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Abstract. Post-link and dynamic optimizations have become impor-
tant to achieve program performance. A major challenge in post-link
and dynamic optimizations is the acquisition of registers for inserting
optimization code in the main program. It is difficult to achieve both
correctness and transparency when software-only schemes for acquiring
registers are used, as described in [1]. We propose an architecture feature
that builds upon existing hardware for stacked register allocation on the
Itanium processor. The hardware impact of this feature is minimal, while
simultaneously allowing post-link and dynamic optimization systems to
obtain registers for optimization in a “safe” manner, thus preserving the
transparency and improving the performance of these systems.

1 Introduction

The dynamic nature of languages and dynamic program behavior has increased
the importance of post-link and dynamic optimization systems. Many such sys-
tems have been proposed in the past[4][5][6][11][12]. To deploy optimizations at
post-link or run time, these systems need registers. Register acquisition, which,
in the context of post-link and dynamic optimization broadly includes obtaining
extra registers for optimization, is challenging due to several reasons: (i) com-
piled binaries have already performed traditional register allocation that tried
to maximize register usage; (ii) control and data flow information, which is nec-
essary for performing register allocation, may not be accurately known from
analysis of binary. At runtime when code is seen incrementally, flow analysis is
more restricted. Thus, there is no efficient software solution for acquiring regis-
ters for post-link time optimization, and even more so for dynamic optimization.
Software support, such as compiler annotations, and architecture/hardware sup-
port, such as dynamic stack register allocation, can potentially ease post-link and
runtime register acquisition.

The requirements of register acquisition for post-link and dynamic binary
optimization systems are different from traditional and dynamic compilation
models. Since register allocation has already been performed, such systems have
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to make very conservative assumptions about register usage. Dynamic binary op-
timization systems face the additional burden of finding registers with minimal
runtime overhead. Post-link time optimization systems do not have a time con-
straint, since analysis is done off line. Traditionally, these systems rely on binary
analysis to find registers that are infrequently used. These registers are freed for
optimization by spilling them. For architectures that support variable-size reg-
ister windows, these optimization systems increase the size of register window
to obtain registers. Unfortunately, these software-based schemes make assump-
tions about code structure that can be easily broken. In this paper, we make the
following contributions: (i) Briefly describe existing register acquisition schemes
in post-link time and dynamic optimizers, such as Ispike[5] and ADORE[2][4]
(ii) Present an architecture feature that enables the use of variable-size register
windows to dynamically obtain required registers. In the context of this paper,
register allocation means register acquisition as described above.

2 Software-Based Register Allocation

2.1 Fixed-Number Register Allocation

Registers can be allocated statically with help from the compiler or from hard-
ware. The compiler can be instructed to not use certain general purpose registers,
which can be later used by dynamic optimization systems. Similarly, hardware
can be implemented to allow the use of certain registers only for specific pur-
poses. If the compiler is used for static register allocation, compiler support must
be available from compilers and some form of annotation must be provided for
the dynamic optimizer to differentiate between supported and unsupported bi-
naries. Hardware can support a fixed number of registers (shadow registers) for
optimization. [1] presents a detailed explanation of the limitations involved in
using a fixed number of registers. Lu et al. in [4] showed that allocating registers
dynamically can significantly improve the performance of runtime optimization
systems.

2.2 Dynamic Register Allocation

Register Spilling: Registers used for dynamic optimizations can be obtained
by first scanning the optimized trace (a single-entry multiple-exit region of code)
to find unused registers, then spilling and restoring these registers at trace entry
and exit, respectively. The main challenge in register spilling is where to spill
registers. Possible choices are (i) on stack top (ii) on the heap (thread shared or
thread private). Each of these has limitations detailed in [1].

Dynamically Increase Variable Register Window Size: The size of frame
(of the function to be optimized) is incremented by executing a copy of the
alloc[15] instruction for the current frame with an increased frame size. Figure
1, shows how extra output registers are dynamically allocated for optimization.
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Fig. 1. Mechanism of dynamic register allocation using alloc instruction on the IA64
architecture[15]

However, there are some limitations to this approach. It is difficult to find the
alloc instruction for the register frame of code to be optimized. Scanning the
binary may lead to detection of an incorrect alloc instruction due to compiler
optimizations, such as function splitting. Aggressive compilers use multiple allocs
to allocate different number of registers down different paths. The presence of
multiple allocs may lead code scanning in finding the wrong alloc. Leaf routines
may not have an alloc instruction at all, and they use registers from the caller’s
output frame and global registers. These are described in detail in [1].

Since static scanning has limitations, a dynamic mechanism is needed to find
the state of the current register stack. This state information is encoded in an ar-
chitecturally invisible register called current frame marker (CFM). On a function
call contents of this register are copied to an architecturally visible application
register called previous function state (ar.pfs). To determine the register stack
state dynamically, we can inject a function call just before trace entry. The in-
jected function call then reads the ar.pfm register and passes this value to the
dynamic optimizer. Possible methods of injecting a function call are (i) inserting
a call instruction before trace entry and (ii) generating a trap by inserting an
illegal instruction, for example. For reasons discussed in [1] we need to generate
a trap, which has a high overhead (as much as 1789%).

3 Architecture Support

Since the main limitation of existing support is the absence of fast access to
current register state information, an easy architecture extension is to expose
the CFM register and thus providing the current state information. Doing so,
reduces the overhead of finding current state, but does not reduce the overhead
of determining if the state is the same as when the trace is generated. If the
state has changed, traces need to be regenerated that can result in substantial
overhead. With this limitation in mind, we sought features that were free from
the above limitations and provided a fast and easy way to obtain additional
registers.
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Fig. 2. Main idea of dynamic register allocation

3.1 Main Idea

The main requirements of allocating registers dynamically is a scheme that uses
relative addressing to access registers. If we use a fixed method to access regis-
ters, compilers can use those registers, and we will have no guarantee of using
those registers post-compilation. A disadvantage of fixed register schemes is that
optimizations cannot be stacked onto one another. A scheme that can allocate
registers on top of existing allocation is better suited to runtime optimization,
or in general, incremental post-link optimization. Figure 2, shows the main idea
of this approach. In this figure, a new instruction can allocate some number of
registers from available architectural registers by only specifying the number of
registers needed rather than specifying complete frame information (as is needed
in the current implementation of alloc instruction). The other aspect shown in
the figure is the access mechanism for these registers. Registers are accessed
relative to the Top of Register Stack (ToRS). Let us consider some cases and
explain how dynamic register allocation will work with such a mechanism, even
if the compiler uses this scheme for allocating registers. Suppose that post-link,
we want to optimize a loop that already addresses some registers using the top
of register stack. Let us assume that optimization requires 2 dynamic registers.
We can use a new instruction to increment the size of frame by 2 and adjust the
relative offset of instructions already using relative addressing by 2. Note that
only those instructions that are in the trace need to be modified, as the state
of register frame would be restored upon trace exit. We need another instruc-
tion to restore the register frame. Thus, a stack-based approach coupled with
relative addressing from top of stack can be effectively used for dynamic register
allocation.

3.2 Relative Addressing

In this section, we will discuss implementation details of the relative addressing
scheme proposed. There are 128 registers in the IA64 ISA and a 7-bit field is
used to address these registers. In the simplest form, a bit can be added to each
7-bit register entry that distinguishes regular access from relative access. We
would add an extra bit for each register field thereby increasing the instruction
width from 41 bits to 44 bits (maximum of 3 register fields in an instruction).
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Fig. 3. Case example showing stack allocation of 20 registers highlighting the case
where total number of registers accessed is less than 64

Fig. 4. Example with 80 registers are allocated on the stack highlighting the case where
total number of registers accessed is greater than 64

However, we can use a clever trick to ensure that the register address field width
is not increased. In this scheme, the 7th bit is used to distinguish between regular
access and relative access. Since we are left with only 6 bits for indexing into
registers, let us discuss how 128 registers can be accessed using this addressing
scheme.

Case 1: Number of Registers allocated by compiler ≤ 64: In this case
(Figure 3) all registers can be accessed by both relative and regular access. The
number of registers (static and stack) total to less than 64. Thus, they can
be accessed by both modes. For regular access the 7th bit is set to zero. If the
compiler wants to use relative accessing it is free to do so. In the example shown,
20 stack registers are allocated along with 32 static registers. Register r51 is the
last allocated register which can be accessed as r51 or as ToRS[-1] as the ToRS
points to r52. The compiler should encode this field as 10000002.

Case 2: Number of Registers allocated by compiler > 64: In the example
shown in figure 4, the compiler has to use regular mode for registers r0 to r47.
Registers r48 to r63 can be accessed using regular mode and ToRS mode (ToRS[-
64] to ToRS[-49] respectively) and registers r64 onwards have to be accessed
using relative addressing (ToRS[-48] onwards).

Thus, the addressing mode is implemented such that the width of register
field remains the same. In the extreme case, when all 128 registers are allocated,
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inc_alloc imm7
imm7 - a 7-bit immediate field used to specify the amount to increment the frame by

Operation:
if(cfm.sof+imm7) > 96 then Illegal_operation_fault() else cfm.sof += imm7

dec_alloc imm7
imm7 - a 7-bit immediate field used to specify the amount to decrement the frame by

Operation:
if(cfm.sof-imm7) < 0 then Illegal_operation_fault() else cfm.sof -= imm7

Fig. 5. Instruction format for inc alloc and dec alloc instructions

r0 to r63 are accessed using regular mode and r64 to r127 are accessed using
ToRS[-64] to ToRS[-1], respectively. Since, some registers can be accessed by
both the modes, we must be careful when we increase the size of register frame,
as it may so happen that some register that was accessed using ToRS mode
now has to be accessed via direct mode. As an example, let the initial frame
have 64 stack registers and the first stack register (r32 ) is accessed using ToRS
mode. If the size of frame is increased by, say, 5 registers, then the access of this
register would have to converted into direct mode. Since this involves knowing
the current frame state, optimizers can choose to bail out when such conditions
exist.

Since a register access on Itanium already performs an indexing operation
to access the correct physical register, we believe our implementation does not
add to the hardware cost. To reduce the cost of subtracting the offset, the top
of register stack can be maintained as part of the current frame in the CFM
register.

3.3 New Instructions

Some new instructions must be added to manage dynamic register stack in a
way which is slightly different from the alloc instruction. The aim is to leverage
existing hardware. We add two new instructions for increasing and decreasing
the register stack. The first instruction is inc alloc that increments the current
register frame size (cfm.sof) by a number specified in the instruction. The second
instruction is dec alloc that decrements the sof value in cfm. The format and
operation of these instructions are shown in Figure 5.

4 Related Work

Dynamic binary translation poses similar challenges to register acquisition. Reg-
ister allocation in translation involves mapping source (i.e. the binary to be
translated) registers to the target (i.e. the host) machine’s registers. Shade[9][10]
is a dynamic translation and tracing tool for the SPARC platform. It translates
SPARC (v8 and v9) and MIPS 1 instructions for SPARC v8 systems. For native
translation, the virtual and the actual number of registers are the same. Since
some registers are needed by SHADE, registers in the translated program are
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remapped to different physical registers and registers are spilled lazily. PIN [13]
is a instrumentation tool for 4 architectures IA32, EM64T, IA64 and ARM. It
performs native translation for each of these architectures and does register re-
allocation and liveness analysis. PIN builds register liveness incrementally as it
sees more code. When traces are linked, PIN tries to keep a virtual register in
the same physical register whenever possible. If this is not possible, it reconciles
differences in mapping by copying registers through memory before jumping to
another trace. Probst et al. [8] discuss a technique for building register liveness
information incrementally for dynamic translation systems.

Post-link optimizers such as SPIKE[6] and Ispike[5] optimize binaries by an-
alyzing profile information. SPIKE needs registers for inserting instrumentation
code. It uses register usage information collected by scanning the binary to find
free registers, so that register spills can be minimized. Ispike collects profile from
hardware counters on the Itanium platform and thus it does not require registers
for collecting profile. However, data prefetching optimization requires registers.
Ispike uses either free registers by liveness analysis, increments register stack (by
looking for alloc instruction) or uses post-increment/decrement in prefetch and
load operations.

Dynamic optimizers can be similar to dynamic translators if they use transla-
tion to build traces. Dynamo [11] is a dynamic optimizer for PA-RISC binaries.
When emitting traces to be optimized, Dynamo tries to create a 1-1 mapping
between virtual and physical registers. For registers that cannot be mapped, it
uses the application context stored in the translator to store the physical regis-
ters. DynamoRIO [12] is a system based on Dynamo for x86 systems. ADORE
[2][3][4] as described earlier uses alloc instruction or spills registers to obtain
registers for optimization. Saxena in [14] describes various issues of register allo-
cation for the ADORE system and presents data for finding dead registers in a
trace. Jesshope in [17] uses register access by relative addressing to communicate
dependencies between variables in dynamically parallelized code. Relative access
to registers is not a new idea, but one that is already implemented in Itanium.
Our contribution is to provide another base for accessing registers, to tackle the
specific problem of register acquisition for post-link and dynamic optimization.

5 Conclusion

Register allocation for post-link and dynamic optimization systems poses in-
teresting challenges as correctness, overhead and transparency are important
concerns. In this paper, we have presented a modest hardware addition to the
IA64 architecture, as an example, to illustrate how such a feature would simplify
dynamic register acquisition. The proposed hardware support ensures correct ex-
ecution while imposing no performance overheard and transparency limitations.
When multiple post-link and dynamic optimizations are present, the proposed
hardware allows optimization systems to stack their optimizations on top of
each other. The architecture feature described, leverages existing hardware on
the Itanium processor, thus will likely be feasible. We believe that given the
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performance delivered by post-link and dynamic optimization, it will be cost-
effective to devote more hardware resources for this purpose.
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