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Abstract. Speculative multithreading is a technique that has been used
to improve single thread performance. Speculative multithreading archi-
tectures for Chip multiprocessors (CMPs) have been extensively studied.
But there have been relatively few studies on the design of speculative
multithreading for simultaneous multithreading (SMT) processors. The
current SMT based designs - IMT [9] and DMT [2] use load/store queue
(LSQ) to perform dependence checking. Since the size of the LSQ is
limited, this design is suitable only for small threads. In this paper we
present a novel cache-based architecture support for speculative simulta-
neous multithreading which can efficiently handle larger threads. In our
architecture, the associativity in the cache is used to buffer speculative
values. Our 4-thread architecture can achieve about 15% speedup when
compared to the equivalent superscalar processors and about 3% speedup
on the average over the LSQ-based architectures, however, with a less
complex hardware. Also our scheme can perform 14% better than the
LSQ-based scheme for larger threads.

1 Introduction

With increasing amount of resources available for the processor, architects are
going for multithreading-based designs like CMPs and SMTs. At present, these
architectures are mainly used to improve the processor throughput. Using these
multithreaded architectures to improve single thread performance still poses a
challenge. Speculative multithreading [5l [I1] is one way to utilize the multiple
threads to improve single thread performance. Here, threads are automatically
extracted from a sequential program by a compiler and executed in parallel
to improve its execution time. Architecture support is needed to detect any
dependence violation, and also to buffer the results created by speculatively
created threads.

Existing SMT based speculative multithreading approaches either use com-
plex hardware [7] or use limited resources like LSQs [9, 2] to buffer specula-
tive results, and to record load addresses to check for dependence violations.
The advantage of LSQ-based method is that the LSQs are already available to
the processor, so the technique does not need any major modifications to the
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processor architecture as in the case of [7]. Also, in the LSQ, entries are created
for each load and store operations, so the dependence checking granularity is at
the byte level. At the byte level, there could be no false dependences. But the
LSQ entries for speculative threads are not cleared till the thread commits. So
the main disadvantage in using LSQs is their limited size since it is not cost
effective (or power efficient) to have large LSQs. Due to this consideration, LSQ
based architectures can support only small threads. But our research [14] shows
that if we need to consider a more realistic overhead of forking a thread, it be-
comes more difficult to justify at small granularities. Hence, it is important to
support larger threads.

In this paper, we propose a novel cache-based architecture to implement
speculative multithreading in SMT processors that only requires a few extra
bits to each cache line in existing L1 cache in SMT. Also our approach can han-
dle large threads since now the entire cache can be used to buffer results and to
check for dependences.

The rest of the paper is organized as follows: section 2 discusses related work,
section 3 discusses our cache-based architecture to support speculative multi-
threading, section 4 discusses results and in section 5 we conclude the paper.

2 Related Work

Speculative multithreading architectures have been studied intensely during the
past decade. Earlier architectures were based on special hardware structures for
dependence checking like the address resolution buffer (ARB) in [4], and the
memory disambiguation table (MDT) in [B]. These special hardware structures
are of limited size and need extra cycles to access them. To avoid these limita-
tions cache-based architectures like speculative versioning cache (SVC) [13] and
STAMPede[10] were proposed.

When compared to speculative multithreading on chip multiprocessors
(CMPs), there are very few studies on supporting speculative multithreading for
SMTs. In [7], private L1 cache for each context is used to buffer speculative values
and do dependence checking. In DMT [2] and in IMT [9] an enhanced LSQ is used.

The main limitation of the LSQ-based approach is the limited size of the
queue. To overcome this limitation we propose a cache-based scheme in this
paper. We draw many ideas from the cache architectures proposed for CMPs.
The difference is that the CMP-based architectures have private L1 cache for
each core and is used to buffer results. The dependence checking hardware is
also distributed among different L1 caches. In our approach, all the contexts in
the SMT share the same cache.

Concurrent to our work, Stampede [11] has extended the cache protocol de-
scribed in [10], to support shared cache architectures. Their technique was stud-
ied in the context of multi-core processors using shared cache. In [3], shared L2
cache based technique was used to speculatively parallelize database applica-
tions. Though they mention that it could be applied to SMT processors all their
results and conclusions are for CMPs, while our scheme is specifically aimed at
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SMT processors. Also we propose a novel two-thread scheme and our four-thread
scheme uses fewer bits per cache line than their scheme. A detailed comparison of
our technique with the STAMPede technique is beyond the scope of this paper.

3 Speculative Simultaneous Multithreading

3.1 Basic SMT Architecture

We consider a SMT architecture where many resources like fetch queue and issue
queue are fully shared [12]. Fig. 1 gives a block diagram of the SMT architecture.
To implement speculative multithreading, we need hardware support to buffer
results from speculative threads, detect dependence violation between threads,
and synchronize threads to communicate register values. The only modifications
we need are the signal table and the modified L1 data cache. Our inter-thread
register synchronization scheme is very similar to [15].

Fetch queue

Decode unit

Function
units

fEE - Addedimodified for
spec. multithreading

- Shared between
threads

- partitioned
between threads

Fetch Unit

IL1
cache

Fig. 1. SMT Block Diagram

We use a novel cache-based scheme to support buffering of speculative values
and to enforce memory dependences. In section 3.2, we first present a simplified
scheme that supports only one speculative thread, and in section 3.3 we extend
this scheme to four (or more) threads.

3.2 Simplified Two-Thread Scheme

In this section, we consider a SM'T processor with only two threads. Here, we only
need to introduce two extra states to each cache line - Speculative Valid (SV) and
Speculative Dirty (SD). Each cache line also needs two extra bits - Speculative
Load (SL) and Speculative Modified (SM) to support data dependence checking.
In the proposed scheme, all of speculative data are kept only in the shared L1
cache, and all of the data stored in L2 cache are non-speculative. Fig. 2 presents
the cache-line state transitions in this scheme. In fig. 2 the transitions are of the
form ’Command from processor / Action taken’.

Speculative value buffering. When a speculative thread writes, the value is stored
in the shared L1 data cache with the SM bit of the cache line set and the cache
line transitions to the SD state. The value stays in the cache till the thread is
committed or squashed. Thus, the L1 D-cache acts as a store buffer that buffers
speculative updates.
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Fig. 2. Two Thread Scheme - Cache State Transitions

Dependence Violation Detection. When a speculative thread issues a load opera-
tion, it first checks if a speculative thread has already written the value. However,
by having just one SM (speculative modified) bit for each cache line, we cannot
be sure which word in a particular cache line was written by the speculative
thread. To allow more precise dependence information, we could maintain one
SM bit (SMi) for each word in the cache line. If the SMi bit is not set, the SL
(speculative load) bit will be set and the cache line transitions to SV (specula-
tive valid) state, as this load could cause a possible dependence violation, when
a non-speculative write arrives later.

Here, when a non-speculative thread writes into a cache line, if the SL bit is
already set, it indicates that the speculative thread has read a stale value. The
speculative thread will be squashed and restarted.

Non-speculative thread execution. If the state of the cache line being written to
is SD (speculatively dirty), the non-speculative thread writes the value directly
to L2 cache. Also, it writes the portion of the data non-overlapped with the
speculatively modified data (indicated by SMi bits) into the L1 cache. This
merging is done, so that the speculative thread can get the most recent non-
speculative value from L1 cache. Also this simplifies the commit operation. Reads
by a non-speculative thread to a speculatively modified line (SD) are treated as
a cache miss and the value is directly taken from the L2 cache.

Replacement policy. Speculatively modified cache lines or the lines with the SL
bit set cannot be evicted from the cache. If evicted, we lose information which
can lead to incorrect execution. When we have to replace a line, a line which has
none of the SL and SM bits set is selected. If a non-speculative thread needs to
replace a line and couldn’t find a clean line, the speculative thread is squashed to
relinquish its lines. This is done to avoid blocking the non-speculative thread and
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thus avoiding deadlock. In case of speculative thread, the thread is suspended
till it becomes non-speculative.

Commit and Squash. When a thread commits, both the SL and SMi bits are
cleared. Unlike other schemes where every speculative value needs to be written
to the cache at the point of commit (which could potentially take hundreds of
cycles), the commit operation can be done in just one cycle in our scheme by
gang-clearing both SL and SMi bits.

When a thread squashes, the SL bit in all cache lines is cleared (gang-clear).
The valid bit for a cache line is also cleared if the SM bit is set. This is like the
conditional gang-clear operation used in Cherry|g].

3.3 Four-Thread Scheme

When executing more than one speculative thread, the L1 D-cache needs to
buffer results from two or more threads, so the two-thread scheme cannot be
directly applied. In this section we propose a scheme which can efficiently handle
more than one speculative thread. The basic idea is to use the entire set in the
cache to buffer different versions of the same line created by the different threads.
We will use a 4-thread system to simplify our explanation.
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Fig. 3. Speculative Store Handling

Speculative Buffering. The L1 D-cache has to buffer results from multiple
threads, so we introduce Owner bits (OW) (one for each thread) which keep
the speculative thread id that wrote into the cache line. For a non-speculative
cache line, the OW bits are cleared. Buffering of speculative values is explained
in Fig 3(a). Fig 3(b) shows an example where thread 2 tries to write a new
version of A to a set which already contain versions from thread 1 and thread 3.

Speculative Load Ezxecution. A cache line can be read by any of the four threads,
so a single SL bit is not sufficient to indicate which thread has caused dependence



Supporting Speculative Multithreading 153

violation. We introduce a SL bit for each thread on each line of cache (4 bits for
4 threads). The execution of a speculative load instruction is explained in fig 4.
We can see that the speculative load can either load from its own version (i.e.,
a hit), from predecessor thread’s version (i.e., a partial hit) and from L2 cache
(i.e., miss - fig. 4(b)). of the cache line.
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Fig. 4. Speculative Load Handling Example

Dependence Detection. When a store executes, it checks whether the versions
of the cache line belong to any of its own successor threads. If SL bit is set for
any of the successor threads, the successor thread is squashed along with its
successors. The oldest squashed thread is then restarted.

Non-Speculative Thread Ezxecution. Execution of non-speculative load and store
is very similar to the speculative thread execution. But the non-speculative
thread does not set any SL, OW or SMi bits. Also, the non-speculative store
writes the portion of the data non-overlapped with speculatively modified data
(SMi bits) into all versions in the L1 cache. This merging is done so that the
speculative threads will get the most recent non-speculative version.

Commit and Squash. To squash a thread, the SL[thread_id] is cleared for all of
the lines in the cache. This can be done as a gang-clear operation. Also the line
is invalidated if any of the SMi bit is set. This is accomplished by a conditional
gang-clear operation as in two-thread scheme.

To commit a thread, the SL [thread_id] bit and the SMi bits of the thread are
cleared. The commit must ensure two things. It should make sure that there is
only one non-speculative version present in L1 cache. If a cache line to which
the current thread wrote has another version which is earlier than that of the
current thread, then that version needs to be written back and invalidated. Also,
in our scheme, we require that only the non-speculative thread can send values
to the successor threads. So once a thread becomes non-speculative, it has to send
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its speculatively modified values to all successor threads. To ensure these two
conditions are met, we need to commit each cache line belonging to the current
thread whose SMi bit is set. To commit a cache line, we write-back and invalidate
any versions that belong to earlier threads, and we need to merge the modified
data with the versions belonging to successor threads. Though this step might
be time consuming, we can see that this is simple to implement, and we can
potentially overlap this with the execution of the next thread. Our simulation
shows that this overhead causes no potential performance degradation.

Implementation Issues. While executing a speculative load, we may have to
search the entire set in the cache to get the predecessor thread’s cache line.
Also, while detecting mis-speculation, we need to search the entire set to find if
any successor thread has set the SL bit. These operations can be implemented
by adding more logic to the tag matching hardware but it could increase cache
hit time. In our scheme, we assume there is special hardware that does these
”whole-set” operations, which is kept separate from the tag matching hardware.
We assume such special operations take 3 cycles.

As we see in the two-thread case, we cannot replace a line with SL or SM
bit set. If a speculative thread encounters a cache miss and if it is not able to
find a clean line to replace from the cache, it can either suspend and wait till
it becomes non-speculative or it can squash the successor threads and consume
its cache lines. A thread will be forced to wait if it has no successors to squash.
While waiting, a thread occupies shared resources like fetch queue, RUU and
LSQ. There may be a situation where all the resources are occupied by the
suspended thread and the non-speculation thread is unable to proceed, thus,
causing a deadlock. To avoid this scenario, the speculative thread will give up
its resources when it is stalled.

4 Experimental Results

4.1 Experimental Methodology

In our experiments, we used a detailed superscalar simulator based on Sim-
plescalar 3.0. We modified Simplescalar to a trace based simulator that accepts
Itanium traces. The trace for the input program is generated by Pin [6]. Traces
are collected for four threads at a time and the simulator is called to consume
the traces. Table 1 details the processor parameters used.

To generate parallel threads, we use a compiler framework based on Intel’s
ORC compiler [I]. The compiler selects loops in each benchmark that are suit-
able for parallel execution, performs optimizations such as code scheduling to
enhance overlap between threads. The compiler also generates synchronization
instructions for frequently occurred cross-iteration data dependences. Our com-
piler framework and the loop selection methodology are described in detail
in [14].
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Table 1. Processor Parameters

Fetch Width 4 Bundles ( 3 instructions each)

Decode, issue and commit width|8, 4 and 4 instructions

Function Units 4 integer, 4 floating point, 4 memory ports

Latency 1 cycle for integer, 12 cycle for floating point

Register Update Unit(ROB) 256 entries

LSQ size 128 entries

Branch predictor Bimod, 2K entries

L1D,I Cache 64K, 4 way associative, 32B blocksize, 1 cycle

Unified L2 1MB, 8 way associative, 64B blocksize, 18 cycles

Memory latency 120 cycles for 1st chunk, 18 cycles subsequent
chunks

Branch mis-prediction penalty |6 cycles

4.2 Results

Table 2 shows the details of benchmarks (from SPEC2000) used to evaluate
our scheme. Since our primary objective here is to evaluate our proposed cache
scheme when the SMT processor is executing in parallel mode, we only focus
our simulations on the parallel regions in each benchmark.

Table 2. Details of Benchmarks

Benchmark |No of loops selected |coverage of selected regions
Mecf 6 60%
Twolf 15 32%
Vpr (place) 3 65%
Equake 4 90%
Art 12 52%

We consider the following configurations:

Superscalar: This is an out-of-order superscalar processor with parameters
described in Table 1.

SMT-2: This is an out-of-order SMT processor which can support two threads
at a time using the two-thread scheme described in section 3.2. This configuration
has the same number of functional units as in the superscalar.Each line of cache
has 9 extra bits (8 SMi and 1 SL).

SMT-4: This SMT processor can support four threads using the four-thread
scheme described in section 3.3. It also has the same number of functional units
as in (1) and (2). Each line of cache has 16 extra bits (8 SMi, 4 SL and 4 OW
bits).

SMT-LSQ: This SMT processor supports 4 threads and uses the LSQ-based
mechanism as in [9][2]. It has the same number of functional units, but uses
extra space for enhanced LSQs that support speculation. Each thread has 128
LSQ entries.
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CMP: This is a multi-core based speculative processor using the Stampede
protocol[10]. This uses four identical cores and each core is a superscalar proces-
sor described in Table 1.

Fig. 5 shows the relative speedups of the different configurations over the super-
scalar configuration. From Fig. 5 we can see that the two-thread SMT scheme
achieves about 10% speedup over the superscalar version. The two-thread SMT
achieved this with very simple modifications to cache. The four-thread version
achieved 15% speedup over superscalar. This performs better than the two-
thread version but needed more complex hardware.

BEMT -2
BEMT
mEMTLSG
OcMP

Fig. 5. Speedup of different configurations over the Superscalar configuration

Fig. 6 shows the execution time breakdown for the different configurations
normalized to the execution time of the superscalar configuration. The explana-
tion of the different categories are given in Table 3.

From Fig. 5, we can see that, usually the four thread configurations SMT-4
and SMT-LSQ perform better than SMT-2 configuration. This is because most
loops selected by our compiler have good thread level parallelism and can benefit
from more threads. However SMT-2 has the advantage of causing fewer squashes
because it has only one speculative thread. Due to this SMT-2 performs better
than SMT-4 and SMT-LSQ for the benchmark Art.

The CMP configuration performs about 15% better than the SMT-4 config-
uration. This is because the CMP uses four separate cores and, hence, has four
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Table 3. Execution State Category

Category Explanation

Cache Miss Stall due to data cache miss

Idle Lack of threads to execute

Synchronization| Thread is waiting for signal from predecessor

Squash Thread is squashed due to dependence violation

Buffer Overflow | Thread made to wait due to lack space to buffer results

Others Thread stalled due to instruction cache miss, branch mis-prediction, etc.

times more functional units and cache capacity. From these results, we can see
that the performance of SMT-4 configuration is quite close to that of the CMP
configuration even with much limited resources.

Fig. 6 shows that the SMT-LSQ is stalled for a significant amount of time
in some benchmarks due to buffer overflow, thus making it slower than SMT-4
configuration. But in some loops, SMT-LSQ can perform better than SMT-4
configuration. This is because the SMT-LSQ has fewer squashes due to its fine
grained dependence checking mechanism. This effect is observed in the bench-
mark vpr. Also, some loops have large number of squashes, in this case it is more
beneficial to suspend the threads than to let them execute and later squash. This
is because the squashed threads waste resources which could have been allocated
to the non-speculative thread. In case of SMT-LSQ large threads are suspended
and hence do not waste resources. This effect is observed in some of the loops
in the benchmark twolf. The performance of SMT-4 can be improved if we have
runtime feedback information, so that we can selectively turn off speculative
threads on loops with frequent squashes.

In the SMT-LSQ configuration, we used an aggressive 128-entry per thread
LSQ which might be unrealistic to implement in reality. Even with this config-
uration, it is still not able to support some of the loops without overflowing the
queue. Fig. 6 shows that the SMT-4 scheme is able to achieve about 3% speedup
over such SMT-LSQ configuration. But for loops with an average thread size of
more than 150 dynamic instructions, the SMT-4 configuration performs about
14% better than SMT-LSQ configuration.

5 Conclusion

In this paper, we proposed a cache-based scheme to support speculative multi-
threading in SMT processors. Our two-thread scheme requires 9 bits to be added
to each cache line and with this simple modification we can achieve about 10%
speedup over the superscalar processors. Our four-thread scheme with slightly
more complex hardware can perform about 15% better than superscalar proces-
sors. Also, we showed that this cache-based approach can outperform the LSQ
based approach by 14% for large loops. From our paper it is clear that specula-
tive threads can be easily supported in SMT processors with minimal changes
in hardware.
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