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1 Overview of pGeMSLR

The parGeMSLR is an MPI-based sparse linear system solution/preconditioning package
implementation with C++. Currently, parMETIS [4] is required to build the parGeMSLR.
Thread-level parallelism could be enabled via OpenMP, and GPU acceleration is available
via existing CUDA libraries, including cuBlas, cuSparse, and THRUST.

The parallel Generalized Multilevel Schur complement Low-Rank (pGeMSLR) is a Do-
main Decomposition (DD) based multilevel preconditioner for large and sparse distributed
(non)symmetric linear systems of equations. A purely algebraic multilevel reordering is first
applied to obtain a block-diagonal structure corresponding to interior nodes and an inter-
face coupling matrix corresponding to the exterior nodes at each given level until reaching
the last level. The preconditioner approximately solves the Schur complement system with
the interface coupling matrix plus a low-rank correction term. Due to the dense arithmetic
introduced by the low-rank correction, this preconditioner is suitable for GPU acceleration.

1.1 Distributed Memory System

Typically, the first step of solving sparse linear systems on distributed memory systems
is to partition the original problem’s physical domain or partition the adjacency graph of
the coefficient matrix A [4, 1, 3, 8]. After that, unknowns are assigned to different MPI
processes.

The parGeMSLR focus on the sparse linear systems in the following block form with p
MPI processes:

Ax =


A11 E12 · · · E1p

E21 A22 · · · E2p
...

...
. . .

...
Ep1 Ep2 · · · App



x1

x2
...
xp

 =


b1
b2
...
bp

 = b, (1)

where each block row is held by one MPI process, and Aii are square matrices.
If we use the view of DD, each block row is a set of equations that corresponds to a

subdomain, and the off-diagonal matrices Eij and Eji are inter-domain couplings between
subdomain i and j.
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1.2 Edge Separator and Vertex Separator

We will first describe the edge separator and the vertex separator [9].
We could partition the adjacency graph of the coefficient matrix A with vertex-based par-

tition and edge-based partition. With vertex-based partition, we partition the vertices into
several subdomains such that no vertices belong to more than one subdomain. With edge-
based partition, we partition the edges instead. When the pattern of A is non-symmetric,
we could partition the adjacency graph of |A|+ |AH |.

Assume each vertex is associated with one unknown. The edge separator is obtained
with the vertex-based partition. It is the set of inter-domain edges. The vertex separa-
tor is obtained with the edge-based partition. It is the set of vertices shared by multiple
subdomains.

Within each subdomain, vertices can be classified into interior vertices and exterior ver-
tices. With the edge separator, interior vertices are those vertices that are not the end of
any inter-domain edges. With the vertex separator, interior vertices are those vertices that
are not in the vertex separator. In some literature, vertices could also be assigned into three
groups [7]. Since each vertex corresponds to one unknown, we can classify unknowns into
interior unknowns and exterior unknowns.

In general, if we partition the original problem into p subdomains, we can reorder the
matrix to the following block form

A0 =

(
B0 F0

E0 C0

)
=


B̂0,1 F̂0,1

B̂0,2 F̂0,2

. . .
...

B̂0,p F̂0,p

Ê0,1 Ê0,2 · · · Ê0,p C0

 , (2)

where
(
B,F

)
corresponds to interior unknowns, and

(
E,C

)
corresponds to exterior un-

knowns.
If edge-separator is used, the E0 and F0 would also have the block diagonal structure:

B̂0,1 F̂0,1

B̂0,2 F̂0,2

. . . . . .

B̂0,p F̂0,p

Ê0,1 Ĉ0,1 Ê12 · · · Ê1p

Ê0,2 Ê21 Ĉ0,2 · · · Ê2p

. . .
...

...
. . .

...

Ê0,p Êp1 Êp2 · · · Ĉ0,p


, (3)

and the Schur complement cam be formed locally by computing the local Schur complement
Ŝ0,i = Ĉ0,i − Ê0,iB̂

−1
0,i F̂0,i. No communication is required.
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1.3 Parallel Preconditioning Methods in pGeMSLR

1.3.1 Block Jacobi Preconditioner

One straight-forward way of preconditioning A in parallel is to use the block Jacobi
approach. All off-diagonal blocks Êij in equation 1 are ignored. The block Jacobi ILU
preconditioners have the following structure:

M−1 =


U−11 L−11

U−12 L−12
. . .

U−1p L−1p

 . (4)

The major advantage of the block Jacobi approach is that no communication is required
when building and applying the preconditioner, making the setup phase scalable and the
solve phase scalable per iteration.

However, as the number of MPI processes increases, more entries are dropped. The
number of iterations to achieve convergence would typically increase a lot, thus influence the
parallel performance.

In the pGeMSLR package, users can also choose to solve the local Schur complement
system using sequential GeMSLR preconditioner.

1.3.2 Two-level Schur Complement Approach

The Schur complement approach can be deduced from a block LDU factorization of A0

in Equation 2 as (
I

E0B
−1
0 I

)(
B0

S0

)(
I B−10 F0

I

)(
u0

v0

)
=

(
f0
g0

)
, (5)

where S0 = C0 − E0B
−1
0 F0 is the Schur complement. With this factorization, A−10 can be

written as (
I −B−10 F0

I

)(
B−10

S−10

)(
I

−EB−10 I

)
. (6)

If edge separator is used on the top level, the global system is in the form of Equation 3.
Due to the block diagonal structure of E, B, and F, we can see that EB−1F also has block di-
agonal structure. Thus, the computation of EB−1F could be done with out communication,
and the Schur complement on the top level takes the form

S0 =


Ŝ0,1 Ê12 · · · Ê1p

Ê21 Ŝ0,2 · · · Ê2p
...

...
. . .

...

Êp1 Êp2 · · · Ŝ0,p

 , (7)

.
To form the Schur complement system, we only need to form the local Schur complement

Ŝ0,i. Thus, we can easily use some local approaches like Partial ILU or incomplete triangular
solve to form the global Schur complement system.
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After the explicit form of Schur complement system is available, we can then use other
strategies to solve it.

In the pGeMSLR package, we provide the option to form the approximate Schur comple-
ment using partial ILUT. After that, the Schur complement is solved with preconditioned
GMRES. The simplest approach is to use block Jacobi ILU to preconditioning the Schur
complement system. Low-rank approximation could be used to improve the robustness of
the block Jacobi ILU preconditioner.

Low-rank approximation of the explicit Schur complement In many cases, the
matrix S−1 − C−1 has low-rank property. More detail could be found in [6, 5, 2].

The matrix C is usually much sparser than matrix S. Given the low-rank property of
the matrix S−1 − C−1, we could use the approximation of C−1 as the preconditioner, and
add low-rank correction to improve the robustness.

Denote by S̃0 the explicit approximation of the Schur complement. We can write S̃−10 ≈
C−10 (I +G0(I −G0)

−1) where G0 = E0B
−1
0 F0C

−1
0 . Since I +G0(I −G0)

−1 = (I −G0)
−1, we

have G0 ≈ I−S̃0C
−1
0 . Denote by G̃0 the matrix I−S̃0C

−1
0 , we use the low-rank approximation

of G̃0 as the low-rank correction.
In the pGeMSLR package, user can choose to use the thick-restart Arnoldi method or

the subspace iteration method [10] to solve the eigenvalue problems.

1.3.3 Parallel GeMSLR Approach

For some challenging problems, forming an approximation of the Schur complement might
not be accurate enough. For those problem, we can use the parallel version of the Generalized
Multilevel Schur complement Low-Rank (GeMSLR) preconditioner proposed in [2]. This is
a Schur complement-based approach with low-rank correction, where the Schur complement
is kept implicit.

We first recursively apply DD to the C matrix to obtain the multilevel structure

Al =

(
Bl Fl

El Cl

)
, Al+1 := Cl, l = 0, 1, . . . , L− 2., (8)

where Bl on each level is block diagonal.
Consider the following inverse of the LDU factorization of Al(

I −B−1l Fl

I

)(
B−1l

S−1l

)(
I

−EB−1l I

)
. (9)

where Sl is the local Schur complement Cl − ElB
−1
l Fl.

We can write S−1l = C−1l (I + WlRlW
H
l ) for some orthonormal W . A−1l could be written

as (
I −B−1l Fl

I

)(
B−1l

C−1l (I + WlRlW
H
l )

)(
I

−ElB
−1
l I

)
. (10)

The parallel GeMSLR preconditioner approximating B−1l through ILU factorization. The
low-rank approximation of I +WlRlW

H
l is used together with the recursive solve with Cl to

approximate S−1l .
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For positive definite problems, typically a small rank number could leads to good con-
vergence performance. More details could be found in [6, 2].

This parallel preconditioner is highly parallelizable except on the last level. When the
last level is small enough, each MPI process would holds a copy of the last level, and solve
it locally. When the last level is relatively large, we provide two different options. The first
option is to use the block Jacobi approach with residual correction. The second option is to
use a power method similar to the algorithm described in [11].

2 pGeMSLR Components

2.1 Available Parallel Preconditioners

1. Global Preconditioner Options

• Block Jacobi. Block Jacobi preconditioner with ILU or GeMSLR as local pre-
conditioner.

• Two-level Schur Complement. Using Partial ILU to form the Schur comple-
ment on the top level explicitly. Preconditioned GMRES could be used to solve
the top-level Schur complement system.

• Parallel GeMSLR. The parallel GeMSLR algorithm.

2. pGeMSLR Solve Options

• LU Solve. The standard parallel GeMSLR solve.

• U Solve. Only use the upper part of the preconditioner. This option might be
useful for highly indefinite problems.

3. Local Preconditioner Options

• ILUT Threshold-based ILU factorization.

• ILUK Level-based ILU factorization.

• GeMSLR Sequential GeMSLR algorithm.

4. Last Level Preconditioner Options

• ILUT Threshold-based ILU factorization.

• ILUK Level-based ILU factorization.

• BJ ILUT Block Jacobi ILUT.

• BJ ILUK Block Jacobi ILUK.

• POWER ILUT Block Jacobi ILUT with power iteration.

• POWER ILUK Block Jacobi ILUK with power iteration.

5. Low-rank Options
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• Standard Arnoldi Standard Arnoldi method.

• Thick-restart Arnoldi Arnoldi method with thick-restart.

• Subspace Iteration Subspace iteration method.

2.2 Available Accelerators

• Flexible GMRES. Currently we only support the Flexible GMRES accelerator.

2.3 GPU Acceleration

• Prepossessing. We use the parMETIS for the DD. Thus, the prepossessing phase is
host only. If the input matrix is on the device memory, it will be moved to the host
memory first.

• Setup. Currently we only support ILU factorization on the host memory. On each
level, we compute the ILU factorization on the host memory first, and move the results
to the device memory to compute the low-rank terms.

• Solve. The solve phase is completely on the device memory. It is worth mentioning
that for the MPI communication, we still need to copy the data from the device memory
to the host memory.

3 Test Files in pGeMSLR

3.1 TESTS/sequential directory

• driver gen gemslr seq.cpp. Test with real general problems in the Matrix Market
format. Read matrix based on the file matfile real.

• driver gen gemslrz seq.cpp. Test with real complex problems in the Matrix Market
format. Read matrix based on the file matfile complex.

• driver laplacian gemslr seq.cpp. Test with real Laplacian problems. Generate
Laplacian matrix based on the file lapfile real.

• driver laplacian gemslrz seq.cpp. Test with complex Laplacian problems. Gener-
ate Laplacian matrix based on the file lapfile complex.

3.1.1 Input File

Those test files read most of the settings from a single file. By default, the input file is
”inputs”. We also provide another file named ”inputs ilut”. Sample runs are

• ./driver laplacian gemslr seq.ex -help

Print help information.
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• ./driver laplacian gemslrz seq.ex

Use vector with all ones as solution and zero initial guess. Read input from file ”inputs”.

• ./driver gen gemslr seq.ex -initrand -fromfile inputs ilut -writesol test1

Use random initial guess, read input from file ”inputs ilut”, write solution to file named
”test1.sol”.

We now explain the input file line by line.

1. B precond top. B preconditioner option for the top several levels (ILUT, ILUK,
GEMSLR).

2. B precond top levels. Number of levels we apply the top preconditioner.

3. B precond lower. B preconditioner option for other levels (ILUT, ILUK, GEMSLR).

4. kdim. Dimension of Krylov subspace in (outer) FGMRES.

5. maxits. Maximum number of iterations in outer FGMRES.

6. tol. Tolorance for FGMRES, stop when ||r|| < tol or ||r||||b|| < tol.

7. absolute tol Use absolute tol ||r|| or relative tol ||r||||b|| . (1: absolute; 0: relative).

8. nlev0. The number of levels of the GeMSLR preconditioner.

9. nlev1. If GeMSLR is used to solve B, the number of levels for the local GeMSLR
preconditioner for B.

10. ncomp0. The number of subdomains of the GeMSLR preconditioner.

11. ncomp1. If GeMSLR is used to solve B, the number of subdomains of the GeMSLR
preconditioner.

12. partition option0. The partition option of the GeMSLR preconditioner. (ND, RK-
WAY).

13. partition option1. If GeMSLR is used to solve B, the partition option of the GeM-
SLR preconditioner. (ND, RKWAY).

14. ilu droptol0. Tolerance of ILUT for the B block.

15. ilu droptol1. Tolerance of ILUT for the last level.

16. ilu max row nnz0. Maximum number of nonzeros per row of ILUT for the B block.

17. ilu max row nnz1. Maximum number of nonzeros per row of ILUT for the last level.

18. ilu lfil0. Level of fill of ILUK for the B block.
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19. ilu lfil1. Level of fill of ILUK for the last level.

20. ilu perm option. Permutation option for ILU. (NO, RCM).

21. lr arnoldi option0. The Low-rank Option in GEMSLR for the top level, standard
Arnoldi, Thick-restart Arnoldi, or subspace iteration (STD, TR, SUB).

22. lr arnoldi option1. The Low-rank Option in GEMSLR for other levels, standard
Arnoldi, Thick-restart Arnoldi, or subspace iteration (STD, TR, SUB). Other levels
are typically much smaller than the top level, thus we can use different options.

23. lr rank0. The target size of the low-rank correction on the top level. The actual
number can be smaller if we can’t find enough convergenced eigenvalues.

24. lr rank1. The target size of the low-rank correction on other levels. The actual
number can be smaller if we can’t find enough convergenced eigenvalues.

25. lr tol eig0. On the top level, eigenvalues with residual norm smaller than this value
are considered convergenceded. This option is only used in the thick-restart Arnoldi.

26. lr tol eig1. On other levels, eigenvalues with residual norm smaller than this value
are considered convergenceded. This option is only used in the thick-restart Arnoldi.

27. lr rank factor0. This value should be no less than 1.0. We compute neig = lr rank
* lr rank factor eigenvalues on the top level. When standard Arnoldi is used, see
option lr arnoldi factor0. When thick-restart Arnoldi is used, we compute at least neig
convergenced eigenvalues. When subspace iterations is used, we use neig vectors for
the subspace iteration.

28. lr rank factor1. This value should be no less than 1.0. We compute neig = lr rank *
lr rank factor eigenvalues on other levels. When standard Arnoldi is used, see option
lr arnoldi factor0. When thick-restart Arnoldi is used, we compute at least neig con-
vergenced eigenvalues. When subspace iterations is used, we use neig vectors for the
subspace iteration.

29. lr arnoldi factor0. This value should be no less than 1.0. We apply msteps = neig *
lr arnoldi factor Arnoldi steps on the top level. When subspace iterations is used, this
option is not used.

30. lr arnoldi factor1. This value should be no less than 1.0. We apply msteps = neig *
lr arnoldi factor Arnoldi steps on other levels. When subspace iterations is used, this
option is not used.

31. lr maxits0. The max number of restarts for the thick-restart Arnoldi or number of
iterations for the subspace iteration on the top level.

32. lr maxits1. The max number of restarts for the thick-restart Arnoldi or number of
iterations for the subspace iteration on other levels.
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33. inner iteration. Do we use GMRES to solve the top-level Schur complement? (1:
yes, 0: no).

34. inner iter tol. The tolorance of the inner iteration.

35. inner iter maxits. The max number of FGMRES outer iteration of the inner itera-
tion.

36. diag shift. Complex Version Only. Enable complex shift in the complex ILUT? (1:
yes, 0: no).

37. global solve. The global solve option for GeMSLR (LU, U). Multiplicative solve is
not supported in the local GeMSLR.

38. print level. The print option. 0: basic info only; 1: more info; 2: plot with gnuplot
graphics.

3.1.2 Laplacian Files

lapfile real and lapfile complex contains parameters for driver laplacian gemslr seq.cpp
and driver laplacian gemslrz seq.cpp.

−∆u + a · ∇u + su = 0

The first line is the number of test matrices. Starting from the second line are the
parameters for each test.

In lapfile real each line is
nx ny nz s ax ay az

. In lapfile complex each line is

nx ny nz real(s) imag(s) real(ax) imag(ax) real(ay) imag(ay) real(az) imag(az)

.

3.1.3 Matrix Files

matfile real and matfile complex contains parameters for driver gen gemslr seq.cpp and
driver gen gemslrz seq.cpp.

The first line is the number of test matrices. Starting from the second line are the
parameters for each test. Each test problem requires one line for the matrix and one line for
the right-hand-side.

The first line is the path of the test problem in Matrix Market format. The second line
starts from a number. If this line is ”0 .”, we use the artificial right-hand-side. Otherwise
we read the right-hand-side in Matrix Marker format from the path after the first number.
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3.1.4 Command Line Options

There are several command line options.

• -fromfile [str]. Read input parameters from a new file instead of ”inputs”.

• -outfile [str]. Write output to file instead of terminal output.

• -writesol [str]. Write solution vector to file.

• -zerobase. For general matrices. The input Matrix Marker format is 0-based instead
of 1-based.

• -rand perturb. Add random real diagonal perturbation A = A −D. Each entry in
D is Rand()∗|shift|.

• -solone. Using vector with all ones as solution.

• -solrand. Using random vector as solution.

• -rhsone. Using vector with all ones as right-hand-side.

• -rhsrand. Using random vector as right-hand-side.

• -initzero. Using zero vector as initial guess.

• -initone. Using vector with all ones as initial guess.

• -initrand. Using random vector as initial guess.

• -gpu. Enable GPU acceleration. Need to compile with CUDA. Note that the ILU
factorization, LAPACK, and parMETIS are host only. Thus, some parts of the setup
phase remain on the host.

• -nthreads [int]. Number of OpenMP threads for each MPI process. Need to compile
with OpenMP.

3.2 TESTS/parallel directory

• driver gen gemslr par.cpp. Test with real general problems in the Matrix Market
format. Read matrix based on the file matfile real. Currently we only support reading
from single Matrix Market file.

• driver gen gemslrz par.cpp. Test with real complex problems in the Matrix Market
format. Read matrix based on the file matfile complex. Currently we only support
reading from single Matrix Market file.

• driver laplacian gemslr par.cpp. Test with real Laplacian problems. Generate
Laplacian matrix based on the file lapfile real.

• driver laplacian gemslrz par.cpp. Test with complex Laplacian problems. Gener-
ate Laplacian matrix based on the file lapfile complex.
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3.2.1 Input File

Those test files read most of the settings from a single file. By default, the input file is
”inputs”. We also provide another file named ”inputs ilut”. Sample runs are

• mpirun -np 1 ./driver laplacian gemslr par.ex -help

Print help information.

• mpirun -np 2 ./driver laplacian gemslrz par.ex

Use vector with all ones as solution and zero initial guess. Read input from file ”inputs”.
Using 2 MPI processes.

• mpirun -np 16 ./driver gen gemslr par.ex -initrand -fromfile inputs ilut -
writesol test1

Use random initial guess, read input from file ”inputs ilut”, write solution to files
named ”test1xxx.sol”. Here ”xxx” is the MPI process number starting from 0.

We now explain the input file line by line.

1. global precond. The global preconditioner option. Currently we support block Ja-
cobi (BJ); parallel GeMSLR (GEMSLR); and an option which forms the top-level Schur
complement system using edge separator and partial ILU (ESCHUR).

2. use global partition. Should we call parMETIS on the entire matrix A? If set to
true, we’ll call parMETIS on the entire matrix A which would be more expensive. Oth-
erwise we’ll use the vertex-based partition provided by the input distributed system.
Note that this option is only used for GEMSLR global preconditioner. Global partition
is not used for BJ and ESCHUR. (1: yes; 0: no).

3. B precond top. B preconditioner option for the top several levels (ILUT, ILUK,
GEMSLR).

4. B precond top levels. Number of levels we apply the top preconditioner.

5. B precond lower. B preconditioner option for other levels except the last level
(ILUT, ILUK, GEMSLR).

6. C precond. Preconditioner option for the last levels (ILUT, ILUK, BJILUT, BJILUK,
BJILUT2, BJILUK2). If the size of the last level is small, ILUT/ILUK are recom-
mended. The BJILUT/BJILUK are the block Jacobi ILU options. Those options are
less accurate. The BJILUT2/BJILUK2 are the block Jacobi ILU with power iteration.
With those options, the low-rank correction on the last level is modified. Those op-
tions are more expensive, but the parallel performance is in general better for larger
problems.

7. C iter. If BJILUT2/BJILUK2 is used, the number of power iterations we apply.
BJILUT2/BJILUK2 are equivalent to BJILUT/BJILUK when this number is set to 0.
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8. kdim. Dimension of Krylov subspace in (outer) FGMRES.

9. maxits. Maximum number of iterations in outer FGMRES.

10. tol. Tolorance for FGMRES, stop when ||r|| < tol or ||r||||b|| < tol.

11. absolute tol Use absolute tol ||r|| or relative tol ||r||||b|| . (1: absolute; 0: relative).

12. nlev. The number of levels of the global parallel GeMSLR preconditioner and the
local sequential GeMSLR preconditioner.

13. ncomp. The number of subdomains of the global parallel GeMSLR preconditioner
and the local sequential GeMSLR preconditioner.

14. global partition option. The partition option of the global parallel GeMSLR pre-
conditioner. (ND, RKWAY). Recursive k-way partition (RKWAY) is the recommended
option for best parallel performance. Note that we use the ND from the parMETIS.
For best performance, the number of MPI processes should be some power of 2.

15. local partition option. If GeMSLR is used to solve B, the partition option of the
local GeMSLR preconditioner. (ND, RKWAY).

16. ilu droptol. Tolerance of ILUT for the B block and the last level.

17. ilu max row nnz. Maximum number of nonzeros per row of ILUT for the B block
and the last level.

18. ilu lfil. Level of fill of ILUK for the B block and the last level.

19. ilu perm option. Permutation option for ILU. (NO, RCM).

20. lr arnoldi option1. The Low-rank option for the top level, standard Arnoldi, Thick-
restart Arnoldi, or subspace iteration (STD, TR, SUB).

21. lr arnoldi option2. The Low-rank option other levels, standard Arnoldi, Thick-
restart Arnoldi, or subspace iteration (STD, TR, SUB). Other levels are typically
much smaller than the top level, thus we can use different options.

22. lr arnoldi optionA. The low-rank option outside the preconditioner. That is, when
applying the M−1 to A, another low-rank correction is added as (I + LR)M−1A.

23. lr rank. The target size of the low-rank correction on the top level, other levels, and
A. The actual number can be smaller if we can’t find enough convergenced eigenvalues.
Or larger if the smallest eigenvalue we pick is a pair of eigenvalues.

24. lr tol eig. On the top level, other levels, and A, eigenvalues with residual norm
smaller than this value are considered convergenceded. This option is only used in the
thick-restart Arnoldi.
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25. lr rank factor. This value should be no less than 1.0. We compute neig = lr rank
* lr rank factor eigenvalues on the top level and other levels. When standard Arnoldi
is used, see option lr arnoldi factor0. When thick-restart Arnoldi is used, we compute
at least neig convergenced eigenvalues. When subspace iterations is used, we use neig
vectors for the subspace iteration.

26. lr arnoldi factor. This value should be no less than 1.0. We apply msteps = neig *
lr arnoldi factor Arnoldi steps on the top level, other levels, and A. When subspace
iterations is used, this option is not used.

27. lr maxits. The max number of restarts for the thick-restart Arnoldi or number of
iterations for the subspace iteration on the top level, other levels, and A.

28. inner iteration. Do we use GMRES to solve the top-level Schur complement? (1:
yes, 0: no).

29. inner iter tol. The tolorance of the inner iteration.

30. inner iter maxits. The max number of FGMRES outer iteration of the inner itera-
tion.

31. diag shift. Complex Version Only. Enable complex shift in the complex ILUT? (1:
yes, 0: no).

32. global solve. The global solve option for GeMSLR (LU, U, MUL, MMUL). See section
2.1 for detail.

33. npx, npy, npz. The number of MPI processes on each direction. If npx ∗npy ∗npz 6=
np, default value 1, np, 1 is used.

34. ndx, ndy, ndz. For Laplacian tests, we can pre-assign a domain decomposition. This
is the number of partition on each direction.

35. print level. The print option. 0: basic info only; 1: more info; 2: plot with gnuplot
graphics.

3.2.2 Laplacian Files

lapfile real and lapfile complex contains parameters for driver laplacian gemslr seq.cpp
and driver laplacian gemslrz seq.cpp.

−∆u + a · ∇u + su = 0

The first line is the number of test matrices. Starting from the second line are the
parameters for each test.

In lapfile real each line is
nx ny nz s ax ay az
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. In lapfile complex each line is

nx ny nz real(s) imag(s) real(ax) imag(ax) real(ay) imag(ay) real(az) imag(az)

.

3.2.3 Matrix Files

matfile real and matfile complex contains parameters for driver gen gemslr seq.cpp and
driver gen gemslrz seq.cpp.

The first line is the number of test matrices. Starting from the second line are the
parameters for each test. Each test problem requires one line for the matrix and one line for
the right-hand-side.

The first line is the path of the test problem in Matrix Market format. The second line
starts from a number. If this line is ”0 .”, we use the artificial right-hand-side. Otherwise
we read the right-hand-side in Matrix Marker format from the path after the first number.

3.2.4 Command Line Options

There are several command line options.

• -fromfile [str]. Read input parameters from a new file instead of ”inputs”.

• -outfile [str]. Write output to file instead of terminal output.

• -writesol [str]. Write solution vector to file.

• -zerobase. For general matrices. The input Matrix Marker format is 0-based instead
of 1-based.

• -rand perturb. Add random real diagonal perturbation A = A −D. Each entry in
D is Rand()∗|shift|.

• -solone. Using vector with all ones as solution.

• -solrand. Using random vector as solution.

• -rhsone. Using vector with all ones as right-hand-side.

• -rhsrand. Using random vector as right-hand-side.

• -initzero. Using zero vector as initial guess.

• -initone. Using vector with all ones as initial guess.

• -initrand. Using random vector as initial guess.

• -gpu. Enable GPU acceleration. Need to compile with CUDA. Note that the ILU
factorization, LAPACK, and parMETIS are host only. Thus, some parts of the setup
phase remain on the host.

• -nthreads [int]. Number of OpenMP threads for each MPI process. Need to compile
with OpenMP.
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4 Installation of pGeMSLR

4.1 Required External Packages

Currently, BLAS, LAPACK, and parMETIS are required to build the pGeMSLR package.
Some routines from hypre and ITSOL are used in the package for ILU factorization.

The cuSPARSE, cuBLAS, THRUST, and cuRand are required to build the GPU version
of the package.

4.2 Installation

A sample script ”build.sh” is provided.

1. Compile Required External Packages. The first step is to make the required
external packages.

• The parMETIS need to be compiled with 64 bit signed integers and double pre-
cision floating point (double).

2. Update the makefile.in.

A sample makefile.in is provided at the root folder.

Before installation, modify the makefile.in to set the installation options and the PATH
to required packages.

3. Make the Package. Simply use the make command to compile the package.

4. Make test files. Go to folder TESTS/sequential or TESTS/parallel, and use make
command to build the test files.

5 Guide on Parallel Preconditioning Options

Finally we provide a guide on how to select the parallel preconditioners.

5.1 Options

• Rank number. Higher rank number leads to better convergence, and usually faster
solve phase. However, the setup phase could be expensive. Use high rank number
only when the problem is challenging. Typically inner iteration with a moderate rank
number is the best option.

• Number of levels. For the pGeMSLR preconditioner, typically a large level number
is recommended. However, when communication is costly or triangular solves are
expensive for small matrices (for example the GPU version), small level number and
block Jacobi solve of the last C is recommended.
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• Number of subdomains on each level. Increase the number of subdomains typ-
ically increase the rank number required to achieve convergence. However, the fill-in
for ILU could be reduces, especially for indefinite problems.

5.2 Common Preconditioners

• Block Jacobi Preconditioner BJ. The standard block Jacobi preconditioner.

– pros. No communication required. Scalable per iteration.

– cons. Not feasible for large problems with large number of MPI processes.

This option is useful for simple problems with small number of MPI processes.

• Two-level Schur Complement Preconditioner ESCHUR. To use the standard
two-level Schur complement ILU preconditioner, use the ESCHUR global precondi-
tioner, set the rank number on the top level to be 0, and turn on the inner iteration.

By doing so, the top-level Schur complement is formed with Partial ILU, and solved
with preconditioned GMRES.

This option has similar performance compared to the two-level ILU preconditioners in
hypre.

– pros. Faster setup phase compared with low-rank preconditioner options. More
robust than the BJ.

– cons. Not very efficient for challenging problems. Limited weak scalability.

This option could be used to solve any problems. For challenging problems, accurate
ILU factorization and more inner iterations are required for good convergence results.

• Two-level Schur Complement Preconditioner with low-rank correction
ESCHUR-LR.

By adding a low-rank correction on the top level, we can improve the convergence
performance of the two-level Schur complement preconditioner.

– pros. Better convergence rate compared with ESCHUR. Faster setup phase
compared with GEMSLR options.

– cons. Slower setup phase compared with ESCHUR. Worse convergence rate
compared with GEMSLR options.

This option is similar to the ESCHUR options.

For easy problems, the inner iteration could be turned off for faster solve phase.

For challenging problems, the inner iterations is required for good convergence results.
The low-rank correction could improve the robustness of the preconditioner. The
ESCHUR-LR is typically better than ESCHUR in the solve phase.

• GeMSLR Preconditioners GEMSLR.
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– pros. Better convergence rate compared with ESCHUR and ESCHUR-LR.
Faster solve phase. Better GPU speedup.

– cons. Slower setup phase compared with ESCHUR and ESCHUR-LR. A
pretty accurate ILU factorization is required for challenging problems. Otherwise
increase rank number doesn’t guarantee an improvement of the convergence rate.

The standard GeMSLR option is useful when solving same problem with multiple
right-hand-sides, or solving challenging problems.

The setup phase could be very slow, but this is sometime the only feasible option.

• GeMSLR Preconditioners with U solve GEMSLR-U.

This only apply only the upper part of the preconditioner.

– pros. Improved robustness for some highly indefinite problems compared with
GEMSLR.

– cons. For most problems GEMSLR is better than GEMSLR-U.

It is recommended to use the GEMSLR option first. If the convergence is not satisfied,
GEMSLR-U could be tested as an alternative.

5.3 Different Problems

• Positive Definite problems or moderately indefinite problems. For positive
definite problems, ESCHUR or ESCHUR-LR are recommended.

If multiple right-hand-sides are solved with the same system, GEMSLR could also be
useful.

• Challenging problems. For challenging problems, typically GEMSLR with a high
rank number and inner iteration is the only option. User could also try GEMSLR-U.

For complex problems, enable diagonal shift could sometime improve the robustness
of the preconditioner.

5.4 OpenMP and GPU

• GPU acceleration. The GPU version of the triangular solve is inefficient for small
matrices. Thus, to have better GPU performance, each diagonal block in Bl should not
be too small. GPU version of the pGeMSLR is only recommended for larger problems.

For small problems, a better option is to use BJ-ILU preconditioner with GPU accel-
eration, or CPU version of the GeMSLR preconditioner if the convergence of BJ-ILU
is not satisfied.

• OpenMP.

We provide level-scheduling triangular solve in our OpenMP implementation. This is
again inefficient for small matrices.
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By default, the level-scheduling triangular solve is NOT enabled in the pGeMSLR
preconditioner. We assign the diagonal blocks of Bl to OpenMP threads, and each
block is solved sequentially.

6 Contact Information

Pleases submit bugs to saad@umn.edu or xuxx1180@umn.edu. Thank you!
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