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Abstract—Krylov subspace methods have had an unparalleled success in solving real-life
problems across disciplines ranging from computational fluid dynamics to statistics, machine
learning, control theory, computational chemistry, among many others. This article provides a
brief history of these methods, discussing their origin, their expansion, and the lives of the
people behind them.

INTRODUCTION
It is not an easy task to pin-point exactly when

or by whom the term ‘Krylov subspace meth-
ods’ (KSMs) was first used. The term emerged
toward the late 1970s and early 1980s [33], [36],
[34], and then it was popularized possibly by
Parlett’s book on eigenvalue problems [34]. What
matters is that modern Krylov subspace methods
appeared in the early 1950s, then they were
all but abandoned for a while and subsequently
reappeared in force in the 1970s, when they
started showing a great success in solving various
problems in scientific computing.

A Krylov subspace method can be defined as
a process that extracts an approximate solution to
a givem problem from a Krylov subspace, which
is a subspace of the form

Km = span{v,Av, · · · , Am−1v} (1)

where A ∈ Rn×n and v ∈ Rn. What is
remarkable about subspaces of this type is how
frequently they are invoked to help solve various
problems in science and engineering. Roughly

speaking, this is to be attributed to the important
property that Km can be viewed as the subspace
Rn that best captures the actions of A.

The root: Krylov’s article, 1931
A subspace of the form (1) was introduced for

the first time in 1931 in an article [24] by Aleksei
Nikolaevich Krylov, the Russian mathematician
whose name gave the eponym to this class of
methods. This article can be viewed as the root
of Krylov Subspace Methods. In it, the author
described a new procedure for computing the
characteristic polynomoial of an arbitrary square
matrix. Given an n×n matrix A, whose charac-
teristic polynomial is

pn(t) = tn − µn−1t
n−1 − · · · − µ1t− µ0,

and given an arbitrary nonzero vector v1, then,
assuming that v1 is of grade 1 n, the n vec-

1In linear algebra, the minimal polynomoal of a nonzero vector
v ∈ Rn with respect to an n × n matrix A is the monic
polynomial p of smallest degree such that p(A)v = 0. The degree
of p is called the grade of v, see e.g., [49] for details.
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tors v1, Av1, · · · , An−1v1 are lineary indepen-
dent while the n+ 1 vectors v1, Av1, · · · , Anv1
must be dependent and in fact they are known to
satisfy the relation:

Anv1−µn−1A
n−1v1−· · ·−µ1Av1−µ0v1 = 0.

This is clearly equivalent to the assumption that
v1 is of grade n. Note also that if the entries of v1
are randomly selected then it is highly probable
that the grade of v1 is n. Defining the ‘Krylov
sequence’:

vj+1 = Avj, j = 1, · · · , n (2)

then this property shows that

µ0v1 + µ1v2 + · · ·µn−1vn = vn+1. (3)

Therefore, the scalars µi, for i = 0, 1, · · · , n−1
can be obtained by solving a linear system with
the coefficient matrix [v1, v2, · · · , vn] and right-
hand side vn+1. Note that the column-vectors
vi, i = 1, · · · , n of the linear system (3) are
known to be almost linearly dependent even for
relatively small matrices and this means that the
system (3) if generally ill-conditioned, even for a
small n, see [49, Sec. 6-22].

An alternative viewpoint to the algorithm will
unravel a key linear algebraic relation. Indeed,
underlying Krylov’s method is a technique for re-
ducing A into a special form by a similarity trans-
formation. Invoking the basis 2 V = [v1, · · · , vn],
we immediatly obtain:

A[v1|v2| · · · |vn] = [v1|v2| · · · |vn]H (4)

where:

H =



0 0 0 . . . 0 µ0

1 0 0 . . . 0 µ1

1 0 . . . 0 µ2

. . . . .
...

1 0 µn−2

1 µn−1


. (5)

The above matrix is known as a companion
matrix see, e.g., [49, Sec. 1-10]. Equation (5) is
of the form AV = V H and, recalling that V is
invertible, it means that we have reduced A into

2Following common usage, V = [v1, · · · , vn] denotes a
matrix whose columns are the ‘column-vectors’ v1, · · · , vn. The
term ‘basis’ or ’system’ V refers to the basis or generating system
consisting of the columns v1, v2, · · · , vn of V .

the companion form by a similarity transforma-
tion since V −1AV = H .

The method described above is rather simple
but it was a breaktrhough when it made its
appeareance in 1931, at a time where computing
eigenvalues and eigenvectors was challenging,
even for small matrices. Before it, the only practi-
cal method available for computing characteristic
polynomials was one developed by Leverrier in
1840, see, Householder [20] for details and ref-
erences. As is often the case in this situations, it
is not the original discovery that matters but the
alternatives generated after it.

About Krylov
Aleksei Nikolaevich Krylov was born on Au-
gust 15, 1863 in Visyaga, Simbirskoy (renamed
Ulyanovskaya) in Russia and died on October 26,
1945 in Leningrad (Now St Petersbourg). The
son of an artillery officer, he joined the Mar-
itime Acamedy as a student and then a teacher
and remained at the academy for 50 years. His
work was rather broad: shipbuilding, magnetism,
artillery, mathematics, astronomy, geodesy. He
became increasingly influential as a leader in
science policy in Russia and later in the USSR,
and in particular made efforts to maintain contacts
with western researchers.

Hessenberg’s contribution, 1942
The near linear dependence of the vi’s in

Krylov’s method will cause numerical difficulties
in most practical circumstances. More than a
decade after the publication of Krylov’s seminal
article, an attempt was made to remedy this par-
ticilar issue. In 1942, K. Hessenberg in a doctoral
dissertation [17] developed a method, in the same
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spirit as Krylov’s, to reduce A into what we now
call the ‘Hessenberg form’ or ‘quasi-triangular
form’, i.e., the form of a matrix H that satisfies
hij = 0 for i > j + 1 3. In other words, a
relation like (4) will be satisfied but the matrix H
is no longer in companion form but in Hessenberg
form. Hessenberg’s basic idea was to redefine
each vector vj in (2) by subtracting from it a
linear combination of the previous vi’s, i.e.,

hj+1,jvj+1 = Avj −
j∑

i=1

hijvi. (6)

where hj+1,j is a scaling factor to normalize vj+1.
Here, the scalars hij for i = 1, · · · , j + 1 are
selected in such a way that

vj+1 ⊥ g1, g2, · · · , gj, and gTj+1vj+1 = 1, (7)

where the gi’s are a set of preselected vectors. It
follows easily from (6) that the relation (4) holds
where V = [v1, v2, · · · , vn] and H is an upper
Hessenberg matrix of size n× n whose nonzero
entries are the hij’s that appear in (6).

The most common and natural choice for the
gi’s is to take gi = ei the i-th column of the
identity matrix. From an algorithmic point of
view, the simplest form of the algorithm can be
written as follows.

Hessenberg procedure
1: for j = 1, 2, · · · ,m do
2: hij = eTi (Avj), i = 1 : j
3: v = Avj −

∑j
i=1 hijvi

4: hj,j+1 = eTj+1v and vj+1 = v/hj+1,j

5: end for

About Hessenberg
The 1996 publication [12] provides some infor-
mation about Karl Hessenberg. We learn that
he was born on September 8, 1904 in Frank-
furt (Main). His father was a lawyer and his
grandfather was a physician, also well-known
in Germany as the author of the fairy tale
‘Struwwelpeter’. From 1925 to 1930 he studied
electronic engineering at the Darmstadt Techno-
logical Institute. Starting in 1931 he spent two
years at the Faculty of Mathematics, where he

3This is the ‘upper’ Hessenberg form. A lower Hessenberg
form is defined similarly.

studied under Professor A. Walther after which
he spent another two years working at the Worms
power plant and then one year with the company
A.E.G. We learn that he published a total of 4 ar-
ticles in electromechanical journals. He received a
doctorate from Darmstadt University of Technol-
ogy in 1942. In fact, the article [12] investigates
a widespread mistake in the litterature regarding
the common citation to his thesis [16] – which
we used at first as obtained from many other
sources. The title and year of this citation are
both erroneous. The actual citation as provided
in [12], with a scan of the degree certificate as a
proof, is [17]. It is worth noting that the original
work [17] was in a doctoral thesis produced at the
height of the second World War at the University
of Darmstadt in Germany.

Arnoldi’s contribution, 1951
Wilkinson’s treatise on eigenvalue problems

includes a detailed discussion on the reduction to
Hessenberg form [49, pp. 357-382]. In particular,
Hessenberg’s process can be viewed as a form
of Gaussian elimination and partial pivoting can
be added. In his discussion Wilkinson warns that
while the relation AV − V H ≈ 0 holds in a
‘most satisfactory manner’, the resulting similar-
ity transformation V itself may be ill-conditioned,
commenting that “we may contrast this with the
situation which would have existed if V were
unitary 4 ” [49, p. 364].

It took another ten years after Hessenberg’s
work, before a method is developed that achieved
just this. In an article that appeared in 1951 Walter
E. Arnoldi developed a method to transform A
into Hessenberg form by building a reduction
matrix V that is orthogonal4. The Arnoldi process
can actually be viewed as a form of the Gram-
Schmidt process: we begin with a vector v1 of
norm 1, then at the j step, vj+1 is produced
by orthonormalizing Avj against v1, v2, · · · , vj .
This is repeated for j = 1, · · · ,m. Thus, linear
independence is enforced via an orthogonality
requirement. Compared with the Hessenberg pro-
cess, Arnoldi’s procedure can be written in the

4A unitary matrix is a square matrix whose columns are
orthonormal. A nice feature of unitary matrices is that they
preserve lengths and as such they tend not to amplify numerical
errors. An m× n matrix (with m > n) is said to be orthogonal
if its columns are orthonormal.
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same form as (6) but the scalars hij are now
replaced with scalars that satisfy the conditions:

vj+1 ⊥ v1, v2, · · · , vj, and vTj+1vj+1 = 1

instead of (7). In its simplest form, the Arnoldi
procedure can be written exactly as the Hessen-
berg procedure shown earlier. However, instead
of being calculated as in lines 2 and 4 of the
Hessenberg procedure, the scalars hij and hj+1,j

are now calculated as follows:

hij = vTi Avj, i = 1, · · · , j; hj+1,j = ‖v‖2.

Actually, in Arnoldi’s original article, the vectors
vj+1 were not normalized, so the scalars hj+1,j

were set equal to one and the resulting vectors
are orthogonal but not orthonormal.

Another important point to make is that
Arnoldi considered mostly the case when m < n,
in fact m � n, so he did not consider his
algorithm to be a means to transform a matrix to
Hessenberg form via a similarity transformation.
This constitutes a significant departure from the
spirit of the related publications by Krylov in
1931 and Hessenberg in 1942.

The contributions of this particular paper are
not well appreciated in the literature as they are
often cited from sources other than the original
work. It is therefore worthwhile to discuss its
content in some detail. The main focus of the
paper was not to introduce the orthogonal version
of the Hessenberg process but rather to provide
an interpretation of the method introduced in the
now well-known 1950 article by Lanczos, as a
Galerkin method. A Galerkin method, or process,
is a well-known technique to extract an approx-
imation to a given problem from a subspace.
A summary of the approach is provided in the
next section. The procedure that is introduced by
Arnoldi is just an extension or a by-product of this
interepretation. Here is part of what the introduc-
tion of the paper says “An interpretation of Dr.
Cornelius Lanczos’ iteration method, which he
has named “minimized iterations”, is discussed
in this article, expounding the method as applied
to the solution of the characteristic matrix equa-
tions both in homogeneous and non-homogeneous
form. This interpretation leads to a variation of
the Lanczos procedure which may frequently be
advantageous by virtue of reducing the volume
of numerical work in practical applications. As

can be confirmed by reading the paper, Arnoldi
exploits what is referred to as “a classical method
for reducing the matrix order”, which is nothing
but a Galerkin projection method. There are no
references to either Krylov or Hessenberg. In fact
there are only 3 references: one to the Lanczos
paper [25], one to a 1937 article by Aitken on
a form of LU factorization known as “pivotal
condensation” and finally a reference to a book by
Duncan on Galerkin methods [6]. The ‘Galerkin’
approach is key to Arnoldi’s exposition. Most of
the paper, sections 1 to 5, is about interpreting
Lanczos’ method for solving both linear systems
(‘inhomogeneous case’) and eigenvalue problems
(‘homogeneous case’) as Galerkin procedures.
Only in section 6 does the author finally introduce
his own new addition which he simply calls “The
Galerkin treatment ...”. A major contribution here
is the introduction of a new viewpoint - namely
to regard the methods proposed by Lanczos, both
for linear systems and eigenvalue problems, as
projection type methods. At the time this was
rather innovative.

About Arnoldi
Walter Edwin Arnoldi was born on December 14,
1917 in New York (NY), and died on October
5, 1995 in Hartford (CT). He received a degree
in Mechanical Engineering from Stevens Institute
of Technology, then a Masters from Harvard (in
around 1939). Then he worked for the United
Technologies Corporation from 1939 until retire-
ment in 1977. His 1951 article appears to be the
only scientific publication authored by him but it
clearly has had an enormous impact in numerical
linear algebra.

The Galerkin approach
As a follow-up for the previous section,

we provide a brief summary of the Galerkin
projection approach for linear systems and for
eigenvalue problems. Suppose we need to solve
a linear system of the form Ax = b where
A ∈ Rn×n, b ∈ Rn and the unknown
x is in Rn. We are given a subspace K of
dimension m � n, with an orthonormal system
V = [v1, v2, · · · , vm] and we wish to find an
approximate solution x̃ to the original system
that belongs to K. The (orthogonal) projection
procedure finds this approximation by expressing
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x̃ as x̃ = V y with y ∈ Rm and then it imposes
the Galerkin condition

b−Ax̃ ⊥ K → V TAV y = V T b. (8)

The result is a small m × m system which be
easily be solved, assuming V TAV is nonsingular,
to obtain x̃ = V y. A slighty more general
approach would entail using a different subspace
L of dimension m for the Galerkin condition, i.e.,
we would write b − Ax̃ ⊥ L, leading to what
is known as a non-orthogonal (i.e., ‘oblique’)
projection method [37].

The Galerkin procedure works similarly for
eigenvalue problems. If the problem to solve
is Ax = λx, we would find an approximate
eigenvalue λ̃ ∈ C and associated approximate
eigenvector ũ = V y by imposing the condi-
tion 5 V H(A − λ̃I)ũ = 0 which leads to
the projected m-dimensional eigenvalue problem
(V HAV − λ̃I)y = 0. Krylov subspace meth-
ods are Galerkin-type methods in which K is a
Krylov subspace Km of the form (1) where v is
some initial vector, see, e.g., [37], [29] among
others for details.

Breakthrough: the 1950 article by
Lanczos

The article by Lanczos [25] referred to by
Arnoldi is a truly impressive piece of work
by its originality and vision. The subspace K
in the Galerkin approach utilized by Arnoldi
method and the symmetric Lanczos procedures
are Krylov subspaces of form Km in (1). Both
methods obtain an orthonormal basis of the sub-
space Km by a form of Gram-Schmidt procedure.
An interesting observation here is that when A is
Hermitian then V HAV is also Hermitian so the
Hessenberg matrix Hm obtained from the Arnoldi
procedure must be tridiagonal. This is an impor-
tant result leading to a major simplification of the
algorithm, namely the symmetric Lanczos algo-
rithm, and it is obtained from the Arnoldi process
by using a straightforward argument. Lanczos did
not make this observation as he was focusing on
symmetric systems, but he arrived at his algo-
rithm from a different path. The paper addresses
several problems, emphasizing solutions based on

5The matrix V H is the transpose conjugate of V , i.e, V H =

V
T .

approximating functions by polynomials, pade-
type approximations, generating functions, etc. It
is rather dense in interesting ideas leading up to
the algorithm which was presented as a realistic
alternative to the techniques shown in the first part
of the paper, for the situation when the matrix is
not small.

Here is what the Acknowledgment section
of the article states: The present investigation
contains the results of years of research in the
fields of network analysis, flutter problems, vi-
bration of antennas, solution of systems of linear
equations, encountered by the author in his con-
sulting and research work for the Boeing Airplane
Co., Seattle, Wash. The final conclusions were
reached since the author’s stay with the Institute
for Numerical Analysis, of the National Bureau
of Standards. The note ends by thanks expressed
at his supervisers at Boeing as well at NBS.

About Lanczos
Cornelius Lanczos was Born under the
name Kornél Löwy on February 2, 1893 in
Székesfehérvár (Hungary) and died on June 25,
1974 in Budapest, Hungary. Lanczos had a rather
turbulent life to say the least, as historical events
unfolding around him were often precarious and
forced him to move a few times. Yet from a
scientific viewpoint what a productive and rich
life it was.

Early in his career, Lanczos held a few po-
sitions in Germany: Freiburg ’21, Frankfurt ’24,
Berlin ’28, Frankfurt ’29. His position in Berlin in
1928-29 was an assistantship to Albert Einstein.
The two maintained a correspondance for many
years thereafter. In 1931, Lanczos was confronted
with the rise of violent anti-semitic sentiment in
Germany and decided to join Purdue University,
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at first with a visiting position in the physics
department and then as a full professor in 1932.
He left Purdue in 1944 for Boeing aircraft com-
pany and then joined the Institute for Numerical
Analysis at the National Bureau of Standards in
1949.

There he worked until 1952 when, during
the McCarthy era, the atmosphere of suspicion
became unbearable and he had to leave again,
accepting an invitation for a visiting position
at the Theoretical Physics Department of the
Dublin Institute for Advance Study in Ireland.
This invitation was extended to him by Erwin
Schrödinger, the quantum physicist, who himself
fled Austria in 1933 for political reasons. A year
later he received a permanent position at the
same institute and remained in Dublin until 1974
when he passed away during a visit to the Eötvös
Lóránd University in Budapest.

The years 1949 and 1952, which he spent
at the Institute for Numerical Analysis (INA) at
the National Bureau of Standards (NBS), were
particularly productive for Lanczos. Among his
colleaues at the INA were a number of well-
known figures in Numerical Analysis, includ-
ing Olga Taussky-Todd, John Todd, and George
Forsythe. Also, his well-known work on what we
call the Lanczos algorithm was from this period.

Lanczos’ work showed deep insight rooted in
approximation theory as well as physics. Often
his work in numerical linear algebra exploited the
viewpoint of polynomial approximation to find
approximate solutions to various probllems.

The contributions of Lanczos to the field of
numerical analysis were monumental. Remark-
ably, Lanczos was initially a theoretical physicist
and he kept working in both fields of mathematics
and physics to the end of his life. His dissertation
in 1920 was on the use of quarternions for the
treatment of special relativity and electrodynam-
ics. His first major contribution was in general
relativity when he published an exact solution
to Einstein’s field equations for gravity. In 1942
he independently developed (along with G. C.
Danielson) what is now known as the Fast Four-
rier Transform (FFT). The authors discuss the
cost-effectiveness of the method but did not real-
ize that the operation count was of orfer N logN .
This versatility is reminescent of a characteristic
of the big mathematicians of earlier times. Not

surprisingly, his research and teaching were often
characterized by the inclusion of physics insight
to mathematical arguments [13].

Perhaps the best testimony to the breath and
impact of his work can be gauged from the talks
given at the 1993 Cornelius Lanczos International
Centenary conference, where well-known math-
ematical physicists (e.g., Roger Penrose) gave
presentations alongside numerical analysts (e.g.,
Gene Golub).

This dual view of applied mathematics, which
Lanczos liked to call ‘workable mathematics’
[13] is undoubtedly what gave Lanczos’ contribu-
tion to physics, applied mathematics, and numeri-
cal linear algebra, their unique character and their
depth. In numerical linear algebra, his algorithm
on ‘minimized iteration’ has had a major impact
across disciplines. My own research in the 1970s
included a study of the Lanczos algorithm. At
that time I came across a breakthrough article that
showed how his method was successfully put to
work in the study of normal modes of oceans [4],
and then nearly 50 years later a modification of
the same method was instrumental in the study
normal modes of planets [39], [40].

About the INA
The Institute for Numerical Analysis was an
institute located on the campus of the University
of California at Los Angeles (UCLA) and created
by NBS in 1947 with a goal of taking advantage
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of the then nascent computer technology. At the
origin of the INA was the desire by the Census
Bureau to transfer funds to NBS to facilitate the
purchase of a suitable computer to help with
the 1950 census. Note that the National Bureau
of Standards, which changed its name to the
“National Institute of Standards and Technology
(NIST)” in 1988, was created in 1901 by the
US Departnent of Commerce and that the Census
bureau was also part of the Department of Com-
merce. With the concurrent interest of the Office
of Naval Research (ONR), it was agreed that NBS
and ONR should jointly establish a center, to
develop, as well as use, computers.

The INA was the brain child of John Curtis
(NBS) with the support of Mina Rees (ONR).
In 1946 John Curtis drafted a plan (called a
‘prospectus’) to re-organize the Applied Math-
ematics Division (AMD) at NBS in 1947 and
the INA was one of the components of this
plan. Funds for this purpose were transferred in
September 1946 and the institute opened shortly
thereafter.

The first INA director was Douglas Hartree
a well-known British physicist (of Hartree-Fock
fame). Hartree perceived a serious problem with
the negative attitude of mathematicians toward
numerical analysis [19] and saw the INA as an
opportunity to “overcome this attitude”. The INA
attracted the best worldwide scientists in areas
related to applied mathematics and it played a
major role in promoting numerical analysis as a
field. Thus, the list of distinguished scientists who
visited the INA or had been partly affiliated with
it includes [19]: J. von Neumann, R. Courant, E.
Teller, S. Lefschetz, N. Wiener, D. Hartree, and
others. Well-known numerical analysts affiliated
with the INA include J. Todd, O. Taussky-Todd,
G. Forsythe, M Hestness, E. Stiefel, and C. Lanc-
zos. In 1954, the INA ceased to operate as an
NBS institute and became part of UCLA.

The impact that the INA had in computer sci-
ence, numerical analysis and numerical linear al-
gebra cannot be overstated. For example, George
Forsythe joined Stanford University in 1957 and
in 1959 started one of the first Computer Science
departments in the US, a task that was rather
challenging at the time [23]. Donald Knuth [23]
stated that “It is generally agreed that he, more
than any other man, is responsible for the rapid

development of computer science in the world’s
colleges and universities. His foresight, combined
with his untiring efforts to spread the gospel
of computing, have had a significant and last-
ing impact...” The establishment of a Computer
Science department at Stanford had a powerful
trend setting effect for other universities. In 1970,
another former member of the INA named Marvin
Stein 6, served as founding department head for
my own (computer science) department at the
University of Minnesota. Marvin joined the INA
in 1948 and contributed to the development of the
Conjugate Gradient method while working under
the supervision of Magnus Hestenes.

Iterative methods for linear systems
Early methods for solving linear systems of

the form
b−Ax = 0 (9)

were dominated by ‘relaxation’ techniques. Start-
ing with some inital guess x(0) to the solution
vector, iterative methods generate a sequence of
approximations x(k), for k = 1, 2, · · · , to the
solution, which we will denote by x∗. Relaxation
methods work by modifying one component of
the current iterate, say x(k), at a time. Thus, we
will modify the i-th component of x(k), for some
i, in such a way that the i-th component of the
new residual vector r = b−Ax for the newly ob-
tained x, i.e., x(k+1) is equal to zero, i.e., we need
to enforce the condition eTi (b − Ax(k+1)) = 0.
This is repeated on another component i until
convergence is reached, e.g., until the norm of
the residual vector b − Ax(k) is small enough.
This basic idea seems to have been first developed
by Gauss ca 1817, followed by Jacobi (1850),
and Seidel (1874). These can be viewed as ba-
sic Galerkin-type methods whereby the subspace
K is taken to be the one-dimensional subspace
K = span{ei}, where ei denotes the i-th column
of the identity matrix. These methods were the
main iterative methods for solving linear systems
until up to the early 1970s. Here is what Richard
Varga writes in his seminal book [47]

As an example of the magnitude of problems
that have been successfully solved on digital

6Marvin Stein was a member of the university of Minnesota
from 1955 until he retired in 1997. He passed away on Feb 27,
2015 at the age of 90.
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computers by cyclic iterative methods, the Bettis
Atomic Power laboratory of the Westinghouse
Electric Corporation had in daily use in 1960 a
two-dimensional program which would treat as a
special case, Laplacean-type matrix equations of
order 20,000. He then adds as a footnote: ... Even
more staggering is Bettis’ use of a 3-Dimensional
program called “TNT-1”, which treats coupled
matrix equations of order 108,000. So in 1960,
one could solve a discretized elliptic partial dif-
ferential equation of size ≈ 100, 000 equations -
and this was the state-of-the-art.

Another track of iterative methods, not as
visible, was one based on descent-type methods,
which amounted to One-dimensional projection
processes. The best known method among these
is the steepest descent algorithm introduced by
Cauchy in [1847] for solving nonlinear equations.
It was Kantorovitch who introduced it in the form
we know today for linear systems for symmetric
positive definite matrices in 1945 by applying
Cauchy’s approch to the minimization of the
objective function

J(x) =
1

2
xTAx− bTx. (10)

Cimmino’s method [1938] and Kaczmarz’s
method [1937] also developed independently
what we can term ‘Line-search’ methods in the
direction of a row or column of A.

All these techniques can be viewed in
a unified way as one-dimensional projection
(Galerkin) processes. Given an initial guess x
with residual vector r = b−Ax, and two nonzero
vectors d (search direcrtion) and e (constraint di-
rection), the idea is to apply a projection method
on the one-dimensional subspace K = span{d}
and orthogonally to the one-dimensional space
L = span{e}. This means that the new iterate
is defined by the following equations

x̃ := x+ αd and b−Ax̃ ⊥ e. (11)

Since we have b − Ax̃ = r − αAd, this de-
fines7 α ≡ (r, e)/(Ad, e) and the new iterate,
provided the denominator is not zero. The process
is repeated with a new pair of directions each
time, until convergence is reached. For example,
at each iteration of the steepest descent algorithm
we define d and e to be each equal to the current

7Here (x, y) denotes the Euclidean inner product in Rn.

residual r = b − Ax. In the minimal residual
method for a general nonsingular matrix A, at
each iteration d is defined to be equal to r but e is
defined to be equal to Ar. In Kaczmarzs method
d is set to AT ei, while e is set to be equal to ei
and this is repeated in a cycle for i = 1, · · · , n.

Polynomial iteration
In some of the methods just described the itera-
tion takes the form xk+1 = xk + βkrk, where
rk = b − Axk is the current residual. It can
be seen that the residual vector rk+1 satisfies
rk+1 = (I − βkA)rk and so by induction
rk+1 = pk+1(A)r0 where pk+1 is the residual
polynomial pk+1(t) = (1 − βkt)...(1 − β0t),
which is a polynomial of degree k + 1 that
satisfies pk+1(0) = 1. In 1950 Frankel considered
a ’second-order’ iteration of the form

xk+1 = xk+βkdk, where dk = rk−αkdk−1,
(12)

starting with d−1 ≡ 0. This leads to a more
general polynomial iteration than those described
above. For example, it is easy to defined scalars
that will yield ‘optimal’ polynomials based on
Chebyshev polynomials of the first kind, as was
observed in the seminal work of Golub and
Varga [15].

This ‘approximation theory’ viewpoint was
adopted by several authors and was part of the
Lanczos approach to solving linear systems [27],
[26], [42], [5]. In essence, Krylov subspace meth-
ods will implicitly exploit residual polynomials
that are optimal in different ways.

Krylov methods take off: The Conjugate
Gradient (CG) algorithm, 1952

The conjugate gradient method was developed
independently Magnus Hestenes [UCLA] and Ed-
uard Stiefel [ETH, Zürich], [18]. In preparation
for the semi-centennial anniversary celebration
of the National Bureau of Standards, several re-
searchers were invited in the summer of 1951 and
the list of participants at INA was unusually long
[19]. Among these visitors was Eduard Stiefel a
mathematician from ETH Zürich. As talks were
being prepared for the upcoming symposium
organized to celebrate the anniversary of NBS,
soon after Stiefel’s arrival it was discovered that
the two groups, Stiefel on the one hand, and
Hestenes on the other had developed the same
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method independently [19] – using very different
arguments. Stiefel extended his stay at the INA
through June 1952 to work on the publication of
a joint paper.

Magnus Hestenes and Eduard Stiefel

At almost the same time Lanczos developed a
similar method using different notation and a very
different viewpoint [27] based on a biorthogonal-
ization process described in his 1950 article on
eigenvalue problems [25]. Here is what Hestenes
and Todd say about this [19, p. 61]: “It occurred
to none of us at that time that these relations
could be used effectively in an algorithm for
solving linear equations in n steps. We were
not aware of this connection until the conjugate
gradient routine had been devised by geometrical
considerations. It is clear therefore that the con-
jugate gradient algorithm is an easy consequence
of results given by Lanczos. This led Lanczos
to devise an alternative version of the conjugate
gradient algorithm, which he called a Method
of Minimized Iterations”. Lanczos’ method dealt
with the nonsymmetric case, and in exact arith-
metic it is a form of the bi-CG algorithm 8 in
which the approximate solution is extracted from
what Lanczos called a “q expansion”, which is
nothing but an expansion of the solution that ex-
ploits the bi-conjugate basis8. His paper appeared
in the same journal, and the institution was also
the same, i.e., the INA. Lanczos’ paper appeared
in July 1952, and the one by Hestenes and Stiefel
in December 1952. It is a mystery as to why
Lanczos did not collaborate with the Hestenes
group at the INA. He was clearly a little ahead.

8The nonsymmetric Lanczos algorithm - from which the bi-
conjugate gradient (bi-CG) method can be derived - generates two
sets of directions that are orthogonal to each other (bi-orthogonal)
instead one set of orthogonal vectors. The approximate solution
to a linear system can be expanded in one these sets of vectors.

The CG algorithm and the Lanczos tridiag-
onalization algorithms were discoveries of the
utmost importance in numerical linear algebra -
even though this may not have been understood at
the time. The class of Krylov Subspace Methods
has been cited in various sources as one of the top
10 algorithms of the 20th century, see for example
[45].

About Hestenes
Magnus Rudolph Hestenes was born on February
13, 1906, in Bricelyn, Minnesota and he died on
May 31, 1991, in Los Angeles, CA. He received
a Ph.D. from the University of Chicago in 1932.
Then he joined the faculty of UCLA in 1947
and kept his position there until his retirement in
1973. He was associated with the INA and listed
as ‘UCLA liaison’ member. His work dealt with
calculus of variations, optimal control, gradient-
type methods for linear systems and eigenvalue
problems

About Stiefel
Eduard L. Stiefel was born on April, 21 1909 in
Zürich and died on November 25, 1978 in Zürich.
He received a Ph.D. in 1935 from the Swiss
Federal Institute of Technology (ETH Zurich). He
became full professor at ETH Zurich in 1943, and
founded the Institute for Applied Mathematics in
1948. Here is what Hestenes and Todd say about
him [19, p. 29]: “Eduard L. Stiefel was a very
versatile mathematician. He began his career
as a topologist and made notable contributions
in this field. (...) He was well versed both in
pure and in applied mathematics. He anticipated
the coming of high-speed digital computers and
was instrumental in the development of such a
computer at ETH. This led him to an intensive
study of numerical methods. (...) Stiefel received
many honors and participated in the government
of Zurich.”

Aftermath of CG article:
The CG Method did not initially receive the

attention it deserved. The main reason for this is
that it was regarded as a direct (n-step) method
for solving linear systems and as such it did
not compare well with Gaussian elimination as
it was costly and more importantly, unstable. In
his book, Householder [20, Ch.5.7] presents the
method in the section of direct methods, stating
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in effect that the method was truly novel - but he
did not mention stability issues. In a 1959 article,
Engeli, Ginsburg, Rutishauser and Stiefel [8] dis-
cussed a new viewpoint: They regarded the CG
algorithm as an iterative procedure. However, one
had to wait until the early 1970s before this idea
started being adopted. Specifically, Reid [35] pro-
moted the use the Conjugate Gradient method as
an iterative technique but now with an emphasis
put on solving large sparse linear systems. At the
same time Chris Paige in his PhD thesis [31], see
also [32], [33], proposed the first comprehensive
study of the Lanczos process in the presence of
inexact arithmetic while Kaniel [22] analyzed the
theoretical convergence of the CG and Lanczos
algorithms based on spectral distributions. One
may say that these seminal publications really
marked the beginning of modern Krylov methods.
A little later, the book by Parlett [34] played a
significant role in reviving the Lanczos algorithm
for eigenvalue problems.

It took about 25 years for the conjugate gradi-
ent method to be accepted as a viable procedure
for solving linear systems iteratively. A history
of these first 25 years of the CG method can
be found in the detailed survey article by Golub
and O’Leary [14]. Another major development,
namely the idea of preconditioning, will come in
the late 1970 and will give rise to an approach that
became one the preferred iterative approaches for
solving large sparse symmetric positive definite
linear systems.

Preconditioning
The idea of preconditioning is rather old.

Golub and O’Leary [14] trace the term ‘precon-
ditioning’ back to Turing [1948]. Polynomial pre-
conditioners were invoked in many paper includ-
ing an early 1937 article by Cesari [3]. Lanczos
mentioned it in his 1952 paper [27] as did Stiefel
in a review paper that appeared in 1959 [42].
Forsythe [10] uses the term explicitly in 1953:
With the concept of “Ill conditioned” systems
Ax = b goes the idea of “preconditioning” them.
Gauss [1823] and Jacobi [1845] made early
contributions to this subject.”

Later came the idea of incomplete factoriza-
tions by Buleev [2], Varga [46], Oliphant [30],
Stone [43], and others.

Henk van der Vorst, at the dinner speech (given
with Koos Meijerink) at ‘Preconditioning 2015’

However, preconditioners based on Incom-
plete LU (ILU) factorizations became popular
with a paper by Meijerink and Van der Vorst
that appeared in 1977 [28]. Thus, the Incomplete
Cholesky Conjugate Gradient (ICCG) became a
very popular approach for solving sparse symmet-
ric positive definite matrices. Interestingly, the ar-
ticle itself, which made a huge impact, took over
7 years after its first submission before appearing
as the story was told by the authors at the banquet
of the 2015 Preconditioning conference.

Krylov methods: the ‘nonsymmetric’
period

As mentioned earlier the method developed by
Lanczos in his 1952 paper [27] worked for non-
symmetric linear systems. Fast forward to 1976
and one will find essentially the same method un-
der the name Bi-Conjugate Gradient (BiCG) pro-
posed by Fletcher [9]. From these basic Krylov
subspace methods that exploit bi-orthogonality,
a number of other algorithms were later in-
vented: Conjugate Gradient Squared (CGS) [41],
Bi-Conjugate Gradient Stabilized (Bi-CGSTAB),
[44], Transpose-Free Quasi Minimal Residual
method (TFQMR) [11], and a few others.

At the same time as these methods were being
developed another, independent, track of non-
symmetric Krylov Subspace Methods was also
emerging. These were “Orthogonal projection”
techniques which aimed to minimize the residual
norm of the iterates. A method dubbed ‘OR-
THOMIN’ [48] seems to have been the first in
this category followed by a number of others: Ax-
elson’s method [1], ‘ORTHODIR’ [21], the Gen-
eralized Conjugate Residual (GCR) method [7],
and the Generalized Minimal Residual method
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(GMRES) [38]. This period was characterized by
a significant flury of activity whereby reseachers
developed elaborate variants of algorithms from
both tracks, i.e., orthogonal and bi-orthogonal.
An outstanding coverage of this class of methods
can be found in the rather exhaustive volume
by Meurant and Tebbens [29], which has over
1000 references, and provides an in-depth look
at both theoretical and practical aspects. Activity
in Krylov subspace accelerators started to subside
toward the mid to late 1990s as it was understood
that preconditioners played a bigger role in the
success of this class of methods than the acceler-
ators.

Conclusion
This quick look at Krylov methods may have

led the reader to one or more of the follow-
ing striking observations. The first observation
concerns the magnificent progress of ideas from
Krylov’s original article whose significance today
may not be well appreciated but which was a
decisive breathrough for its time. The second
observation, is the fascinating mix of characters
behind the methods developed. Among them are
people like Hessenberg and Arnoldi who made
very pointed and narrow contributions, yet im-
pactful ones. Others were true giants in our field,
whose discoveries triggered shockwaves across
several scientific disciplines. In this regard, the
stature of Lanczos as a scientist is difficult to
match. As alluded to earlier, he was a scientist
from a gone-by era, of the kind who worked by
themselves (all of his articles are single authored
except three) and who had an amazing ability
to shape knowledge. Lanczos was remarkable
not only for his truly exceptional contributions,
and his broad grasp of science, but also by his
character: A humble and kind individual who
did not seek recognition – someone who endured
difficult times in his life and understood struggles
of others. On the day of his burial, Rabbi Sandor
Scheiber of Budapest said: [13, p. 123] “...
He never spoke of himself, but stood up for the
recognition of others... He was troubled by the
misery of people and that he could not do enough
to relieve it.”

The third observation one can make by taking
a look at current research in science and engi-
neering is that today the field of Krylov subspace

methods is as vibrant as ever. Despite the rel-
atively long history of KSMs, their users keep
finding new ways of exploiting them to solve new
problems in various applications. In fact, with the
emergence of data related methodologies, it is
inevitable that we will see an increased interest
in KSMs. After all the core idea behind Krylov
Subspace Methods is that they are in essence
nothing but a form of dimension reduction tech-
niques similar to those invoked to deal with large
datasets.
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