Physical-Layer Cross-Technology Communication via Emulation BEST Paper Award @ MobiCom 2017

Zhijun Li and Tian He

Computer Science and Engineering University of Minnesota

Wireless is Everywhere

Tian He @ UMN

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

... and Increases Rapidly

Source: Navigant Research

Gartner predicts 20 billion IOT devices by year 2020

Tian He @ UMN

... also Diversifies Quickly

4

Coexist and Collaborate

Tian He @ UMN

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴⁴

Objective: Ubiquitous Connectivity

Q: How to Interconnect/bridge them?

Tian He @ UMN

6

Bridging Wireless Tech: Gateway

- Extra HW/deployment cost
- Traffic overhead into/out of the gateway
- Pre-deployment, unsuitable for ad hoc/mobile

The New Paradigm: CTC

Cross-Technology Communication (CTC) enabling heterogeneous devices talks directly!

Tian He @ UMN

Driven to Discover⁵⁴

What CTC can Achieve: Low Cost

A WiFi AP controls all smart home ZigBeeenabled devices in one hop without gateway

Tian He @ UMN

9

What CTC can Achieve: Mobility

Direct Communication among mobile IOT devices without pre-deployed gateways

What CTC can Achieve: Coordination

- Extends local mechanisms globally across wireless tech
 - Global RTS/CTS Reservation.
 - Global Time Division Multiple Access (TDMA)

WEBee

Physical-Layer Cross-Technology Communication

WEBee: WiFi Emulated ZigBee

• The State of the Art

The Design

Implementation & Evaluation

Extensions

The State of the Art

A Brief History of CTC Research

A Brief History of CTC Research

The Design

Tian He @ UMN

The Key Idea of WEBee

Tian He @ UMN

19

How Wi-Fi Transmits

Tian He @ UMN

Emulation via a Reverse Path

Tian He @ UMN

UNIVERSITY OF MINNESOTA Driven to Discover™

Minimizing Emulation Distortion

 Minimizing emulation distortion in the time-domain is equivalent to minimizing the total deviation of frequency components (based on Parseval's theorem)

$$\int_{t=-T/2}^{T/2} |u(t) - v(t)|^2 dt = T \sum_k |U[k] - V[k]|^2$$

QAM FFT **Emulation** × Desired Corresponding The Closest Wi-**Time-domain Frequency-domain Fi QAM Points ZigBee Signals Components** UNIVERSITY OF MINNESOTA Tian He @ UMN 23 Driven to Discover[™]

Other Technical Challenges

Tian He @ UMN

24

Driven to Discover™

Innovative Features of WEBee

Dual-Standard Compliance

A part of WiFi frame is a Zigbee frame

No change in Sender's Hardware/Firmware

Send a normal WiFi Frame

No change in receiver's Hardware/firmware

Receive a normal ZigBee Frame

Combine the advantages of two technologies.

Tx : 26dbm Sensitivity : -65dbm Big Mouth

Rx : 0dbm Sensitivity : -97dbm Good Ear

WEBee has a longer range than Wi-Fi!

Support parallel CTC in one WIFI Packet

Simultaneous Unicast

2MHZ

Support high mobility and duty cycled operations

Longer Range, better mobility

Low Power Listening

Tian He @ UMN

An 16,000x faster CTC with 99.9% reliability

For details referring to our mobicom 2017 paper

Implementation & Evaluation

Tian He @ UMN

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

System Implementation

Experimental Setting

- Lab
- Hallway
- Outdoor

Experiment setting

10,000 runs each trial

- Varying distances
- **Varying Tx Power** •
- Varying packet length •
- Varying content •
- Varying duty-cycle
- Varying Mobility

Tian He @ UMN

Symbol Error Ratio vs Data Rate

Frame Reception Ratio

A frame fails with one symbol error

Reliability after Retransmission

99% after 6 retransmissions

Less re-TX with Repeated preamble and coding

```
Tian He @ UMN
```

38

Parallel CTC

With two channels, WEBee vs. FreeBee = ~16,000x

Tian He @ UMN

39

Driven to Discover⁵⁴

WEBee in Action

WEBee Demo

Tian He @ UMN

Application: Smart Light Control

You can control ZigBee Smart Bulb with WEBee

WeBee Solution

Tian He @ UMN

UNIVERSITY OF MINNESOTA Driven to Discover³⁴

Release: WEBee Payload Generator V1.0

You can conduct cross-technology research using WEBee Generator!

43

Available at: http://tianhe.cs.umn.edu/CTC

WEBee: Phys	ical-Layer Cross-7	Technology Communication via Emulation		
WEBee Frame Ge	nerator			
ZigBee Symbols:		Entered Zigbee symbols will be used to fill the PHY Service Data Unit (PSDU) in the WEBee packet.		
WiFi Injector: Socket(UDP)		Preamble Start of PHY Header PHY Service Data Unit (PSDU) Delimiter		
Scramble Seed:	Generate			
WiFi Payload				
Usage Description				
The WEBee Frame Genera	tor can generate the WiFi frame for a	ny ZigBee frame.		
 Enter the ZigBee sym Choose the WiFi fram TCP protocol, and Lo 	bols in the following format: 0,0,0,0,0 ie injector used in your WEBee sende rcon.)	0,0,0,7,10,3,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,		

Tian He @ UMN

Possible New Topics:

- Channel Access Control
- Coordination
- Neighbor Discovery
- Multi-Technology Routing
- CTC Time Synch.CTC Localization

Extension

Question:

Whether Signal Emulation is a generic technology?

BlueBee: BlueTooth to ZigBee [SenSys '17]

Tian He @ UMN

LTEBee: LTE (band 7) to ZigBee

• LTE smartphone controls a CC2530 ZigBee Blub directly after 7-layers channel coding and 6-step modulation.

Conclusion

- WEBee is the first physical-layer CTC design, a paradigm shift with a significantly higher throughput, while requiring no change of HW.
- Our work indicates Signal Emulation is a generic technology to build light-weight SDR, striking a delicate balance between flexibility and cost.
- Our work brings a surge of opportunities to expand many local wireless mechanisms globally (e.g., coordination, discovery, etc.) across technologies.

CTC Technical Support is available at

http://tianhe.cs.umn.edu/CTC

Tian He @ UMN

Can support two-way

UNIVERSITY OF MINNESOTA

Driven to Discover⁵⁴

Opportunity for Cross-Tech.-Comm.

 Wireless technologies share unlicensed ISM bands, offering opportunity for cross-tech. communication

Tian He @ UMN

51

Driven to Discover⁵⁴

Channel Mapping

• OFDM Has 64 subcarrier, 48 data, 12 null and 4 pilot

Figure 9: Channels Mapping for Pilot Avoidance

Four-to-one emulation

• Four Wi-Fi symbols are used to emulate one ZigBee symbol

Figure 10: Emulate OQPSK with WiFi QAM.

UNIVERSITY OF MINNESOTA

Driven to Discover[™]

Link Layer Reliability

Repeated preamble and hamming coding

