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Abstract. The general method of graph coarsening or graph reduction has been a remarkably
useful and ubiquitous tool in scientific computing and it is now just starting to have a similar impact in
machine learning. The goal of this paper is to take a broad look into coarsening techniques that have
been successfully deployed in scientific computing and see how similar principles are finding their way
in more recent applications related to machine learning. In scientific computing, coarsening plays
a central role in algebraic multigrid methods as well as the related class of multilevel incomplete
LU factorizations. In machine learning, graph coarsening goes under various names, e.g., graph
downsampling or graph reduction. Its goal in most cases is to replace some original graph by one
which has fewer nodes, but whose structure and characteristics are similar to those of the original
graph. As will be seen, a common strategy in these methods is to rely on spectral properties to
define the coarse graph.
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1. Introduction. The idea of ‘coarsening,’ i.e., exploiting a smaller set in place
of a larger or ‘finer’ set has had numerous uses across many disciplines of science and
engineering. The term ‘coarsening’ employed here is prevalent in scientific computing,
where it refers to the usage of coarse meshes to solve a given problem by, e.g., multigrid
(MG) or algebraic multigrid (AMG) methods. On the other hand, the terms ‘graph
downsampling,’ ‘graph reduction,’ ‘hierarchical methods,’ and ‘pooling’ are common
in machine learning. Similarly, the related idea of clustering is an important tool
in data-based applications. Here, the analogous term employed in scientific comput-
ing is ‘partitioning.’ These notions—graph partitioning, clustering, coarsening—are
strongly inter-related. It is possible to use partitioning for the task of clustering
data, by first building a graph that models the data which we then partition. Also,
coarsening plays an important role in developing effective graph partitioning methods.
Further, note that it is possible to partition a graph by just finding some clustering
of the nodes, using a method from data sciences such as the K-means algorithm.

In scientific computing, the best known instance of coarsening techniques is in
MG and AMG methods [58, 101, 116, 28]. Classical MG methods started with the in-
dependent works of Bakhvalov [10] and Brandt [24]. The important discovery revealed
by these pioneering articles is that relaxation methods for solving linear systems tend
to stall after a few steps, because they have difficulty in reducing high-frequency com-
ponents of the error. Because the eigenvectors associated with a coarser mesh are
direct restrictions of those on the fine mesh, the idea is to project the problem into
an ‘equivalent’ problem on the coarse mesh for error correction and then interpolate
the solution back into the fine level. This basic 2-level scheme can be extended to a
multilevel one in a variety of ways. MG does not use graph coarsening specifically
because it relies on a mesh and it is more natural to define a coarse mesh using pro-
cesses obtained from the discretization of the physical domain. On the other hand,
AMG aims at general problems that do not necessarily have a mesh associated with
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them. For AMG, the graph representation of the problem at a certain level is explic-
itly ‘coarsened’ by using various mechanisms [101, 28, 102]. Since these mechanisms
are geared toward a certain class of problems, essentially originating from Poisson-
like partial differential equations, researchers later sought to extend AMG ideas in
order to define algebraic techniques based on incomplete LU (ILU) factorizations
[11, 90, 118, 6, 4, 5, 7, 9, 8, 23].

One can say that the idea of coarsening a graph in data-related applications
started with the 1939 article of Kron [72], whose aim was to downsample electrical
networks. Kron used his deep intuition to define coarsening techniques that rely on
Schur complements, with the goal of obtaining sparse graphs. The justifications for
the proposed technique were based on intuition rooted on knowledge about electrical
networks. The related technique, widely known as Kron reduction, was revived by
Dörfler and Bullo [46] who provided a more rigorous theoretical foundation. Later
Shuman et al. [109] extended the Kron reduction into a multilevel framework. In
parallel with this line of work, a number of authors developed techniques that by-
passed the need to form or approximate the Schur complement relying instead on
node aggregation and matching [62, 64, 74, 35, 115, 96, 95, 106].

Applications of graph coarsening in machine learning generally fall in two cate-
gories. First, coarsening is instrumental in graph embeddings. When dealing with
learning tasks on graphs, it is very convenient to represent a node with a vector in Rd
where d is small. The mapping from a node to the representing vector is termed node
(or vertex) embedding and finding such embeddings tends to be costly. Hence, the
idea is to coarsen the graph first, perform some embedding at the coarse level, and
then refine-propagate the embedding back to the upper level; see [35, 74, 42, 94] for
examples of such techniques. The second category of applications is when invoking
pooling on graphs, in the context of graph neural networks (GNNs) [126, 127, 77].
However, in the latest development of GNNs, coarsening is not performed on the
given graph at the outset. Instead, coarsening is part of the neural network and it
is learned from the data. Another class of applications of coarsening is that of graph
filtering, as illustrated by the articles [109, 110].

The goal of this paper is to show how the idea of coarsening has been exploited
in scientific computing and how it is now emerging in machine learning. While the
problems under consideration in scientific computing are fundamentally different from
those of machine learning, the basic ingredients used in both methods are striking by
their similarity. The paper starts with a discussion of graph coarsening in scientific
computing (Section 2), followed by a section on graph coarsening in machine learning
(Section 3). We also present some newly developed coarsening methods and results,
in the context of machine learning, in Sections 4–5.

1.1. Notation and preliminaries. We denote by G = (V,E) a graph with n
nodes and m edges, where V is the node set and E is the edge set. The weights of the
edges of G are stored in a matrix A, so aij is the weight of the edge (i, j) ∈ E. In most
cases we will assume that the graph is undirected. We sometimes use G = (V,E,A)
to denote the graph, when A is emphasized.

The sum of row i of A is called the degree of node i and the diagonal matrix of
the degrees is called the degree matrix:

(1.1) di =

n∑
j=1

aij ; D = Diag{di}.
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With this notation, the graph Laplacian matrix L is defined as:

(1.2) L = D −A.

This definition implies that L1 = 0 where 1 is the vector of all ones, i.e., 1 is an
eigenvector associated with the eigenvalue zero. In the simplest case, each weight aij
is either zero (not adjacent) or one (adjacent). A simple, yet very useful, property of
graph Laplacians is that for any vector x, we have the relation

(1.3) xTLx =
∑
ij

aij |xi − xj |2 .

The normalized Laplacian is defined as follows:

(1.4) L̂ = D−1/2LD−1/2 = I −D−1/2AD−1/2 .

Note that the diagonal entries of L̂ are all ones. The matrix is again singular and has
the null vector D1/21.

We will also make use of the incidence matrix denoted by B ∈ Rn×m. A column
be of B represents an edge e ∈ E between nodes i and j with weight aij , and its k-th
entry is defined as follows:

(1.5) be(k) =


+
√
aij , k = i,

−√aij , k = j,

0, otherwise.

Note that the two nonzero values of be(k) have opposite signs, but we have a choice
regarding which of i and j is assigned the negative sign. Unless otherwise specified, we
simply assign the negative sign to the smaller of i and j. As is well-known, the graph
Laplacian can be defined from the incidence matrix through the relation L = BBT .

1.2. Terminology and notation specific to machine learning. In data-
related applications, graph nodes are often equipped with feature vectors and labels.
We use an n× d matrix X to denote the feature matrix, whose i-th row is the feature
vector of node i. We use an n× c matrix Y to denote the label matrix, where c is the
number of categories. When a node i belongs to category j, Yij = 1 while Yij′ = 0
for all j′ 6= j. Each row of Y is called a ‘one-hot’ vector. When there are only two
categories, the n × 2 matrix Y can equivalently be represented by an n × 1 binary
vector y in a straightforward manner.

For example, in a transaction graph, where nodes represent account holders and
edges denote transactions between accounts, a node may have d = 4 features: account
balance, account active days, number of incoming transactions, and number of out-
going transactions; as well as c = 3 categories: individual, non-financial institution,
and financial institution. A typical task is to predict the account category given the
features.

The feature matrix X provides complementary information to a graph G =
(V,E,A) that captures relations between data items. Thus, a feature matrix is of-
ten associated with a graph. One should not confuse the feature matrix with a data
matrix, which is often used in the situation where a graph structure is not available,
but may be constructed based on the information of the data items. The notation
of a data matrix by convention clashes with X; for the moment let us use Z instead
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Table 1.1: Commonly used notation.

Notations Descriptions
G A graph.
V The set of nodes in a graph.
E The set of edges in a graph.
A The graph adjacency matrix.
aij The weight of an edge (i, j) ∈ E.
D The degree matrix.
L The graph Laplacian; L = D −A.
L† The pseudoinverse of the graph Laplacian.
S The Schur complement matrix.
n The number of nodes in G; |V | = n.
m The number of edges in G; |E| = m.
d The dimension of a node feature vector.
c The dimension of a label vector/number of classes.
Gc A coarse graph.
Lc The coarse graph Laplacian.
nc The number of nodes in Gc; |Vc| = nc.
` The number of coarsening levels.
(λ, u) Eigenpairs.
P ∈ Rn×nc The interpolation operator.
PT ∈ Rnc×n The restriction/coarsening operator.
X ∈ Rn×d The node feature matrix.
Y ∈ Rn×c The ground-truth label matrix.
W The trainable parameters of a graph neural network.

to denote it, where the i-th row of Z is zi. One may construct a graph G from Z.
For example, in a k-nearest neighbors (kNN) graph, there is an edge from node i to
node j if and only if j is an index of the element among the k smallest elements of
{rij = ‖zj − zi‖ | j 6= i}. One may even define the weighted adjacency matrix A
as aij = e−rij when there is an edge (i, j) and aij = 0 otherwise. In this case, the
constructed graph is entirely decided by the data matrix Z, rather than by holding
complementary information to it, as is done with the feature matrix.

2. Graph coarsening in scientific computing. Given a graph G = (V,E),
the goal of graph coarsening is to find a smaller graph Gc = (Vc, Ec) with nc nodes
and mc edges, where nc < n, which is a good approximation of G in some sense.
Specifically, we would like the coarse graph to provide a faithful representation of the
structure of the original graph. We denote the adjacency matrix of Gc by Ac and the
graph Laplacian of Gc by Lc.

We will first elaborate on one of the most important scenarios that invoke coarsen-
ing (Section 2.1) and then discuss several representative approaches to it (Sections 2.2
to 2.5). Note that in practice, coarsening often proceeds recursively on the resulting
graphs; by doing so, we obtain a hierarchy of approximations to the original graph.

2.1. Multilevel methods for linear systems: AMG and multilevel ILU.
Graph coarsening strategies are usually invoked when solving linear systems of equa-
tions, by multilevel methods such as (A)MG [58, 116, 101] or Schur-based multilevel
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Fig. 2.1: Coarsening a graph.

techniques [37, 105, 90, 80, 79, 11, 7]. In (A)MG, this amounts to selecting a subset
of the original (fine) grid, known as the ‘coarse grid.’ In AMG, the selection of coarse
nodes is made in a number of different ways. The classical Ruge-Stüben strategy
[101] selects coarse nodes based on the number of ‘strong connections’ that a node
has. Here, nodes i and j are strongly connected if aij has a large magnitude relative
to other nonzero off-diagonal elements or row i. The net effect of this strategy is that
each fine node is strongly coupled with the coarse set. In other methods, the strength
of connection is defined from the speed with which components of a relaxation scheme
for solving the homogeneous system Au = 0 converge to zero, see [25, 98, 36] and Sec-
tion 2.4 for additional details. For multilevel Schur-based methods, such as multilevel
ILU, the coarsening strategy may correspond to selecting from the adjacency graph
of the original matrix, a subset of nodes that form an independent set [105], or a
subset of nodes that satisfy good diagonal dominance properties [103] or that limit
the growth in the inverse LU factors of the ILU factorization [21, 22].

The coarsening strategy can be expanded into a multilevel framework by repeating
the process described above on the graph associated with the nodes in the coarse set.
Let G0 be the original graph G and let G1, G2, . . . , Gh be a sequence of coarse graphs
such that G` = (V`, E`) is obtained by coarsening on G`−1 for 1 ≤ ` < h. Let A(0) ≡ A
and A(`) be the matrix associated with the `-th level. The graph G` admits a splitting
into coarse nodes, C`, and fine nodes, F`, so that the linear system at the `-th level,
which consists of the matrix A(`) and the right-hand side f (`) can be reordered as
follows:

(2.1) A(`) =

[
A

(`)
CC A

(`)
CF

A
(`)
FC A

(`)
FF

]
, f (`) =

[
f
(`)
C

f
(`)
F

]
.

Note that it is also possible to list the fine nodes first followed by the coarse nodes;
see [90]. The coarser-level graph G`+1 as well as the new system consisting of the
matrix A(`+1) and the right-hand side f (`+1) at the next level, are constructed from
G` and A(`). These are built in a number of different ways depending on the method
under consideration. For the graph, we can for example set two coarse nodes to be
adjacent in G`+1, if their representative children are adjacent in G`. One common
way to do this is to define two coarse nodes to be adjacent in G`+1 if they are parents
of adjacent nodes in G`. Next we discuss coarsening in the specific context of AMG.

2.1.1. Algebraic multigrid. AMG techniques are all about generalizing the
interpolation and restriction operations of standard MG. The coarsening process iden-
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Fig. 2.2: A fine node and its nearest neighbors. Fine nodes are represented by a
square and coarse ones by a disk. In the coarsening process the central, fine node is
expressed as a combination of its coarse neighbors.

tifies for each fine node a set of nearest neighbors from the coarse set. Using various
arguments on the strength of connection between nodes, AMG expresses a fine node
i as a linear combination of a selected number of nearest neighbors that form a set
Ci, see Figure 2.2. To simplify notation, we consider only one level of coarsening and
drop the subscript `.

If C is the set of coarse nodes and F is the set of fine nodes, we can define
related subspaces XC and XF of the original space X = Rn. In fact we can write
X = XC ⊕ XF . Then, given a vector x with components in the coarse space XC , we
associate a vector Px in the original space X , whose i-th component is defined as
follows [104, 13.6.2]:

(2.2) [Px]i =

{
xi if i ∈ C,∑
j∈Ci

pijxj otherwise.

The mapping P sends a point of XC into a point y = Px of X . The value of y at
a coarse point, a node in C, is the same as its starting value. The value at another
node, one in F , is defined from interpolated values at a few coarse points. Thus, P is
known as the interpolation operator.

The transpose of P represents the restriction, or coarsening mapping. In the
context of AMG, it projects a point in X into a point in XC . Each node in C is a
linear combination of nodes of the original graph.

If we now return to the multilevel case where P` denotes a corresponding interpo-
lation operator at the `-th level, then AMG defines the linear system at the next level
using Galerkin projection, where the matrix and right-hand side are, respectively,

(2.3) A(`+1) = PT` A
(`)P`, f (`+1) = PT` f

(`) .

Recall that we started with the original system A(0)x = f (0), which corresponds to
` = 0. AMG methods rely on a wide variety of iterative procedures that consist of
exploiting different levels for building an approximate solution. It is important to
note here that the whole AMG scheme depends entirely on defining a sequence of
interpolation operators P` for ` = 0, 1, . . . Once the P`’s are defined, one can design
various ‘cycles’ in which the process goes back and forth from the finest level to the
coarsest one in an iterative procedure.

When defining the interpolation operator P`, there are two possible extremes
worth noting, even though these extremes are not used in AMG in practice. On the
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one end, we find the trivial interpolation in which the pij ’s in equation (2.2) are all

set to zero. In this case, referring to (2.1), A(`+1) is simply A(`+1) = A
(`)
CC .

The other extreme is the perfect interpolation case which yields the Schur com-
plement system. Here the interpolation operator is

P` =

[
−[A

(`)
CC ]−1A

(`)
CF

I

]
.

The right reduced matrix A(`)P` involves the Schur complement matrix associated
with the coarse block:

A(`)P` =

[
O
S`

]
where S` = A

(`)
FF −A

(`)
FC [A

(`)
CC ]−1A

(`)
CF .

We also clearly have A(`+1) = PT` A
(`)P` = S`. The exact solution of (2.1) can be writ-

ten in the form [u
(`)
C ;u

(`)
F ] were matlab notation is used, i.e., [x; y] is the concatenation

of the vector x followed by the vector y. Then, if we denote by w
(`)
C the coarse solution

w
(`)
C = [A

(`)
CC ]−1f

(`)
C , it can be seen that u

(`)
F is the solution of the Schur complement

system S`u
(`)
F = f

(`)
F −A

(`)
FCw

(`)
C . In addition, once u

(`)
F has been computed, the whole

solution of (2.1) can be perfectly reconstructed via substitution since we have:[
u
(`)
C

u
(`)
F

]
=

[
w

(`)
C

0

]
+ P`u

(`)
F .

This approach is nothing but a block form of Gaussian elimination and it is
generally costly although there are practical alternatives discussed in the literature
[21, 118, 11, 82] that are based on Schur complements. However, it is worth pointing
out that, viewed from this angle, the goal of all AMG methods is essentially to find
inexpensive approximations to the Schur complement system.

2.1.2. Multilevel ILU preconditioners based on coarsening. The issue of
finding a good ordering for ILU generated a great deal of research interest in the past;
see, e.g., [18, 19, 17, 26, 39, 45, 40, 27, 103, 38]. A class of techniques presented in [90]
consisted of preprocessing the linear system with an ordering based on coarsening.
Thus, for a one-level ordering the matrix is ordered as shown in (2.1). Then in a

second level coarsening, A
(0)
22 is in turn reordered and we end up with a matrix like:1 A

(0)
11 A

(0)
12

A
(0)
21

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

 .
This is repeated with A

(1)
22 and further down for a few levels. Then the idea is simply

to perform an ILU factorization of the resulting reordered system. Next, we describe
a method based on this general approach.

The first ingredient of the method is to define a weight wij for each nonzero pair
(i, j). This will set an order in which to visit the edges of the graph. The strategies
described next are ‘static’ in that given a certain matrix A (one of the A(`)’s), these
weights are precomputed, in contrast with dynamic ones used in, e.g., [105, 78, 103].

1For notational simplicity, for the subscripts of A we use 1 in place of C and 2 in place of F .
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If nnzi is the number of nonzero entries of row i and nnzj is the number of nonzero
entries of column j, we define the weights as follows:

wij = min

{
|aij |
δr(i)

,
|aij |
δc(j)

}
where:(2.4)

δr(i) =
‖Ai,:‖1
nnzi

and δc(j) =
‖A:,j‖1
nnzj

(2.5)

where matlab notation is exploited and ‖ · ‖1 is the usual 1-norm. The two terms in
the brackets of (2.4) represent the importance of |aij | relative to the other elements
in the same row and column, respectively. If our goal is to put large entries in the

(1,2) block of the matrix when it is permuted (block A
(`)
CF in Equation (2.1)), then we

need to traverse the graph starting from the largest to smallest wij .
The above defines an order in which to visit edges. Next, each time an edge (i, j)

is visited we need to determine which one of i and j will be selected as a coarse node.
This requires a ‘preference’ measure, or weight, for each node. When akk 6= 0 we
define the impact of ‘pivot’ k as the average potential fill-in created when eliminating
unknown k. In the formula aij = aij − aik × akj/akk employed in the k-th step of
Gaussian elimination, the term −aik × akj/akk is a potential fill-in. This is a very
crude approximation because it assumes that the entries have not changed. We define
the ‘impact’ of the diagonal entry k as the inverse of the quantity:

(2.6) φk =
|akk|

δr(k)δc(k)
.

When visiting edge (k, l), we add k to the coarse set if φk > φl and l otherwise.
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Fig. 2.3: Left: The matrix Raefsky3 after the reordering obtained from four levels
of coarsening. Right: Performance of various coarsening based preconditioners for
solving a linear system with the matrix.

Here, we show an example on the matrix ‘Raefsky3’, which is of size 21,200 and
has 1,488,768 nonzero elements. It comes from a fluid structure interaction turbulence
problem and can be obtained from the suite-sparse collection2. Figure 2.3 (left) shows

2https://sparse.tamu.edu/
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the pattern of the reordered matrix according to the coarsening strategy described
above, using four levels of coarsening. The original matrix is not shown but, as
expected, its pattern is very similar to that of the (1,1) block of the reordered matrix,
and has roughly twice the size.

For this particular matrix, standard ILU-based strategies perform poorly. Using
matlab, we applied GMRES(50) to the system, preconditioned with ILU (‘crout’
version) with a drop tolerance of 0.01. The resulting iterates stagnate as indicated by
the top curve in the right side of Figure 2.3. The number 2.62 is the ‘fill-factor,’ which
is the ratio of the number of nonzero elements of the LU factors over the the number of
nonzero elements of the original matrix. When comparing preconditioners of this type,
we strive to ensure that these fill-factors are about the same for the preconditioners
being compared. Next we perform an ILU factorization (’crout’ version again) on
the reordered system using the coarsening described above. In order to achieve a
fill-factor similar to that of the standard factorization we lowered the drop-tolerance
to 0.0008. The new method converged in 29 iterations with a fill factor of 2.57. We
also tested a more traditional preconditioner based on block Gauss-Seidel, exploiting
the block structure shown on the left side of Figure 2.3. Each block Gauss-Seidel step
requires solving a system with the diagonal blocks of the reordered matrix. These
systems are approximately solved using a simple ILU(0) (‘nofill’) factorization. Note
that the fill-factor here is very low (0.33). Each preconditioning step consists of 10
Gauss-Seidel iterations. As is shown, this also converges, although more slowly.

2.2. Coarsening approach: Pairwise aggregation. The broad class of ‘pair-
wise aggregation’ techniques, e.g., [120, 119, 85, 89, 37, 116], is a strategy that seeks to
simply coalesce two adjacent nodes in a graph into a single node, based on some mea-
sure of nearness or similarity. The technique is based on edge collapsing [63], which is
a well known method in the multilevel graph partitioning literature. In this method,
the collapsing edges are usually selected using the maximal matching method. A
matching of a graph G = (V,E) is a set of edges Ẽ, Ẽ ⊆ E, such that no two edges

in Ẽ have a node in common. A maximal matching is a matching that cannot be
augmented by additional edges to obtain a larger matching in the sense of inclusion.
Coarsening schemes based on edge matching have been in use in the AMG literature
for decades [101]. For each node i, a coarsening algorithm starts from building a set
Si of nodes that are ‘strongly connected’ to i by using some measure of connection
strength. The graph nodes are traversed in a certain order of preference and the next
unmarked node in this order, say j, is selected as a coarse node. The priority measure
of the traversal is updated after each insertion of a coarse node. There are a number
of ways to find a maximal matching for coarsening a graph.

The heavy-edge matching (HEM) approach, e.g., [67], is a greedy matching algo-
rithm that works with the weight matrix A of the graph. It simply matches a node i
with its largest off-diagonal neighbor jmax; i.e., we have |aijmax | = maxj∈adj(i),j 6=i |aij |,
where adj(i) denotes the adjacency (or nearest-neighbor) set of node i. When selecting
the largest neighboring entry, ties are broken arbitrarily. If jmax is already matched
with some node k 6= i seen before, i.e., p(k) = jmax, then node i is left unmatched and
considered as a singleton. Otherwise, we match i with j and the result is p(i) = jmax.

A version of HEM is shown in Algorithm 2.1, modified from [90]. The algorithm
proceeds by exploiting a greedy approach. It scans all edges (i, j) in decreasing value
of their weight aij . If neither i nor j has defined parents, it creates a new coarse node
labeled new and sets the parents of i and j to be new. After the loop is completed,
there will be singletons; i.e., node that have not been assigned a parent in the loop.
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Algorithm 2.1 Heavy Edge Matching (HEM)

1: Input: Weighted graph G = (V,E,A)
2: Output: Coarse nodes; Prnt list
3: Init: Prnt(i) = 0 ∀i ∈ V ; new = 0
4: for max to min edge (i, j) do
5: if Prnt(i) == 0, Prnt(j) == 0 then
6: new = new + 1
7: Prnt(i) = Prnt(j) = new
8: end if
9: end for

10: for Node v with Prnt(v) == 0 do
11: if v has no neighbor then
12: new = new + 1; Prnt(v) = new
13: else
14: Prnt(v) = Prnt(j) where j = argmaxi(aiv)
15: end if
16: end for

As shown in lines 10–16, a ‘singleton’ node is either added as a coarse nodes, if it
is disconnected (‘real singleton’), or it is lumped as a child of an already generated
coarse node (‘left-over singleton’). Figure 2.4 gives an illustration of this step.

Fig. 2.4: The coarsening process. Original and coarse nodes are colored in black
and yellow, respectively. Dashed arrow indicates parent-child relationship. Solid line
represents heaviest-weighted edge. Left: A coarse node is created from two adjacent
nodes 1 and 2. Middle: A coarse node is created from a true singleton node 3. Right :
A left-over singleton node 4 is attached to a coarse, nearest neighbor node 2.

2.3. Coarsening approach: Independent sets. It is also possible to exploit
independent sets (see, e.g., [96]) for coarsening graphs. Recall that an independent
set S is a subset of V that consists of nodes that are not adjacent to each other; i.e.,
no pair (v, w) where v, w ∈ S is linked by an edge. An independent set S is maximal
if no (strict) superset of S forms another independent set. One can use the nodes of a
carefully selected independent set to form a coarse graph; i.e., we can define Vc = S.
Then, it is relatively easy to determine the edges and weights between these nodes by
using information from the original graph. For example, in [96] an edge is inserted
between v and w of Vc if there is at least one node y in V \Vc such that (v, y) ∈ E and
(w, y) ∈ E. This will produce the edge set Ec needed to form the coarse graph Gc.

Let L be the graph Laplacian, reordered such that the nc nodes of Vc are listed
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first. Then L will have the following structure, where Dc ∈ Rnc×nc :

(2.7) L =

(
Dc −F
−FT B

)
.

Since the nodes associated with the (1,1) block in the above matrix form an
independent set, it is clear that the matrix Dc is diagonal. Coarsening by independent
sets will consist of taking the matrix Dc and adding off diagonal elements to it to
obtain the adjacency matrix Ac. An important observation to be made here is that
the edges added by the independent set coarsening are those obtained from the Schur
complement with respect to B, where B is replaced by a diagonal matrix. Let us
assume that B is replaced by a matrix Df . The resulting Schur complement is

(2.8) Sc = Dc − FD−1f FT .

The nonzero pattern of Sc is the same as that of FFT , which is in turn the sum of the
patters of fjf

T
j where fj is the j-th column of F . If fj has nonzero entries in locations

i and k, then we will have nonzero entries in the positions (i, i), (i, k), (k, i) and (k, k)
of Sc. Next, we will define Df more specifically. Let Df be the diagonal of row-sums
of FT and assume for now that these are all nonzero. This is the same diagonal as
the one used for the graph Laplacian except that the summation ignores the entries
aij when i and j are both in V \Vc. In matlab notation: Df = diag(diagFT1). In this
situation, Sc becomes a Laplacian.

Proposition 2.1. Let B be replaced by Df , defined as the diagonal of the row-
sums of FT . Then Df is invertible. Let Lc = Dc − FD−1f FT . Then the graph of Lc
is Gc, the graph of the independent set coarsening of G. In addition, Lc is a graph
Laplacian; specifically, it is the graph Laplacian of Gc.

Proof. Because the independent set is maximal, we cannot have a zero diagonal
element in Df . Indeed, if the opposite was true, then one row, say row k, of FT would
be zero. This would mean that we could add node k to the independent set, because
it is not coupled with any element of S. The result would be another independent set
that includes S, contradicting maximality.

It was shown above that the adjacency graph of FFT , which is the same as that
of Lc, is exactly Gc. It is left to show that Lc is a Laplacian. Since Df and F
have nonnegative entries, the off-diagonal of Lc are clearly negative. Next, note that
FT1 = Df1 and hence

(Dc − FD−1f FT )1 = Dc1− FD−1f Df1 = (Dc − F )1 = 0.

Thus, Lc is indeed a Laplacian.

2.4. Coarsening approach: Algebraic distance. Researchers in AMG meth-
ods defined a notion of ‘algebraic distance’ between nodes based on relaxation pro-
cedures. This notion is motivated by the bootstrap AMG (BAMG) method [25] for
solving linear systems. AMG creates a coarse problem by trying to exploit some rules
of ‘closeness’ between variables. In BAMG, this notion of closeness is defined from
running a few steps of Gauss-Seidel relaxations, starting with some random initial
guess for solving the related homogeneous system Ax = 0. The speed of convergence
of the iterate determines the closeness between variables. This is exploited to ag-
gregate the unknowns and define restriction and interpolation operators [98]. In [36]
this general idea was extended for use on graph Laplacians. In the referenced paper,
Gauss-Seidel is replaced by Jacobi overrelaxation.
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Algorithm 2.2 Algebraic distances for graphs

1: Input: Parameter ω, weighted graph G = (V,E,A), initial vector x(0), number
of steps k.

2: Output: Distances s
(k)
ij for each pair (i, j).

3: for j = 1, 2, · · · , k do
4: x(j) = (1− ω)x(j−1) + ωD−1Ax(j−1)

5: end for
6: Set: s

(k)
ij = |x(k)i − x

(k)
j | ∀i, j

Algorithm 2.2 shows how these distances are calculated. They depend on two
parameters: the over relaxation parameter ω and the number of steps, k. It can be

shown that the distances s
(k)
ij converge to zero [36] as k →∞. However, it was argued

in [36] that the speed of decay of s
(k)
ij is an indicator of relative strength of connection

between i and j. In other words, the important measure is the magnitude – in relative

terms – of s
(k)
ij for different (i, j) pairs.

Note that the iteration is of the form x(j) = Hx(j−1), where H is the iteration
matrix

H = (1− ω)I + ωD−1A = I − ω(I −D−1A).

Because D−A is a graph Laplacian, the largest eigenvalue of H is λ1 = 1. It is then
suggested to scale these scalars by λk2 , where λ2 is the second largest eigenvalue in
modulus. In general, it is sufficient to iterate for a few steps and stop at a step k
when one observes the scaled quantities start to settle.

As can be seen, a coarsening method based on algebraic distances is rather dif-
ferent from the previous two methods. Instead of working on the graph directly we
now use our intuition on the iteration matrix to extract intuitive information on what
may be termed a relative distance between variables. If two variables are close with
respect to this distance, they may be aggregated or merged.

Ultimately, as was shown in [36], what is important is the decay of the component
of the vector x(k)−x(k−1) in the second eigenvector. This distance between two vectors
is indeed dominated by the component in the second eigenvector.

This brings up the question as to whether or not we can directly examine spectral
information and infer from it a notion of distance on nodes. Spectral graph coarsening
addresses this and will be examined in Section 4.

2.5. Techniques related to coarsening. Graph coarsening is a graph reduc-
tion technique, in the sense that it aims at reducing the size of the original graph
while attempting to preserve its properties. There exist a number of other techniques
in the same category. These include graph summarization [86, 75], graph compression
[51], and graph sketching [71]. These are more common in machine learning and the
tasks they address are specific to the underlying applications. In the following we
discuss methods that are more akin to standard coarsening methods.

2.5.1. Graph reduction: Kron. The Kron reduction of networks was pro-
posed back in 1939 [72], as a means to obtain lower dimensional electrically equiv-
alent circuits in circuit theory. Its popularity gained momentum across fields after
the appearance of a thorough analysis of the method in [46]. The method starts with
a weighted graph G = (V,E,A) and the associated graph Laplacian L, along with
a set V1 of nodes which is a strict subset of V . Such a subset can be obtained by
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downsampling, for example, although in the original application of circuits it is a
set of nodes at the boundary of the circuit. The method essentially defines a coarse
graph from the Schur complement of the original adjacency graph with respect to this
downsampled set.

The goal is to form a reduced graph on V1. This is viewed from the angle of
Laplacians. If we order the nodes of V1 first, followed by those of the complement set
to V1 in V , the Laplacian can be written in block form as follows:

(2.9) L =

[
L11 L12

LT12 L22

]
.

The Kron reduction of L is defined as the Schur complement of the original Laplacian
relative to L22; i.e.,

(2.10) L(V1) = L11 − L12L
−1
22 L

T
12.

This turns out to be a proper graph Laplacian as was proved in [46], along with a

few other properties. We can therefore associate a set of weights A
(1)
ij for the reduced

graph, defined from L(V1):

a
(1)
ij =

{
−[L(V1)]ij if i 6= j,

0 otherwise.

An example is shown in Figure 2.5.
A multiscale version of the Kron reduction, called the pyramid transform, was pro-

posed in [109], specifically for applications that involve signal processing on graphs
[110]. It was developed as a multiscale (i.e., ‘multilevel’ in the scientific computing
jargon) extension of a similar scheme invented in the late 1980s for image process-
ing [31]. The extension is from regular data (discrete time signals, images) to irregular
data (graphs, networks) as well as from one level to multiple levels.

An original feature of the paper [109] is the use of spectral information for coars-
ening the graph. Specifically, a departure from traditional coarsening methods such
as those described in Sections 2.2 and 2.3 is that the separation into coarse and fine
nodes is obtained from the ‘polarity’ (i.e., the sign of the entries) of the eigenvector
associated with the largest eigenvalue of the graph Laplacian. The motivation of the
authors is a theorem by Roth [99], which deals with bipartite graphs. The idea of
exploiting spectral information was exploited earlier by Aspvall and Gilbert [3] for the
problem of graph coloring, an important ingredient of many linear algebra techniques.
Another original feature of the paper [109] is the use of spectral methods for sparsi-
fying the Schur complement. As was mentioned earlier, the Schur complement will
typically be dense, if not full in most situations. The authors invoke ‘sparsification’
to reduce the number of edges. We will cover sparsification in Section 2.5.3.

Example. As an example, we return to the illustration of Figure 2.5. Using
normalized Laplacians, we find that the largest eigenvector separates the graph in two
parts according to its polarity, namely V1 = {1, 5, 6, 9, 10} and V2 = {2, 3, 4, 7, 8, 11}.
Thus, it is able to discover V1, the rather natural independent set we selected earlier.

One important question that can be asked is why resort to the Schur complement
as a means of graph reduction? A number of properties regarding the Kron reduction
were established in [46] to provide justifications. Prominent among these is the fact
that the resistance distance [49] between nodes of the coarse graph are preserved. The
resistance distance involves the pseudo-inverse of the Laplacian.
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Fig. 2.5: A small graph (left) and its Kron reduction (right). The reduced set of nodes
is V1 = {1, 5, 6, 9, 10}. These node labels are kept in the Kron reduction. Numbers
on the middle of the edges are the weights.

2.5.2. Relationship between Kron reduction and independent set coars-
ening. Instead of invoking independent sets, the Kron reduction, as it is used in [109],
‘downsamples’ nodes by means of spectral information. While these samples may form
an independent set, this is not guaranteed. Just like independent set coarsening, the
coarse graph is built from the Schur complement associated with the complement of
the independent set (so-called node cover). These two ways of coarsening are illus-
trated in Figure 2.6.

Unlike independent set coarsening, the matrix L22 involved the Schur complement
of (2.10) is not approximated by a diagonal before inversion, in effort to reduce the
fill-ins introduced. Instead, spectral ‘sparsification’ is invoked. In the survey paper
[46], the set V1 represents a set of ‘boundary points’ in an electrical network. Improved
sparsity is achieved by other means than those employed in Section 2.3, specifically
by eliminating a selection of internal nodes instead of all of them, in the Gaussian
elimination process.

Fig. 2.6: Two ways of using independent sets for coarsening.
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2.5.3. Graph sparsification. Graph sparsification methods aim at finding a
sparse approximation of the original graph by trimming out edges from the graph
[113, 112]. Here, the number of nodes remains the same but the number of edges |E|
can be much lower than in the original graph. This is motivated by the argument
that in some applications, the graphs that model the data tend to be rather dense and
that many edges can be removed without negatively impacting the result of methods
that exploit these graphs; see, e.g., [65].

Different measures of closeness between the sparsified and the original graph have
been proposed for this purpose, resulting in a wide range of strategies such as spanners
[2], cut sparsifiers [66], and spectral sparsifiers [113]. Graph sparsification methods
can be beneficial when dealing with high density graphs and come with rigorous
theoretical guarantees [13]; see also [16].

We already mentioned at the end of Section 2.5.1 one specific use of graph spar-
sifiers in the context of multilevel graph coarsening. To sparsify the successive Schur
complement obtained by the multilevel scheme, the authors of [109] resorted to a spec-
tral sparsifier developed in [112]. The algorithm exploits a distance measure based on
effective resistances [49]. This notion was briefly mentioned in the context of the Kron
reduction in Section 2.5.1 and will be discussed in some detail in Section 5.4. The
sparsification algorithm of Spielman and Srivastava [112] samples edges according to
a probability defined from the original weights of the graph and these effective resis-
tances. It is shown [112] that the graph Laplacian spectrum and resistance distances
between nodes are approximately preserved with high probability, if the number of
samples is high enough. If G̃ is the sparsified version of G, and if L̃ and L are their
respective Laplacians, the main goal of spectral sparsifiers is to preserve the quadratic
form associated with the Laplacians. The graph G̃ is said to be a σ-spectral approxi-
mation of G if for all x ∈ Rn,

(2.11)
1

σ
xT L̃x ≤ xTLx ≤ σ xT L̃x.

A trivial observation for σ-similar (σ > 1) graphs is that their Rayleigh quotients

µ(x) =
xTLx

xTx
, µ̃(x) =

xT L̃x

xTx

for the same nonzero vector x satisfy the double inequality:

(2.12)
1

σ
µ̃(x) ≤ µ(x) ≤ σ µ̃(x).

Thus, these Rayleigh quotients are, in relative terms, within a factor of σ − 1 of each
other: ∣∣∣∣ µ̃(x)− µ(x)

µ̃(x)

∣∣∣∣ ≤ σ − 1.

This has an impact on eigenvalues. If σ is close to one, then clearly the eigenvalues
of L and L̃ will be close to each other, thanks to the Courant–Fisher min-max charac-
terization of eigenvalues [55]. In what follows, Sk represents a generic k-dimensional
subspace of Rn and eigenvalues are sorted decreasingly. In this situation, the theorem
states that the k-th eigenvalue of the Laplacian L satisfies:

(2.13) λk = max
dim(Sk)=k

min
06=x∈Sk

µ(x).
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The above maximum is achieved by a set, denote by S∗ (which is just the linear span
of the set of eigenvectors u1, · · · , uk). Then

λk = min
06=x∈S∗

µ(x) ≤ min
0 6=x∈S∗

σµ̃(x) ≤ σmax
Sk

min
06=x∈Sk

µ̃(x) ≤ σ λ̃k.

The exact same relation as (2.11) holds if L and L̃ are interchanged. Therefore, the

above relation also holds if λ and λ̃ are interchanged, which leads to the following
double inequality, valid for k = 1, 2, · · · , n:

(2.14)
λ̃k
σ
≤ λk ≤ σλ̃k.

It is also interesting to note a link with preconditioning techniques. When solving
symmetric positive definite linear systems of equations, it is common to approximate
the original matrix A by a preconditioner which we denote here by Ã. Two desirable
properties that must be satisfied by a preconditioner Ã are that (i) it is inexpensive to

apply Ã−1 to a vector; and (ii) the condition number of Ã−1A is (much) smaller than

that of A. The second condition translates into the condition that (xTAx)/(xT Ãx)
be small. If we assume that

(2.15)
1

σ
≤ xTAx

xT Ãx
≤ σ,

then the condition number of the preconditioned matrix, which is the ratio of the
largest to the smallest eigenvalues of Ã−1A, will be bounded by σ2. For additional
details see [113] where this specific viewpoint was explicitly adopted, as well as [13,
112] among others.

2.5.4. Graph partitioning. The main goal here is to put in contrast the prob-
lem of coarsening with that of graph partitioning. To this end, a brief background is
needed. In spectral graph partitioning [52, 12, 92], the important equality (1.3) sat-
isfied by any Laplacian L is exploited. If x is a vector of entries +1 or −1, encoding
membership of node i to one of two subgraphs, then the value of xTLx is equal to 4
times the number of edge-cuts between the two graphs with this 2-way partitioning.
We could try to find an optimal 2-way partitioning by minimizing the number of edge
cuts, i.e., by minimizing xTLx subject to the condition that the two subgraphs are of
equal size, i.e., subject to 1Tx = 0. Since this optimization problem is hard to solve,
it is common to ‘relax’ it by replacing the conditions x ∈ {−1, 1}n, xT1 = 0 with
x ∈ Rn, ‖x‖ = 1, xT1 = 0. This leads to the definition of the Fiedler vector, which is
the second smallest eigenvector of the Laplacian. Recall that the smallest eigenvalue
of the graph Laplacian is zero and that when the graph is connected, this eigenvalue
is simple and the vector 1 is a corresponding eigenvector.

It is interesting to note the similarity between spectral graph partitioning and
Kron reduction. In both cases, the polarity of an eigenvector is used to partition the
graph in two subgraphs. In the case of Kron reduction, it is the vector associated
with the largest eigenvalue that defines the partitions; and one of these partitions is
selected as the ‘coarse’, or the ‘downsampled’ set, according to the terminology in
[109]. For graph partitioning, what is done instead is to use the eigenvector at the
other end, the one next to the smallest, since the smallest is a constant vector. If we
reformulate the problem back in terms of assignment labels of ±1, then this would
lead to the interpretation that in one case, we try to minimize edge cuts (partitioning)
and in the other, we try to maximize them (Kron reduction).
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An illustration is shown in Figure 2.7 with a small finite element mesh. As can
be seen, using the second smallest eigenvector tends to color the graph in such a
way that nearest neighbors of a node are mostly of the same color, while using the
largest eigenvector tends to color the graph in such a way that nearest neighbors of
a node are mostly of a different color. Another way to look at this is that using the
second smallest eigenvector gives domains that tend to be ‘fat’ whereas the largest
eigenvector gives domains that tend to be ‘thin’, like unions of lines separating each
other. Another fact shown by this simple example is that neither of the two sets
obtained is close to being an independent set.

The following property is straightforward to prove.

Proposition 2.2. Assume that the graph has no isolated node and that the com-
ponents ξ1, ξ2, · · · , ξn of the largest eigenvector u1 are nonzero. Let V+ and V− be the
two subgraphs obtained from the polarities of the largest eigenvector. Then each node
of V+ (resp. V−) must have at least one adjacent node from V− (resp. V+).

Proof. The i-th row of the relation Lu1 = λ1u1 yields: (recall definition (1.2))

diξi −
∑

j∈ N(i)

aijξj = λ1ξi → (λ1 − di)ξi = −
∑

j∈ N(i)

aijξj .

Note that (λ1 − di) > 0 (due to assumption). Then, if ξi 6= 0 (left side) then at least
one of the ξj ’s, j 6= i (right side) must be of the opposite sign.
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Fig. 2.7: Subgraphs from eigenvectors of the (normalized) Laplacian. Left side: using
second smallest eigenvector; Right side: using largest eigenvector. The two sets are
colored differently and edge-cuts are shown as dotted lines.

3. Graph coarsening in machine learning. In this section, we discuss exist-
ing methods related to graph coarsening in machine learning and discuss how they
are employed in typical applications. We begin by defining the types of problems
encountered in machine learning and the related terminology. The terms ‘graphs’ and
‘networks’ are often used interchangeably in the literature – although the term net-
works is often employed specifically for certain types of applications, whereas graphs
are more general. For example, ‘social networks’ are common for applications that
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model friendship or co-authorship, while one speaks of graphs when modeling chemi-
cal compounds. What muddles the terminology is the term ‘graph neural networks,’
which are neural networks (a type of machine learning model) for graphs. Further-
more, there are ‘protein-protein interaction networks,’ which are graphs of proteins;
that is, each graph node is a protein, which by itself is a molecular graph.

Some commonly encountered graph tasks include: node classification (determine
the label of a node in a given graph), link prediction (predict whether or not an edge
exists between a pair of nodes), graph classification (determine the label of the graph
itself), and graph clustering (group nodes that are most alike together). The task
of node classification is also often called semi-supervised learning on graphs, which
mainly refers to the setting where only a small number of data points are equipped
with ground-truth labels for learning the classification model, but the graph structure
that connects the data points offers useful priors that may help the model improve
prediction. One of the key concepts in a majority of the methods for solving these
tasks is embedding, which is vector in Rd used to represent a node v ∈ V or indeed
the entire graph G = (V,E).

3.1. Graph clustering and GraClus. As was seen earlier, graph coarsening
is a basic ingredient of multilevel graph partitioning, where each level is a coarse
version of the graph in the past level. The same graph partitioning tools can be used
in data-related applications (e.g., graph clustering), but the requirement of having
partitions of equal size is no longer relevant. This observation led to the development
of approaches specifically for data applications; see, e.g., [43]. The method developed
in [43] uses a simple greedy graph coarsening approach whereby nodes are visited in
a random order. When visiting a node, the algorithm merges it with the unvisited
nearest neighbor that maximizes a certain measure based on edge and node weights.
The visited node and the selected neighbor are then marked as visited. The algorithm
developed in [43], which is known as GraClus, uses different tools from those of graph
partitioning. Because it is used for data applications, the refinement phase exploits a
kernel K-means technique instead of the usual Kernighan–Lin procedure [68].

3.2. Multilevel graph coarsening for node embedding. In one form of
node embedding, one seeks a mapping Φ from the node set V of a graph G = (V,E)
to the space Rn×d where n = |V | and

(3.1) Φ : v ∈ V −→ Φ(v) ∈ Rd.

In other words, each node is mapped to a vector in d-dimensional space. Here, the
dimension d is usually much smaller than n. Many embedding methods have been
developed and used effectively to solve a variety of problems; see, e.g., [100, 14,
1, 115, 33, 57, 123, 35] and [56] for a survey. The idea of applying coarsening to
obtain embedding for large graphs has been gaining ground in recent years; see,
[35, 74, 42, 50, 94].

The authors of [35] present a method dubbed hierarchical representation learn-
ing for networks (HARP), which exploits coarsening to facilitate and improve graph
embedding. The method starts by performing a sequence of ` graph coarsening steps
to produce graphs G1, G2, · · · , G` from the initial graph G0. Then, an embedding
is performed on the final level to produce the mapping Φ`. This embedding is then
propagated back to the original level by proceeding as follows. Starting from level
i = `, the mapping Φi is naturally prolongated (‘extrapolated’) from level i to level
i − 1 to yield a mapping Φ′i−1. An extra step is taken to refine this embedding and
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obtain Φi−1. This specific step is rather reminiscent of the ‘post-smoothing’ steps
invoked in various MG schemes for solving linear systems. Post-smoothing consists
of a few steps of smoothing operations, typically a standard relaxation method (e.g.,
Gauss-Seidel), applied after an approximate solution is prolonged from a coarse level.
The MILE method described in [74] is rather similar to the HARP approach described
above, the main difference being that the refinement proposed in this method exploits
neural networks.

HARP and MILE are general frameworks that use coarsening to improve graph
embedding. In the remainder of this section, we give an illustrative example to
demonstrate the effectiveness of HARP. We examine the performance improvement
of three widely used graph embedding algorithms: DeepWalk [91], LINE [115], and
Node2vec [57], each combined with HARP. Furthermore, because HARP is a general
framework and we have the freedom to choose the coarsening method it uses, we ex-
amine the impact of different coarsening methods on the performance improvement.
Three coarsening methods are tested: HEM (Section 2.2), algebraic distance (Sec-
tion 2.4), and the LESC method to be introduced in Section 5 (it is similar to HEM
but uses spectral information to define the visiting order of nodes).

We evaluate the HARP framework on a node classification task with the Citeseer
graph [107]. Given a graph G where some nodes are labeled, the task of node classifi-
cation amounts to predicting the labels of the remaining nodes. Citeseer is a citation
graph of computer science publications, consisting of 3.3K nodes and 4.5K edges. The
label of each node indicates the subject area of the paper. We first generate the node
embedding for each node using the HARP method. Then, a fraction of the nodes
are randomly sampled to form the training set and the remaining is used for testing.
We train a logistic regression model [20] by using the training data and evaluate the
classification performance on the test data. We use the macro-average F1 score [93]
as the performance metric, which is the mean of the F1 score for each label category.3

Figure 3.1 shows the score under different training set sizes.
As can be seen the HARP framework consistently improves all these embedding

methods, especially LINE and DeepWalk. Each coarsening approach used inside the
HARP framework improves the performance to a different degree, with the LESC
approach generally outperforming the others.

3.3. Graph neural networks and graph pooling. GNNs have recently at-
tracted a great deal of interest in various disciplines, including biology [44], chem-
istry [122], and social networks [125], where data is modeled by graphs. A major
class of GNNs are those of a convolution style that generalize lattice convolutions in
convolutional neural networks (CNNs). A standard convolution applies a filter on a
signal; in CNNs, the signal is a 2-dimensional image and the filter has a very small
support—say, a 3 × 3 window. Convolution-style GNNs generalize the regularity of
such a filter to irregularly connected node pairs [29, 60, 83]. Specifically, the regular
window is replaced by the 1-hop neighborhood of a node.

One such representative GNN is the graph convolutional network (GCN) [69]. A
2-layer GCN maps a feature matrix X to the label matrix Y (see notation introduced
in Section 1.2) by including the graph adjacency matrix A in the mapping:

(3.2) Ỹ = softmax(Â · ReLU(ÂXW 0) ·W 1),

3An alternative definition, which is less used, is that the macro-average F1 score is the har-
monic mean of the macro-average precision and the macro-average recall, where the macro-average
precision/recall is the mean of the precision/recall for each label category.
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Fig. 3.1: Classification results on the Citeseer graph. The x-axis shows the portion of
nodes used for training. The y-axis shows the macro-average F1 score. Each reported
score is an average over five random repetitions.

where Â is a normalization of A through Â = D̃−1/2ÃD̃−1/2, Ã = A+I, D̃ = diag(d̃i),

and d̃i =
∑
j ãij . Therefore, matrix products such as ÂX denote the convolution by

using a 1-hop neighborhood filter.
The following concepts are for neural networks. The functions ReLU and softmax

are nonlinear activation functions: ReLU(x) = max{x, 0} is an elementwise function,
while softmax(x) = [e−x1/c, . . . , e−xd/c] with c =

∑
j e
−xj is a vector function; it acts

on each row if the input is a matrix. The matrices W 0 and W 1 are called weight
matrices. Their contents are not manually specified but learned through minimizing
the discrepancy between Ỹ and the ground truth label matrix Y .

Besides GCN, the literature has seen a large number of generalizations of lattice
convolution to convolutions in the graph context, including for example, spectral [30,
61, 69, 41] and spatial [88, 59, 121, 127, 124, 84] schemes.

GNNs such as (3.2) essentially produce a mapping Φ : v ∈ V −→ Φ(v) ∈ Rc

for every node v in the graph, if we read only one row of Ỹ in (3.2). This mapping
is almost identical to the form (3.1) discussed in the context of node embedding;
the only nominal difference is that the output is in a c-dimensional space while the
node embedding is in d-dimensional space. This difference is caused by the need for
the output Ỹ to be matched with the ground truth Y that has c columns (c label
categories); while for node embedding, the embedding dimension d may be arbitrary.

However, if our purpose is not to match Ỹ with Y , we can adjust the number of
columns of W 1 so that the right-hand side of (3.2) can be repurposed for producing
a node embedding. More significantly, we may take the elementwise minimum, the
average, or the weighted average of the node embedding vectors to form an embedding
vector for the entire graph G = (V,E) [48]. In other words, a GNN, with a slight
modification, can produce a mapping

(3.3) Ψ : G −→ Ψ(G) ∈ Rd.

Now that we see how GNNs can be utilized to produce a graph embedding through
the mapping Ψ, a straightforward application of coarsening is to use Ψ(Gc) in place of
Ψ(G) for the classification of G. This simple idea can be made more sophisticated in
two ways. First, suppose we perform a multilevel coarsening resulting in a sequence of
increasingly coarser graphs G = G0, G1, G2, . . . , G`. We may concatenate the vectors
Ψ(G0),Ψ(G1), . . . ,Ψ(G`) and treat the resulting vector as the embedding of G. We
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use the concatenation result (say ψG) to classify G, though building a linear classifier
that takes ψG as input and outputs the class label.

Second, we introduce the concept of pooling. Pooling in neural networks amounts
to taking a min/max or (weighted) average of a group of elements and reducing it to a
single element. In the context of graphs, pooling is particularly relevant to coarsening,
since if we recall the Galerkin projection f (`+1) = PT` f

(`) in AMG (see (2.3)), the
interpolation matrix P` plays the role of pooling: each column of P` defines the
weights in the averaging of nodes in the last graph into a node in the coarse graph.
Hence, in the context of GNNs, we call P` a pooling matrix. This matrix can be
obtained directly through the definition of a coarsening method [41, 111], or it can be
unspecified but learned through training [126, 53, 73]. By using successive poolings
that form a hierarchy, recent work [126, 73, 53, 70] has shown that hierarchical pooling
improves graph classification performance.

4. Spectral coarsening. While the terms ‘spectral graph partitioning’ and
‘spectral clustering’ are quite well-known, the term ‘spectral graph coarsening’ is less
explored in the literature. There are two aspects, and therefore possible directions, to
spectral coarsening. First, it may be desirable in various tasks to preserve the spectral
properties of the original graph, as is the case in the local variation method proposed
by [76]. The second aspect is that one may wish to apply spectral information for
coarsening. The method proposed by [109] falls in this category. It uses the eigenvec-
tor of the graph Laplacian to select a set of nodes for Kron reduction [46] discussed
earlier.

In this section, we present an approach for the first aspect; whereas in Section 5,
we develop an approach related to the second aspect. Regarding the first aspect,
eigenvectors of the graph Laplacian encapsulate much information on the structure
of the graph. For example, the first few eigenvectors are often used for partitioning
the graph into more or less equal partitions. Therefore, the first question we will ask
is whether or not it is possible to coarsen a graph in such a way that eigenvectors are
‘preserved.’ Of course, the coarse graph and the original one have different sizes so
we will have to clarify what is meant by this.

4.1. Coarsening and lifting. Recall from AMG that coarsening is represented
by the matrix PT ∈ Rnc×n. It helps to view a coarse node as a linear combination of

a set of nodes in the original graph. Let the k-th coarse node be denoted by v
(c)
k and

the set be Sk. The weights are pik for each vi ∈ Sk:

(4.1) v
(c)
k =

∑
vi∈Sk

pikvi ⇔ v(c) = PT v.

The coarse adjacency matrix is then defined as:

(4.2) Ac = PTAP.

A similar framework of writing a coarsened matrix in the form of (4.2) is adopted in
[76]. Note that in general, Ac is not binary. Here, we assign the diagonal entries of
Ac to 0 and all non-zero entries to 1.

The original graph G and its coarse graph Gc have a different number of nodes.
If we wish to compare the properties of these two graphs, it is necessary to ‘lift’ the
graph Laplacian of Gc into a matrix that has the same size as that of G. Let L
and Lc denote the Laplacian of the original graph and the coarse graph, respectively.
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One way to construct a matrix Lc that is guaranteed to be a graph Laplacian is as
follows [76, 64]:

(4.3) Lc = QTLQ,

where Q ∈ Rn×nc is a sparse matrix with

(4.4) Qij =

{
1, node i in Sj ,

0, otherwise.

In the simplest case, the entries P in (4.1) can be defined as pik = 1/|Sk| for
all vi ∈ Sk. Then, the resulting P is the pseudoinverse of QT , with QTP = Inc

.
Therefore, the lifted counterpart of Lc, denoted by Ll, is defined as

(4.5) Ll = PLcP
T ,

because PQT is a projector.

4.2. The projection method viewpoint. If we extend the matrix P as an
orthonormal matrix, then PPT is a projector and the lifted Laplacian defined in (4.5)
becomes Ll = PPTLPPT . It is useful to view spectral coarsening from the projection
method [104] angle.

Consider an orthogonal projector π and a general (symmetric) matrix A. In an
orthogonal projection method on a subspace V, we seek an approximate eigenpair
λ̃, ũ, where ũ ∈ V such that

π(A− λ̃I)ũ = 0.

If V = [v1, v2, · · · , vk] is an orthonormal basis of V and the approximate eigenvector
is written as ũ = V y, then the previous equation immediately leads to the problem

(4.6) V TAV y = λy.

The eigenvalue λ̃ is known as a Ritz value and ũ is the associated Ritz vector.
Recall the orthogonal projector π onto the columns of P ; that is, π = PPT . If

we look at the specific case under consideration, we notice that this is precisely what
is being done and that the basis vectors V are just the columns of P .

When analyzing errors for projection methods, the orthogonal projector π repre-
sented by the matrix PPT plays a particularly important role. Specifically, a number
of results are known that can be expressed based on the distance ‖(I − π)u‖ where u
is an eigenvector of A; see, e.g., [104]. The norm ‖(I − π)u‖ represents the distance
of u to the range of π in Rn.

4.3. Eigenvector preserving coarsening. Based on the interpretation of pro-
jection methods, it is desirable to construct a projector that preserves eigenvectors.
We say that a given eigenvector u is exactly preserved or just ‘preserved’ by the coars-
ening if (I − π)u = 0. If this is the case then when we solve the projected problem
(4.6), we will find that y = PTu is an eigenvector of V TAV associated with the
eigenvalue λ:

V TAV (V Tu) = V TAπu = V TAu = λV Tu.

The Ritz vector is ũ = Py = PPTu = πu = u which is clearly an eigenvector.
What might be more interesting is the more practical situation in which (I −π)u

is not zero but just small. In this case, there are established bounds [104] for the
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angle between the exact and approximate eigenvectors based on the quantity ε =
‖(I − π)u‖2.

In what follows, we instantiate the general matrix A by the graph Laplacian
matrix L and consider the preservation of its eigenvectors. From many machine
learning methods (e.g., the Laplacian eigenmap [15]), the bottom eigenvectors of L
carry the crucial information of a dataset. Thus, they are the ones that we want to
preserve.

4.4. Preserving one eigenvector. If we want to coarsen the graph into k
nodes, we partition an eigenvector u into k parts. Up to permutations of the elements
of u, let us write, in matlab notation

u =
[
u1 ; u2 ; · · · ; uk

]
.

Then, we let

P =


u1/‖u1‖

u2/‖u2‖
. . .

uk/‖uk‖

 .
Clearly, P is orthonormal and satisfies u = PPTu. In other words, the matrix P so
defined preserves the eigenvector u of the graph Laplacian in coarsening.

The square of an element of u is called the leverage score of the corresponding
node (see Section 5.1). Then, each ‖ui‖2 is the leverage score of the i-th coarse node.
In other words, if a collection of nodes of the original graph is grouped into a coarse
node, then the sum of their leverage scores is the leverage score of the coarse node.

4.5. Preserving m eigenvectors. The one-eigenvector case can be easily ex-
tended to m eigenvectors. Let U be the matrix of these eigenvectors; that is, U has m
columns, each of which is an eigenvector. We partition U similarly to the preceding
subsection, as

U =
[
U1 ; U2 ; · · · ; Uk

]
.

Then, we define the matrix P in the following way:

P =


P1

P2

. . .

Pk

 ≡

U1R

−1
1

U2R
−1
2

. . .

UkR
−1
k

 ,
where for each partition i, Ui = PiRi. The equality Ui = PiRi can be any factorization
that results in orthonormal matrices Pi (so that P is orthonormal). A straightforward
choice is the QR factorization. Alternatively, one may use the polar factorization,
where Pi and Ri are the unitary polar factor and the symmetric positive definite polar
factor, respectively. This factorization is conceptually closer to the one-eigenvector
case.

In contrast with the one-eigenvector case, now a collection of nodes of the original
graph is grouped into m coarse nodes, which are all pairwise connected in the coarse
graph. The total number of nodes in the coarse graph is mk. Because the Frobenius
norm of Ui is equal to that of Ri, we see that the sum of the leverage scores of the
original nodes in a partition is the same as that of the m resulting coarse nodes.
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It is not hard to see that each eigenvector in U is preserved. Indeed, if u is the
j-th column of U , then u = Uej and, using matlab notation,

u = [U1ej ; U2ej ; · · · ; Ukej ]

= [P1R1ej ; P2R2ej ; · · · ; PkRkej ]

≡ [P1ρ1 ; P2ρ2 ; · · · ; Pkρk]

= P [ρ1 ; ρ2 ; · · · ; ρk],

where we have set ρi = Riej for i = 1, · · · , k. Therefore, u is in the range of P and
as such it will be left invariant by the projector π: If ρ = [ρ1 ; ρ2 ; · · · ; ρk] then
πu = PPT (Pρ) = Pρ = u.

Clearly, it is not necessary to use a regular fixed and equal-sized splitting for the
rows of U (and u); i.e., we can select any grouping of the rows that can be convenient
for, say, preserving locality, or reflecting some clustering.

5. Coarsening based on leverage scores. Spectral coarsening may have de-
sirable qualities when considering spectral properties, but these methods face a num-
ber of practical difficulties. Among them is the fact that the coarsened graph tends
to be dense. For this reason, spectral methods will be invoked mostly as a tool to
provide an ordering of the importance of the nodes—which will in turn be used for
defining a traversal order in other coarsening approaches (e.g., HEM). This has been
a common theme in the literature [35, 64, 76].

5.1. Leverage scores. Let A be a general matrix and let U be an orthonormal
matrix, whose range is the same as that of A. The leverage score [47] of the i-th row
of A is defined as the squared norm of the i-th row of U :

(5.1) ηi = ‖Ui,:‖22.

Clearly, the leverage score is invariant to the choice of the orthonormal basis of the
range of A.

Leverage scores defined in the form (5.1) have been used primarily for (rectangu-
lar) matrices A that represent data. In these cases, the columns of U are the dominant
singular vectors of A and the matrix π = UUT is an orthogonal projector that projects
a vector in Rn onto the span of U . The vector of leverage scores, η, is the diagonal of
this projector. This quantity appears also in a different context in quantum physics,
where the index i represents a location in space, ηi represents the electron density
in position i, and the projector π is the density matrix in the idealistic case of zero
temperature. See Section 3.4 of [81].

5.2. Leverage-score coarsening (LESC). For coarsening methods such as
Algorithm 2.1, the traversal order in the coarsening process can have a major impact
on the quality of the results. Instead of the heavy edge matching strategy, we now
consider using leverage scores to measure the importance of a node. Exploiting what
we know from spectral graph theory, we will use the bottom eigenvectors of the graph
Laplacian L to form U . However, we find that in many cases, the traversal order is
sensitive to the number of eigenvectors, r. To lessen the impact of r on the outcome,
we weigh individual entries Uik in (5.1) by using the eigenvalues λ1, . . . , λr of L.
Specifically, we define

(5.2) ηi =

r∑
k=1

(e−τλkUik)2,
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where τ represents a decay factor of the weights. This leads to a modification of HEM
that is based on leverage scores (5.2) which we call leverage score coarsening, or LESC
for short.

Algorithm 5.1 describes the LESC procedure. Its main differences from HEM
(Algorithm 2.1) lie in (i) the traversal order and (ii) the handling of singletons. While
HEM proceeds by the heaviest edge, LESC scans nodes in decreasing η values. At the
beginning of each for-loop, LESC selects the next unvisited node i with the highest
leverage score and selects from its unvisited neighbors a node j, where the edge (i, j)
has the heaviest edge weight, to create a coarse node.

The way in which LESC handles the singletons is elaborated in lines 14–25 of
Algorithm 5.1. During the traversal, we append a singleton to a set named Single.
Depending on the desired coarse graph size nc, there are two ways to assign par-
ents to the singletons: lines 20–22 handle a real singleton and lines 23–25 handle a
leftover singleton. This extra step outside HEM better preserves the local structure
surrounding high-degree nodes, as well as the global structure of the graph.

Algorithm 5.1 Leverage-Score Coarsening (LESC)

1: Input: Weighted graph G = (V,E,A); leverage score η; coarse graph size nc.
2: Output: Coarse nodes; Prnt list
3: Init: Prnt(i) = 0 ∀i ∈ V , new = 0, Single = ∅
4: for max-score to min-score node i do
5: if i has no neighbor then
6: new = new + 1; Prnt(i) = new
7: else
8: for max to min edge (i, j) do
9: if Prnt(j) == 0 then

10: new = new + 1
11: Prnt(i) = Prnt(j) = new
12: end if
13: end for
14: if Prnt(i) == 0 then
15: Add i to Single set
16: end if
17: end if
18: end for
19: Randomly shuffle Single set
20: for the first nc − new nodes v in Single do
21: new = new + 1; Prnt(v) = new
22: end for
23: for remaining nodes v in Single do
24: Prnt(v) = Prnt(j) where j = argmaxi(Ai,v)
25: end for

For an illustration, we visualize the coarse graphs produced by the following
five coarsening methods: HEM, local variation (LV) [76], algebraic distance, Kron
reduction, and LESC. The original graph is selected from the D&D protein data set;
see the Section 5.5 for a detailed description. The coarse graphs are shown in Figure
5.1. We observe from the figure that the global structure of the graph is well preserved
in each coarse graph. Moreover, the connection chains of the nodes are well preserved.
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(a) Original
312 nodes, 761 edges

(b) HEM
156 nodes, 340 edges

(c) LV
156 nodes, 321 edges

(d) algebraic distance
171 nodes, 327 edges

(e) Kron
156 nodes, 485 edges

(f) LESC
156 nodes, 362 edges

Fig. 5.1: Visualization of a graph and the coarsened graphs obtained by different
methods.

Note also that, as expected, the coarse graph from Kron reduction is denser than the
other coarse graphs.

5.3. Interpretations. Leverage scores defined in (5.1) have been used primarily
for matrices that represent data. The form used by us, (5.2), stabilizes the ordering of
the scores when the number r of dominant eigenvectors varies. When τ or r is large,
there is little difference between the value (5.2) and the following one that uses all
eigenvectors:

(5.3) ηi =

n∑
k=1

(e−τλkUik)2.

The form (5.3) can lead to interesting interpretations and results.
First, observe that if we denote by ei the i-th column of the identity matrix, then

(5.4) ηi =

n∑
k=1

e−2τλk |Uik|2 = eTi exp(−2τL)ei.

That is, ηi is nothing but the i-th diagonal entry of the matrix H ≡ exp(−2τL). If
the adjacency matrix A is doubly stochastic, then L = I −A and H = exp(−2τL) =
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exp(−2τI + 2τA) = e−2τ · exp(2τA). Therefore, since A has nonnegative entries,
so does H. Then, H is a stochastic matrix (in fact, doubly stochastic because of
symmetry). To see this, we have L1 = 0 and thus by the Taylor series of the matrix
exponential, H1 = 1. Now that H is a stochastic matrix, the leverage score ηi (i-th
diagonal entry of H) represents the self-probability of state i.

There exists another interpretation from the transient solutions of Markov chains;
see Chapter 8 of [114]. In the normalized case, the negative Laplacian −L plays the
role of the matrix Q in the notation of continuous time Markov chains (see Section
1.4 of [114]). Given an initial probability distribution π(0) ∈ R1×n, the transient
solution of the chain at time t is π(t) = π(0) exp(tQ) = π(0) exp(−tL). If π(0) = eTi ,
then π(t) carries the probabilities for each state at time t. In particular, the i-th entry
(which coincides with the leverage score ηi if t = 2τ) is the probability of remaining
in state i.

5.4. Alternative definition. The definition of ηi in (5.2) modifies the standard
leverage score by using decaying weights, to reduce sensitivity of the number of eigen-
vectors used. In principle, any decreasing function of eigenvalues can be used to get
distinguishable leverage scores of a Laplacian. We consider the following alternative,
which is related to the pseudoinverse of the Laplacian:

(5.5) ηi =

n∑
j=2

(
1√
λj
Uij

)2

.

Several points are worth noting. First, weighted leverage scores emphasize eigenvec-
tors corresponding to small non-zero eigenvalues. Hence, weighted leverage scores
reveal the contribution of nodes to the global structure. Second, a smaller weighted
leverage score indicates a higher topological importance of a node. Third, calculat-
ing the complete set of eigenvectors of L is expensive. Given a parameter r, we can
further define r-truncated weighted leverage scores using only r eigenpairs:

(5.6) ηi =

r∑
j=2

(
1√
λj
Uij

)2

.

For simplicity, we refer to these numbers as leverage scores of L, and use η =
[η1, · · · , ηn] to denote them. A visual example of using η to define the traversal
order in Algorithm 5.1 is given in Figure 5.2.

The definition (5.5) has a direct connection with the pseudoinverse of the Lapla-
cian. In particular, the vector η is equal to the diagonal of L†. To see this, we first
notice that L and L† have the same set of eigenvectors, and nontrivial eigenvalues are
reciprocals of each other. We then write L† as L† = UΣ†UT , where Σ† is a diagonal
matrix with 0 < 1/λn ≤ · · · ≤ 1/λ2 on the diagonal. Diagonal entries of Σ† are
non-negative, so we can write

(5.7) L† = U
√

Σ†
(
U
√

Σ†
)T

,

from which we get

L†ii =

n∑
j=2

Uij√
λj

Uij√
λj

= ηi.

The pseudoinverse of L has long been used to denote node importance. The article
[117] provides a rather detailed description of the link between L† and the various
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Fig. 5.2: Traversal order of HEM (left) and LESC (right) on an unweighted graph.

definitions of network properties. The effective resistance distance between nodes a
and b is given by ωab = L†aa + L†bb − 2L†ab. The trace of L† defines a graph metric
called effective graph resistance [49], which is related to random walks [34] and the

betweenness centrality [87]. In addition, the columns sj of the matrix U
√

Σ† in (5.7)
have a particular significance. The squared distance between two columns sa and sb
is equal to ωab and based on this notion of distance, [97] propose to use (L†ii)

−1 as a
measure of the topological centrality of a node i. The smaller the distance, the higher
its topological centrality. This metric has been used to quantify the roles of nodes in
independent networks [108]. Therefore, by using η, LESC prioritizes nodes with high
importance with respect to this metric.

The leverage score vector η is also related to the change of the Laplacian pseu-
doinverse when merging a pair of nodes in coarsening. We follow the work by [62] to
elucidate this. To simplify the comparison between two matrices with different sizes,
consider the following perspective: during coarsening, instead of merging a pair of
nodes and reducing the graph size by one, we assign the corresponding edge with an
edge weight +∞. To avoid possible confusion with Lc, we use L∞ to denote the coarse
graph Laplacian (the Laplacian of the +∞-weighted graph). Suppose we assign an
edge e(vi, vj) with the +∞ weight, then the difference between L and L∞ is

(5.8) ∆L = L∞ − L = wbeb
T
e , (w = +∞)

where be is defined in (1.5). Then, the change in L† is given by the Woodbury matrix
identity [54]:

(5.9) ∆L† = − w

1 + wbTe L
†be

L†beb
T
e L
† = − 1

bTe L
†be

L†beb
T
e L
†. (w = +∞)

Thus, the magnitude of ∆L† can be defined by the Frobenius norm:

(5.10) ||∆L†||2F =
bTe L

†L†be
bTe L

†be
.

The following result bounds the magnitude of ∆L† by using leverage scores.
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Proposition 5.1. Let the graph be connected. The magnitude of the difference
between L† and L†∞ caused by assigning the +∞ edge weight to an edge e(i, j) is
bounded by

||∆L†||2F ≤ κ(L)(L†ii + L†jj),

where κ denotes the effective condition number (i.e., the largest singular value divided
by the smallest nonzero singular value).

Proof. Let L† = UΛUT be the spectral decomposition of L† with eigenvalues
sorted nonincreasingly: µ1 ≥ · · · ≥ µn−1 > 0 = µn. Further, let x = Λ1/2UT be.
Then,

bTe L
†L†be

bTe L
†be

=
xTΛx

xTx
≤ µ1.

Now consider a lower bound and an upper bound of bTe L
†be. Since be is orthogonal

to the vector of all ones (an eigenvector associated with µn), we have(
be√

2

)T
L†
(
be√

2

)
≥ min
‖y‖=1

{yTL†y | yT1 = 0} = µn−1.

On the other hand, note that bTe L
†be = L†ii +L†jj − 2L†ij and that (L†ij)

2 ≤ L†iiL
†
jj (by

positive semidefiniteness). Then,

bTe L
†be ≤

(√
L†ii +

√
L†jj

)2

≤ 2(L†ii + L†jj).

Invoking both the lower bound and the upper bound, we obtain

bTe L
†L†be

bTe L
†be

≤ µ1 ≤ µ1

2(L†ii + L†jj)

2µn−1
.

Then, by noting that µ1/µn−1 is the effective condition number of L† (as well as L),
we conclude the proof.

5.5. Experimental results. Here, we show an experiment to demonstrate the
effective use of LESC to speed up the training of GNNs. We use the leverage scores
defined in (5.6) to conduct the experiments.

We use three data sets for evaluation: D&D [44], REDDIT-BINARY (REBI),
and REDDIT-MULTI-5K (RE5K) [125]. The first is a protein data set and the label
categories are enzymes and non-enzymes. Each protein is represented by a graph,
where nodes represent amino acids and they are connected if the two acids are less
than six Angstroms apart. The last two are are social network data sets collected
from the online discussion forum Reddit. Each discussion thread is treated as one
graph, in which a node represents a user and there is an edge between two nodes if
either of the two users respond to each other’s comment. The label categories are
community types and discussion topics, respectively. Statistics of the data sets are
given in Table 5.1.

We focus on the task of graph classification. Given a collection of graphs, where
some graphs are labeled, this task is to predict the labels of the remaining graphs.
For example, protein graphs in D&D will be classified as enzymes or non-enzymes.
As motivated in Section 3.3, we classify the coarsened graphs, which are smaller
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Table 5.1: Dataset statistics.

D&D REBI RE5K
#graphs 1178 2000 4999
#classes 2 2 5

Avg.#nodes 284.32 429.63 508.52
Avg.#edges 715.66 497.75 594.87

but retain the structural information of the original graphs. We use four GNNs
(SortPool [127], DiffPool [126], TopKPool [53, 32], and SAGPool [73]) to perform the
task and investigate the change of training time and prediction accuracy under three
coarsening schemes (HEM, local variation (LV) [76], and LESC).

Figure 5.3 summarizes the time (bars) and accuracy (percentages) results. Each
column is for one GNN and each row is for one data set. Inside a panel, three
coarsening methods are compared, each using three coarsening levels.

When comparing times, note that applying coarsening to graph classification
incurs two costs: the time to perform coarsening (as preprocessing) and the time for
training. Therefore, we normalize the overall time by that of training a GNN without
using coarsening. Hence, a relative time < 1 indicates improvement. In fact, the
relative time is just the reciprocal of the speedup.

Here are a few observations regarding training times. First, for all three data
sets, time reduction is always observed for HEM and LESC. Second, for these two
methods, the coarsening time is almost negligible compared with the training time,
whereas LV incurs a substantial overhead for coarsening in several cases. In LV,
the coarsening time may even dominate the training time (see REBI and RE5K).
Discounting coarsening, however, LV produces coarse graphs that lead to reduced
training times. Third, in general, the deeper the levels, the more significant is the
time reduction. The highest speedup for LESC, which is approximately 30x, occurs
for REBI in three levels of coarsening.

To compare prediction accuracies, we compute the relative change (in %) in ac-
curacy and annotate it on the right side of each panel in Figure 5.3. We see that
LESC achieves the best performance among all three coarsening methods on all three
datasets. It also improves accuracy on a few of the GNNs while for the others it
produces an accuracy that is quite close to that achieved by not using coarsening. In
other words, coarsening does not negatively impact graph classification overall.

6. Concluding remarks. This survey (with new results; see Section 4.4 on-
ward) focused on graph coarsening techniques with a goal of showing how some com-
mon ideas have been utilized in two different disciplines while also highlighting meth-
ods that are specific to some applications. The recent literature on methods that
employ graphs to model data clearly indicates that the general method is likely to
gain importance. This is only natural because the graphs encountered today are be-
coming large and experiments show that if employed with care, coarsening does not
cause a big degradation in the performance of the underlying method. As researchers
in numerical linear algebra and scientific computing are increasingly turning their
attention to problems related to machine learning, graph based methods, and graph
coarsening in particular, are likely to play a more prominent role.
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Fig. 5.3: Relative time and accuracy difference on D&D (top row), REBI (middle row),
and RE5K (bottom row). Four classification methods (SortPool, DiffPool, SAGPool,
and TopKPool) and three coarsening methods (HEM, LV, and LESC) are considered.
For each classification method, we normalize the run time by that of the original
method. Each run time consists of two parts: coarsening and GNN training with
10-fold cross validation. For each coarsening method, run times are reported for
a number of coarsening levels. The highest accuracy achieved by each coarsening
method is annotated on the right of the bar chart through differencing from that
of the original graph (coarsening minus original). Positive values indicate accuracy
increase. The best case for each chart is highlighted in boldface.
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