suffers about 16% power overhead.
In terms of Energy-Delay-Squared product (ED

2), SMT based
TLS performs about 26% better than the best CMP based TLS
configuration and 11% better than the superscalar architecture.
But the SMT based TLS configuration, causes more thermal
stress than the CMP based TLS architectures.

I. I NTRODUCTION

Continuous clock rate improvement on microprocessors
in the past three decades has stalled in early 2000’s because
of power and thermal considerations. It prompted computer
industry to adopt multi-threaded (e.g. simultaneous multi-
threading (SMT), hyper-threading) , and/or multi-core (e.g.
chip multiprocessors (CMP)) architectures in the hope of
continuing the performance improvement without increasing
the clock rate and its associated power and thermal problems.
However, because of the lack of compilers and other related
software technologies, most of the general-purpose applica-
tions today still cannot take advantage of such architectures
to improve their single-application performance.

Hardware support for speculative threads has been pro-
posed to take advantage of multi-threaded architectures. One
of the main thrusts for such an approach is to improve the
performance of a single applications throughthread-level
speculation(TLS) [1]. However, there is a significant lack of
a understanding on how various multi-threaded architectures

and their implementations interact with TLS on general-
purpose benchmarks.

Both CMP and SMT processors have been extended to
support TLS. In the case of CMP, one popular approach
is to buffer speculative stores in thelocal L1 cache, and
extend the existing cache coherence protocols to detect data
dependence violations [1] (we refer to this architecture asthe
CMP-TLS architecture). In the case of SMT, thesharedL1
cache is augmented with extra bits for the same tasks [2]. We
refer to this architecture as theSMT-TLS architecture. Even
though there have been numerous studies on the performance
aspects of CMP-TLS and SMT-TLS architectures, there has
not been a detailed comparative study on theirperformance,
power and thermal effectswhen compared to Superscalar
architectureunder the constraint of same chip area. Such
detailed study is essential to identify the issues in the
different multithreaded architectures which in turn would
help in efficient TLS architecture design.

CMP and SMT architectures have been studied in detail
under multi-programmed and parallel workloads [3], [4],
[5], [6], but the same conclusions are not applicable for TLS
workloads due to its unique characteristics. For example, in
SMT-TLS, speculative and non-speculative threads share the
same core which could lead to better resource utilization.
But the speculative threads could also slow down the non-
speculative threads by competing for resources with the non-
speculative thread. The shared cache in SMT-TLS allows
all threads to share the same working set as they are
working on the same single application. This could lead to
a better cache performance due to prefetching. But also, as
speculative state from all speculative threads are buffered in
the shared cache in SMT-TLS, it is more susceptible to stalls
by conflict misses as the cache lines holding the speculative
states cannot be evicted. Also, speculative threads could be
preempted to free cache lines for older speculative threads
leading to an increase in the number of squashes in SMT-
TLS.

Given the unique characteristics of TLS workload, it is
impossible for us to infer whether the TLS workload is
more efficient on CMP or SMT processors in terms of
performance, power and thermal effect when same chip area
is used. This paper, to the best of our knowledge, presents
the first thorough study of performance, power, energy-delay-
product and thermal effects of a general-purpose workload,
generated by a TLS parallelizing compiler, on SMT and



CMP architectures under equal die-area constraint. A wide
spectrum of design choices and tradeoffs are studied using
commonly used simulation techniques.

Our results show that the main drawback for CMP is
its poor performance in code regions with low thread-level
parallelism, while the main drawback for SMT is its core
complexity and frequent squashes due to buffer overflow
leading to higher power consumption. Different applications,
depending on their specific characteristics prefer different
architectures. Out of the 15 SPEC 2000 benchmarks con-
sidered, 5 benchmarks prefer CMP architecture while the
remaining benefit from SMT architecture leading to about
26% betterED2 for SMT over the CMP based TLS archi-
tecture. In terms of thermal behavior, across all benchmarks
CMP architecture shows lower thermal stress than the SMT
architecture.

The rest of the paper is organized as follows: Section II
describes the related work. Section III considers various
trade-offs and configures the three architectures, Superscalar,
SMT and CMP, with equal die area; Section IV describes
our evaluation methodology; Section V evaluates the perfor-
mance and energy-delay-product of each architecture under
TLS workload; Section VI studies the sensitivity of these
results with several key architectural parameters; Section VII
presents the thermal effects of the TLS-workload on the three
architectures; and in Section VIII we present our conclusions.

II. RELATED WORK

While the discussions on TLS performance have mostly
been under the context of CMP [7], [8], [9], SMT processors
can also be extended to support TLS [10], [2]. However,
given the characteristics of TLS workload described earlier,
it is not clear which architecture can achieve a higher
performance and a better power efficiency while creating less
thermal stress.

Renauet. al [11] compared the power efficiency of a CMP
processor with TLS support against an equal-area, wide-
issue Superscalar processor. They concluded that the CMP
processor with TLS support can be more power efficient
on general-purpose applications. Their selection of equal-
area configurations is based on a rough assumption that
a 6-issue Superscalar has the same area as a 4-core 3-
issue CMP. In this paper we conduct a detailed study of
area overhead to identify equal area configurations. Also
we include SMT based TLS in our comparison. Warget.
al [12], compared speedup of SMT and CMP using simple
assumptions to choose the configurations. In this paper, we
study several equal area configurations based on detailed area
estimation. Also we present a detailed comparison which
includes performance, power and thermal effects.

Numerous studies have compared the SMT and CMP
performance and power efficiency under different workloads.
On parallel programs [13] and mobile workloads [3], SMT
processors outperform CMP processors. However, on multi-
media workloads, CMP is more efficient [4]. In the context of
multi-program workload, Liet. al [5] found that SMT is more
efficient for memory-bound applications while CMP is more

TABLE II

DIE AREA ESTIMATION FOR (1) SUPERSCALAR(SEQ), (2) SMT

PROCESSOR WITH REDUCED COMPLEXITY OCCUPYING AN EQUAL AREA

AND (3) CMP PROCESSOR WITH AN EQUAL AREA ASSEQ.
Hardware structures SEQ SMT-4 CMP-4-2MB

area (mm
2) area (mm

2) area (mm
2)

Function units
Integer units 1.296 1.134 0.648
Floating point units 1.760 1.408 0.704
Load Store units 0.551 0.551 0.367

3.607 3.093 1.719

Pipeline logic
Fetch unit 0.477 0.597 0.239
Decode unit 0.441 0.485 0.220
Issue unit 0.392 0.431 0.196
Writeback unit 0.392 0.377 0.196
Commit unit 0.216 0.248 0.108

Caches
TLBs 0.129 0.142 0.104
L1 I-cache 1.748 2.397 0.439
L1 D-cache 2.519 3.808 0.569
Register file 1.361 5.057 0.414
RUU 18.325 12.134 1.925
LSQ 1.771 0.974 0.185
Misc 1.216 2.866 0.3422
Core Size 32.6 32.6 6.6
Bus area 5.95
L2 cache 50.71 50.71 50.71
Chip size 83.3 83.3 83.3

efficient for CPU-bound applications; Burns et al [6] found
that SMT can achieve a better single thread performance, but
CMP can achieve a higher throughput.

III. PROCESSORCONFIGURATIONS

For fair power and performance comparisons among Su-
perscalar, CMP-TLS and SMT-TLS architectures, we main-
tain the same chip area for the three different processor con-
figurations. We use a detailed area estimation tool presented
in [14]. While the original tool only targets SimpleScalar-
based architectures, we have extended this tool to estimate
area of SMT and CMP architectures.

However, even for a fixed chip area, many processor
configurations are possible by varying the size of the cores
and the caches; and it is not possible to exhaustively eval-
uate the entire design space. In this section, we describe
how equal-area processor configurations are selected for fair
comparisons in this study.

A. Superscalar configuration

Our base configuration is a SimpleScalar-based Super-
scalar architecture. The architectural parameter of this pro-
cessor can be found in Table I. The die area occupied by
each component of this processor can be found in Table II,
estimated by the die-area estimation tool [14] (assuming
70nm technology). We refer to this architecture as theSEQ
architecture, since it executes sequential programs.

B. SMT configuration

The SMT architecture is based on the Simultaneous Mul-
tithreading architecture proposed by Loet. al [13], where
processor resources are fully shared by all threads. Up-to two
threads are allowed to fetch instructions in the same cycle



TABLE I

ARCHITECTURAL PARAMETERS FOR THESUPERSCALAR(SEQ)CONFIGURATION AND THE SMT CONFIGURATIONS WITH2 AND 4 THREADS

Parameter Superscalar SMT4 CMP-4-2MB
Fetch/Decode/Issue/Retire Width 12/12/8/8 12/12/8/8 6/6/4/4
Integer units 8 units / 1 cycle latency 7 units 4 units
Floating point units 5 units / 12 cycle latency 4 units 2 units
Memory ports 2Read, 1Write ports 2R,1W 1R and 1W
Register Update Unit 256 entries 185 105
(ROB,issue queue)
LSQ size 128 entries 80 42
L1I Cache 64K, 4 way 32B 64K, 4 way 32B 16K, 4 way 32B
L1D Cache 64K, 4 way 32B 64K, 4 way 32B 16K, 4 way 32B

Cache Latency L1 1 cycle, L2 18 cycles
Unified L2 2MB, 8 way associative, 64B blocksize
Physical registers per thread 128 Integer, 128 Floating point and 64 predicate registers
Thread overhead 5 cycles fork, 5 cycles commit and 1 cycle inter-thread communication

based on theicount fetch policy. Hardware support of TLS
is implemented by extending the shared L1 cache to buffer
speculative states and track inter-thread data dependences [2].

The overall area cost for supporting a four thread SMT
processor (SMT-4) with the same configuration as Super-
scalar (SEQ) is approximately 30% (estimated based on our
tool). To configure a SMT core with the same area as the
SEQ configuration, we need to compensate for this overhead
by reducing the complexity of the SMT core.

The complexity of the core can be reduced by reducing
many parameters, but our main target is the RUU(Register
Update Unit) since it occupies a significant die area (about
56% of SEQ). However, if we simply reduce the number of
RUU and LSQ (Load Store Queue) entries while holding
other parameters constant, we must reduce the number
of RUU entries by 60%. This approach clearly creates a
performance bottleneck, and thus produces a sub-optimal
design. RUU requires many ports, since it is the central
structure accessed by almost all pipeline stages. By reducing
the number of function units, we can reduce the number ports
in RUU, in turn, reduce the area cost of RUU.

In this paper, we reduce both the number of function units
and the number of RUU and LSQ entries to achieve the
desired area cost. The exact configuration chosen for SMT
configuration is shown in Table I. In Table II, the area of each
component in this equal area SMT configuration is shown.

To study the impact of the reduction in the number of
TLS threads, we include a configuration called SMT-2 which
supports 2 threads (equal area as SEQ and SMT-4).

C. CMP configurations

In choosing the area-equivalent CMP configurations we
have two design choices. One way is to hold the L2 size
the same as in SEQ and allocate less area for each core, so
the total area for the multiple cores is the same as that of
the Superscalar core (as in [6]). Another choice is to reduce
L2 cache size and use the area for allocating more area for
each core (as in [5]). Also, we could reduce the number of
cores supported, which will allow us to use larger cores. To
cover all these design choices, we consider four different
configurations of CMP architecture - CMP-4-2MB(CMP-
4cores-2MB L2 cache), CMP-4-1MB, CMP-2-2MB, CMP-
2-1MB.
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Fig. 1. Compilation infrastructure

We estimated the area of each configuration and made sure
they have the same area. Due to lack of space we show only
one configuration (CMP-4-2MB) in Table II. The simulation
parameters for the CMP-4-2MB are shown in I.

IV. EVALUATION METHODOLOGY

We use a trace-driven, out-of-order Superscalar proces-
sor simulation infrastructure. The trace-generation portion
of this infrastructure is based on the PIN instrumentation
tool [15], and the architectural simulation portion is built
on SimpleScalar. We not only model the register renaming,
the reorder buffer, branch prediction, instruction fetching,
branching penalties and the memory hierarchy performance,
but also extend the infrastructure to model different aspects
of TLS execution including explicit synchronization through
signal/wait, cost of thread commit/squash, etc.

To estimate power consumption of the processors, the
simulator is integrated with the Wattch [16] power model.
The power consumption for the common bus in the CMP
architectures is simulated using Orion [17]. The power traces
generated by the simulator are fed to HotSpot [18] to evaluate
the thermal behavior of the system.

We evaluated all SPEC2000 benchmarks written in
C.(exceptGAP). Statistical information on the set of loops
selected for each benchmark can be found in Table III.

A. Compilation Infrastructure

Our compiler infrastructure [19] is built on Intel’s Open
Research Compiler(ORC) [20], an industrial-strength open-
source compiler targeting Intel’s Itanium Processor Family
(IPF). To create efficient speculative parallel threads, com-
piler must perform accurate performance trade-off analysis
to determine whether the benefit of speculative parallel
execution outweighs the cost of failed speculation. In our



TABLE III

DETAILS OF BENCHMARKS

Benchmark No of loops se-
lected

coverage of se-
lected regions

No of sam-
ples

perlbmk 9 23% 13
art 25 99% 12
vpr place 3 53% 12
gcc 98 80% 21
parser 40 37% 18
vpr route 19 89% 14
mcf 13 98% 10
equake 9 91% 21
ammp 21 99% 16
twolf 20 48% 19
bzip2 19 81% 18
mesa 3 63% 15
gzip 6 99% 20
crafty 3 14% 17
vortex 8 67% 22

case, the compiler performs such analysis based on loop
nesting [9], edge, as well as data dependence profiling [21],
as shown in Figure 1. The parallel compiler has two distinct
phases - loop selection and code optimization:
Loop Selection: In the loop selection phase, the compiler es-
timates the parallel performance of each loop. The compiler
then chooses to parallelize a set of loops that maximize the
overall program performance based on such estimations [9],
[19].
Code Optimization: The selected parallel loops are op-
timized with various compiler optimization techniques to
enhance TLS performance: (i) all register-resident values
and memory-resident values that cause inter-thread data
dependences with more than 20% probability are synchro-
nized [8]; (ii) instructions are scheduled to reduce the critical
forwarding path introduced by the synchronization [7], [19];
(iii) computation and usage of reduction-like variables are
transformed to avoid speculation failure [19]; and (iv) con-
secutive loop iterations are merged to balance the workload
of neighboring threads [19].

B. SimPoint Sampling

Prior TLS research typically simulated the first billion in-
structions in each benchmark after skipping the initialization
portion. The truncated simulation does not cover all phases
in a benchmark, and thus can potentially miss important
program behavior that only appear in the later parts of the
execution To improve simulation accuracy and to reduce
simulation time, we have adopted a SimPoint-based sampling
technique [22].

When running SimPoint, we use -maxK (maximum num-
ber of samples) as 30 and the sample size as 30 million
instructions. The number of phases selected by SimPoint for
each benchmark is shown in Table III.

V. PERFORMANCE ANDPOWER COMPARISONS

We compare the three different architectures - CMP-based
TLS, SMT-based TLS and Superscalar in terms of perfor-
mance in Section V-A. In Section V-B, we compare their
power consumption, and in Section V-C, we useenergy-delay
product (ED) and energy-delay-squared product(ED2) to
compare energy efficiency.

A. Performance

Fig. 2(a) shows the speedup of the entire benchmark
suite using Superscalar (SEQ) performance as the base and
Fig. 2(b) shows the breakdown of execution time when
executing loops selected by the compiler. In this section, we
only show the TLS configurations: CMP-4-2MB and SMT-4.
We will discuss other possible configurations in Section VI.

The CMP-4-2MB slows down inperlbmk, gcc, parser,
twolf, mesa, gzip, vortex and crafty, leading to ageometric
mean(GM) slowdown of 6% when compared to SEQ. But if
we eliminate top three worst performing benchmarksmesa,
perlbmkandcrafty, the CMP-4-2MB achieves 12% speedup
over SEQ(indicated by GM(p)). Due to its dynamic sharing
of resources, SMT-4 is able to extract good performance even
in benchmarks with limited parallelism except ingcc, mesa
andperlbmk, leading to about 23% speedup over SEQ.

Each benchmark benefits from specific architecture de-
pending on its characteristics. A comparison of the impact of
different benchmark characteristics on the TLS performance
in CMP and SMT architectures is presented in Table IV.

Large sequential non-parallelized code regions:The
CMP-4-2MB slows down about 6% compared to SEQ but it
achieved about 6% speedup if we consider only the parallel
regions (in Fig. 2(b)). Many of the benchmarks considered
have significant sequential (non-parallelized) regions which
suffer poor performance on CMP-4-2MB due to its static
partitioning of resources. Theperlbmkshows more than 50%
slowdown for CMP-4-2MB configuration. The coverage of
sequential regions inperlbmk is about 77%. Due to this
very low parallel-region coverage, we see a huge decrease
in overall performance forperlbmk. In benchmarktwolf,
the CMP performs about 36% better than SEQ when we
consider parallel regions. But when we consider the entire
benchmark, the CMP performs about 6% worse than SEQ
due to 52% coverage of non-parallelized regions. Similarly,
crafty, gcc, parser and vprplacesuffer from poor sequential
region performance.

On the other hand, the SMT configuration was able to
dynamically reallocate its resources to exploit ILP when
executing in sequential regions. Even though there is a slight
slowdown in some benchmarks for SMT, the impact is much
less when compared to CMP. For example, intwolf SMT-
4 performs 27% better than SEQ while CMP-4-2MB slows
down by about 6%, inspite of both achieving similar speedup
inside parallel regions. Overall, SMT-4 performs about 36%
better than SEQ if we consider only the parallel regions while
its performance reduces to 23% when we consider the entire
benchmark.

Low TLS parallelism inside parallelized regions: In
benchmarkperlbmk, as shown in Fig. 2(b), the loops
selected have a poor iteration count leading to many threads
being idle (indicated aslack of threads). Due to the limited
parallelism available, the CMP did not get good performance,
while SMT due to its dynamic resource allocation, uses
the resources to extract ILP within the threads, resulting
in a better performance than CMP. In benchmarkbzip2,



(a) Speedup of entire program. (b) Normalized execution time breakdown ofall compiler selected regions.
Fig. 2. Performance of SMT-4 and CMP-4-2MB configurations.

TABLE IV

COMPARISON OF THE IMPACT OF BENCHMARK BEHAVIORS ON THE PERFORMANCE OF SMT-TLS VS CMP-TLS.

Benchmark characteristics
Impact on

Reasons
CMP SMT

Large sequential regions X X SMT could use all resources to extract ILP inside sequentialregions.
Low TLP inside parallel regions X X SMT effectively uses all its resources while many cores in CMPcould be idle
High cache miss rates X X Both can hide memory latency and speculative threads can prefetch data. SMT has more advantage

due to shared L1.
Threads with a large working set X X SMT L1 cache overflows more often as it is shared by all threads,leading to more squashing.
Frequent mis-speculations X X Mis-speculations wastes resources and affects non-speculative thread performance.

both SMT-4 and CMP-4-2MB have idle threads due to
synchronization. But SMT-4 achieves better performance due
to its better resource utilization. Similar effect can be seen
in mesa, gzip, vortex, vprroute andparser.

Large number of cache misses:In benchmarkequake
and in mcf, the SEQ configuration spends most of the
execution time waiting for memory due to a large number
of cache misses. Both CMP-4-2MB and SMT-4 are able
to better hide the memory latency through sharing of the
common working set. Such sharing of the working set
allows some data needed by one thread to bepre-fetched
by another thread. Due to the combined effect of parallelism
and prefetching, both CMP-4-2MB and SMT-4 achieve good
performance. Similarly, benchmarkstwolf andvpr placegain
from good TLS parallelism and cache prefetching leading to
performance gain for both SMT and CMP.

In SMT, both L1 cache and L2 cache are shared by all
the threads, leading to better prefetching when compared to
CMP where the threads share only the L2 cache. Intwolf and
vpr route, SMT-4 performs better than CMP-4-2MB due to
prefetching effect in L1 cache.

Size of threads: In benchmarkart, the size of threads
selected by the TLS compiler is quite large leading to
speculative buffer overflow (part ofOthers in Fig. 2(b)).
In the SMT-TLS [2] configuration, when there is buffer
overflow, the younger speculative threads are preempted to
make space for older speculative threads leading to extra
squashes. However, as inequakeandmcf, art has good cache
prefetching effect leading to a good speedup inspite of its
buffer overflow problem.

B. Power

To understand the power behavior of the two architectures,
we compare the breakdown of dynamic power consumption
in Fig. 3(a). The power consumption is normalized to the
total power consumption of SEQ configuration. We used

ideal clock gating (cc2) in theWattch simulator to get
dynamic power consumption.

Dynamic power is proportional toαC.V 2f , whereα is
the activity factor,C is the capacitance of the transistor,V

the supply voltage, andf the frequency of the circuit. In
our simulation, we keptV and f the same for all three
configurations. So dynamic power differences among the
three configurations are mainly due to theactivity factor or
the capacitance of the circuit.

Core complexity: The Superscalar uses the most complex
core and has the highestC value while SMT core is also
complex. But the CMP configuration uses smaller cores and,
hence, has a smallerC value than that in Superscalar and
SMT. The largest component of dynamic power, we call
it the window power, combines the power consumption of
function blocks related to out-of-order execution including
RUU, LSQ, result bus, etc. The CMP configuration uses a
smaller instruction window leading to lower window power
consumption across all benchmarks. Similarly, it consumes
less power in the cache since it uses a smaller cache than in
other configurations.

Activity factor: SMT and CMP both execute the same
parallel TLS code so their activity factor is very similar.
However, SEQ runs the sequential code which does not have
any special TLS instructions, leading to a smaller activity
factor than SMT and CMP. Another factor which affects
the activity is the amount of speculation. If a configura-
tion suffers from frequent mis-speculations, it creates more
speculative activities. As we saw in Fig. 2(b), the SMT
configuration suffers from manyfalse mis-speculations due
to buffer overflow in art. These extra squashes leads to
almost a 2X increase in dynamic power for SMT. Similar
effect can be seen inammp, mesa, gzip, vortex, craftyand
equake. The SEQ has a more complex core than both SMT
and CMP, and thus consumes higher power. But due to its



lower activity factor its power consumption is lower than
SMT.

Extra hardware: The TLS architectures have extra power
overhead due to the extra hardware needed to implement
TLS. The extra hardware used by SMT is minimal, but CMP
uses a common bus to connect the cores. The power overhead
due to this common bus is significant, and not present in SEQ
and SMT configurations.

Overall, due to the combined effect of complex cores and
speculative wastage, SMT on average consumes about 32%
more dynamic power than SEQ. CMP, due to its smaller
cores, consumes about 10% less dynamic power than SEQ.

Total power: Total power consumption of the processor
includes leakage/static power in addition to the dynamic
power considered above. To get total power consumption,
we use aggressive clock gating inWattch simulator (cc3).

The static power consumption depends on the program
execution time and on the number of components that
have leakage power (i.e. number of transistors). The SMT-
4 configuration due to its lower execution time on average,
consumes lesser static power than SEQ and CMP. While the
CMP, due to its lower complexity can pack more resources
in the same chip area. For example, the CMP-4-2MB uses
two times the number of function units, RUU entries, etc.
Due to the use of a larger number of components, the CMP
has more leakage power than SMT.

In Fig. 3(b), we show both the dynamic and total power
overhead of SMT and CMP over SEQ. In most benchmarks,
due to its lower leakage power, the SMT is able to makeup
for its increase in dynamic power. Inart, the total power
overhead of SMT is only 20% when compared to 159%
overhead for dynamic power. Similar effect can be seen in
ammp, equake, vpr route and vpr place. The register file in
SMT-4 is 4 times larger than in SEQ to accomodate the
4 threads. This larger register file causes more leakage in
benchmarksgcc, perlbmk, mesaandparser.

CMP consumes lower total power forequakeandart due
to its high speedup over SEQ. Total power overhead of
CMP is higher than its dynamic power overhead inperlbmk,
parser, twolf, ammpand vpr route. For these benchmarks,
CMP did not have a large performance gain and due to its
larger resources it incurs more leakage power.

Overall, the CMP-4-2MB due to its lower performance
suffers from 20% total power overhead when compared to
SEQ while the SMT-4 suffers from 35% extra overhead due
to its complexity. A summary of how the various factors
affect power consumption in SMT and CMP is presented in
Table V.

C. ED andED2

From the previous sections, we see that SMT and CMP
have a very different behavior in power consumption and
performance. To combine their effects we useenergy-delay
product (ED) andenergy-delay-squared product(ED2).

Fig. 4 shows the ED andED2 when we consider the
entire program execution. As discussed before, when the
sequential regions are included, the performance of CMP is

Fig. 4. ED andED
2 of the entire program.

lower than that of SMT. Due to this slowdown in sequential
regions, the ED of CMP is about 28% worse than that of
SEQ and 37% worse in terms ofED2. SMT-4 due to its
large power overhead, performs 9% worse than SEQ in terms
of ED but performs 11% better than SEQ in terms ofED2

due to its better performance.
From the above discussion, it is clear that the SMT-4

configuration is more efficient in extracting TLS parallelism
than the CMP-4-2MB configuration. In the next section, we
consider different variations in the design space of CMP and
SMT.

VI. A LTERNATIVE CONFIGURATIONS

As we saw in previous section, the CMP based TLS
performs worse than SMT based TLS due to its poor
performance when executing in sequential regions. In this
section, we study how the performance and power behavior
change when we increase the core complexity to improve
performance in sequential regions by varying key parameters
such as the number of threads and L2 size.
Impact of the number of threads: In Fig. 5 we compare the
ED2 of the 4-thread and 2-thread versions of both CMP and
SMT architectures. Though the CMP-2-2MB performs better
than CMP-4-2MB in sequential regions, it loses performance
in parallel regions. Also the CMP-2-2MB cores are large
and consume more power. On the average, due to its good
performance in sequential region, the CMP-2-2MB has 22%
lower ED2 than CMP-4-2MB. But if we eliminate the lower
performing benchmarksperlbmk, mesaandcrafty, theED2

of CMP-4-2MB is 12% better than CMP-2-2MB and 9%
better than SEQ (indicated by G.M.(p)).

In the case of SMT, one of the major causes for higher
power consumption is the power wasted due to speculative
execution (as shown in Fig. 3(a)). When we reduce the
number of threads in SMT, this effect reduces and leads to
large reduction in dynamic power consumption. Due to a
large reduction in dynamic power, the SMT-2 has betterED2

than SMT-4 inperlbmk, parser, ammp, mesa, gzip, vortex and
crafty. While in other benchmarks SMT-4 has betterED2

due to its superior performance in parallel region leading to
overall 1% betterED2 than SMT-2.
Impact of L2 size: Another possible design choice to
improve sequential region performance is to reduce the L2
size, allowing the extra space to be used for larger cores.
Fig. 6 compares the impact of the two configurations with a



(a) Normalized dynamic power consumption of the entire benchmark. (b) Comparison of dynamic and static power overhead.
Fig. 3. Power consumption of SMT-4 and CMP-4-2MB configurations.

TABLE V

COMPARISON OF THE IMPACT OF VARIOUS FACTORS ON THE POWER CONSUMPTION OF SMT-TLS VS CMP-TLS.

Different factors
Impact on

Reasons
CMP SMT

Core complexity X X CMP with simpler cores consumes lesser dynamic power as seen in Fig. 3(a)
Execution time X X SMT has lower execution time than SEQ leading to lower leakage. But CMP

slowsdown in some benchmarks leading to more leakage.
Threads causing overflow X X Overflow in SMT causes squashing, thus wasting more dynamic power (Fig. 3(a))
Number of transistors X X More transistors in CMP cause more leakage than in SMT.

Fig. 5. Energy-delay-squared with the 2 and 4 threads.

smaller L2 size - CMP-4-1MB and CMP-2-1MB with CMP-
4-2MB configuration.

CMP-4-1MB shows good improvement over CMP-4-2MB
gaining about 10% speedup than the SEQ. But CMP-4-
1MB consumes more power due to its larger cores, leading
to increase inED2 (about 6% worse than CMP-4-2MB).
Although the CMP-2-1MB configuration has a speedup up
2% over SEQ, its more complex cores leads to large increase
in power consumption leading to 7% worseED2.
Impact of frequency: In our study, we had assumed the
same clock frequency for all configurations. A simpler CMP
core can be run at a higher frequency than in SEQ and
SMT configurations. Though increasing frequency can lead
to better performance, it leads to large increase in power
consumption leading to worseED2.

Among the alternative design choices considered we found
that reducing the number of cores in CMP (CMP-2-2MB)
could lead to betterED2 on average. But all the CMP
configurations are still worse than the SMT-4 configuration
in terms ofED2.

VII. T HERMAL BEHAVIOR

The Superscalar and the SMT-TLS architectures use com-
plex cores with a large number of function units and large
instruction window to exploit instruction-level parallelism or
support the additional threads. These cores not only consume
more energy, they can also generate thermal hotspots. On the
other hand, the CMP-TLS architecture has distributed cores,

Fig. 6. Impact of larger cores on Energy-delay-squared of entire program.

and thus can potentially have smaller and less severe thermal
hotspots. In this section, we analyze the thermal character-
istics of three processor configurations—SEQ, SMT-4 and
CMP-4-2MB.

The average and hotspot temperatures for each architecture
are shown in Table VI. We have observed that the CMP-
4-2MB configuration has the lowest average and hotspot
temperatures, while the SMT-4 has the highest average and
hotspot temperatures In terms of hotspot temperature, the
CMP-4-2MB configuration is about 3.68 degrees lower than
that of the SEQ configuration; while SMT-4 configuration is
about 1.85 degrees higher than that of the SEQ configuration.

By observing the steady state temperature map for the
SMT-4 and CMP-4-2MB configurations runninggcc, which
has the highest IPC among all benchmarks, we found that
the main source of heat in both configurations is the register
file (circled in Fig. 7). The temperature maps are shown in
Figure 7. The activity level in the register file of each CMP
core is lower than the activity level of the central register
file in SMT-4, thus leading to lower hotspot temperature.

VIII. C ONCLUSIONS

In this paper, we compared the performance, energy-
delay-product and thermal effects of three architectures:
Superscalar, SMT and CMP, while holding the die area
constant. We have identified major issues in each of the
architectures and found that the SMT-TLS is more suitable
for TLS applications. From our results, we have shown that:



TABLE VI

THERMAL EFFECTS OFTLS ON THREE DIFFERENT ARCHITECTURES:

SEQ, SMT-4AND THE CMP-4-2MB IN DEGREECELSIUS.

benchmark SEQ CMP-4-2MB SMT-4
average hotspot average hotspot average hotspot

perlbmk 61.21 66.38 59.66 62.9 61.89 68.12
art 57.55 65.92 58.48 62.16 60.07 67.97
vpr place 60.17 65.96 60.64 62.27 61.62 67.99
gcc 60.33 66.02 59.14 62.33 61.28 67.96
parser 59.68 66.07 59.19 62.33 60.56 67.9
vpr route 60.58 66.35 59.42 62.18 60.98 67.9
mcf 52.54 65.99 59.46 62.22 60.45 67.89
equake 56.71 65.93 59.22 62.16 60.05 67.89
ammp 59.17 66.02 62.18 59.52 61.15 68.01
twolf 60.15 65.93 60.02 62.17 61.42 67.93
bzip2 61.51 67.00 61.47 64.06 62.58 68.47
mesa 60.77 66.23 59.53 63.09 61.70 68.06
gzip 61.39 66.49 61.21 64.91 62.44 68.24
crafty 61.65 66.44 59.08 62.61 62.28 68.13
vortex 60.83 66.00 60.40 62.59 61.78 67.99
Mean 59.62 66.18 59.94 62.50 61.35 68.03

(a) SMT configuration. (b) CMP-4-2MB configuration.
Fig. 7. Thermal map for various configuration (running gcc).Red color
indicates hottest regions.

• SMT-TLS can dynamically adjust its resources to
achieve good TLS performance while not suffering
significant slowdown in sequential code regions. The
SMT-4 configuration achieves about 23% speedup over
SEQ configuration.

• Nevertheless, the good performance of SMT-TLS comes
at the cost of about 36% increase in power consumption
when compared to Superscalar. But if we considerED2,
the SMT-TLS outperforms both Supersclar and CMP-
TLS architectures.

• The CMP-TLS architecture suffers due to poor se-
quential region performance. This can be improved by
increasing the core complexity, but this increases power
consumption. The CMP-2-2MB is the best CMP-TLS
configuration which performs 26% worse than SMT-4
in terms ofED2.

• The main disadvantage of SMT-TLS is that it creates
more thermal stress than CMP-TLS due to its central-
ized register file.
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