ERRATA \#1

This errata was sent to SIAM for the second printing of the book - so you may find these errors if you bought the copies from the first printing (before 2004 or so).
Many thanks to Kees Vuik, Zhong-Zhi Bai, Sabine Le Borne, and Rudnei Dias da Cunha, for bringing a few errors to my attention.

1 The easy ones

1. Page 140, Line 5 of section 5.3.2. (r, r) should be $(A r, r)$. Correct formula is:

$$
\alpha \leftarrow(A r, r) /(A r, A r)
$$

The same error occurs again in line 3 of algorithm 5.3 which should be:
3. $\quad \alpha \leftarrow(A r, r) /(p, p)$
2. Page 145, Line -3. There is no square in the denominator. Correct formula:

$$
\left\|d_{\text {new }}\right\|_{A} \leq\left(1-\frac{1}{n \kappa(A)}\right)^{1 / 2}\|d\|_{A}
$$

3. Page 146, line 10. Same formula - same error.
4. Page 425, Line 15. $u_{\text {new }}^{h}=$.. has a term missing in the brackets. Correct formula is

$$
u_{\text {new }}^{h}=S_{h}^{\nu_{2}}\left[S_{h}^{\nu_{1}} u_{0}^{h}+I_{H}^{h} A_{H}^{-1} I_{h}^{H}\left(-A_{h} S_{h}^{\nu_{1}} u_{0}^{h}\right)\right] .
$$

5. Page 426, Line -15: 7/3ηn should be replaced by $(4 / 3) \eta n$.
6. Page 209, Line 2 of Algorithm 6.24 should be:
7. For $j=p, p+1, \ldots, m+p-1$, Do:
8. Page 191, Lines -1 and -2 and Page 192, line 2: $-\gamma_{m}$ should be $+\gamma_{m}$. Also in Line 5. of Algorithm 6.19, $-\gamma_{j}$ should be $+\gamma_{j}$.

2 Problems with figures

1. In Figure 1.1, a big diagonal across the base rectangle got inserted (this was not in my original figure). Here is the original figure:

2. In Figure 3.11 (p. 95). 5 and 6 need to be interchanged in the left figure. The correct figure is:

3 Section 9.6

This section contains a few errors (Thanks to Kees Vuik for finding these) and it is best to rewrite the section.

4 The Concus, Golub, and Widlund Algorithm

When the matrix is nearly symmetric, we can think of preconditioning the system with the symmetric part of A. This gives rise to a few variants of a method known as the CGW method, from the names of the three authors Concus and Golub [88], and Widlund [312] who proposed this technique in the middle of the 1970s. Originally, the algorithm was not viewed from the angle of preconditioning. Writing $A=M-N$, with $M=\frac{1}{2}\left(A+A^{H}\right)$, the authors observed that the preconditioned matrix

$$
M^{-1} A=I-M^{-1} N
$$

is equal to the identity matrix, plus a matrix which is skew-Hermitian with respect to the M-inner product. It is not too difficult to show that the tridiagonal matrix corresponding to the Lanczos algorithm, applied to A with the M-inner product, has the form

$$
T_{m}=\left(\begin{array}{ccccc}
1 & -\eta_{2} & & & \tag{1}\\
\eta_{2} & 1 & -\eta_{3} & & \\
& \cdot & \cdot & . & \\
& & \eta_{m-1} & 1 & -\eta_{m} \\
& & & \eta_{m} & 1
\end{array}\right)
$$

As a result, a three-term recurrence in the Arnoldi process is obtained, which results in a solution algorithm that resembles the standard preconditioned CG algorithm (Algorithm 9.1).

A version of the algorithm can be derived easily. The developments in Section 6.7 relating the Lanczos algorithm to the Conjugate Gradient algorithm, show that the vector x_{j+1} can be expressed as

$$
x_{j+1}=x_{j}+\alpha_{j} p_{j}
$$

The preconditioned residual vectors must then satisfy the recurrence

$$
z_{j+1}=z_{j}-\alpha_{j} M^{-1} A p_{j}
$$

and if the z_{j} 's are to be M-orthogonal, then we must have $\left(z_{j}-\alpha_{j} M^{-1} A p_{j}, z_{j}\right)_{M}=0$. As a result,

$$
\alpha_{j}=\frac{\left(z_{j}, z_{j}\right)_{M}}{\left(M^{-1} A p_{j}, z_{j}\right)_{M}}=\frac{\left(r_{j}, z_{j}\right)}{\left(A p_{j}, z_{j}\right)} .
$$

Also, the next search direction p_{j+1} is a linear combination of z_{j+1} and p_{j},

$$
p_{j+1}=z_{j+1}+\beta_{j} p_{j} .
$$

Since $M^{-1} A p_{j}$ is orthogonal to all vectors in \mathcal{K}_{j-1}, a first consequence is that

$$
\left(A p_{j}, z_{j}\right)=\left(M^{-1} A p_{j}, p_{j}-\beta_{j-1} p_{j-1}\right)_{M}=\left(M^{-1} A p_{j}, p_{j}\right)_{M}=\left(A p_{j}, p_{j}\right) .
$$

In addition, $M^{-1} A p_{j+1}$ must be M-orthogonal to p_{j}, so that $\beta_{j}=-\left(M^{-1} A z_{j+1}, p_{j}\right)_{M} /\left(M^{-1} A p_{j}, p_{j}\right)_{M}$. The relation $M^{-1} A=I-M^{-1} N$, the fact that $N^{H}=-N$, and that $\left(z_{j+1}, p_{j}\right)_{M}=0$ yield,

$$
\left(M^{-1} A z_{j+1}, p_{j}\right)_{M}=-\left(M^{-1} N z_{j+1}, p_{j}\right)_{M}=\left(z_{j+1}, M^{-1} N p_{j}\right)_{M}=-\left(z_{j+1}, M^{-1} A p_{j}\right)_{M}
$$

Finally, note that $M^{-1} A p_{j}=-\frac{1}{\alpha_{j}}\left(z_{j+1}-z_{j}\right)$ and therefore we have (note the sign difference with the standard PCG algorithm)

$$
\beta_{j}=-\frac{\left(z_{j+1}, z_{j+1}\right)_{M}}{\left(z_{j}, z_{j}\right)_{M}}=-\frac{\left(z_{j+1}, r_{j+1}\right)}{\left(z_{j}, r_{j}\right)}
$$

